
Biologically-Inspired Gameplay: Movement Algorithms for Artificially
Intelligent (AI) Non-Player Characters (NPC)
Rina R. Wehbe*, Giovanni Riberio, Kin Pon Fung, Lennart E. Nacke,

Edward Lank
Cheriton School of Computer Science, HCI Games Group, The Games Institute, University of Waterloo

ABSTRACT

In computer games, designers frequently leverage biologically-
inspired movement algorithms such as flocking, particle swarm
optimization, and firefly algorithms to give players the perception
of intelligent behaviour of groups of enemy non-player characters
(NPCs). While extensive effort has been expended designing these
algorithms, a comparison between biologically inspired algorithms
and naive directional algorithms (travel towards the opponent) has
yet to be completed. In this paper, we compare the biological algo-
rithms listed above against a naive control algorithm to assess the
effect that these algorithms have on various measures of player ex-
perience. The results reveal that the Swarming algorithm, followed
closely by Flocking, provide the best gaming experience. However,
players noted that the firefly algorithm was most salient. An un-
derstanding of the strengths of different behavioural algorithms for
NPCs will contribute to the design of algorithms that depict more
intelligent crowd behaviour in gaming and computer simulations.

Keywords: Games User Research (GUR), Biological Algorithms,
Non-player Characters (NPCs), Artifical Intelligence (AI), Move-
ment in Games

Index Terms: H.5.2 [User Interfaces]: User Interfaces—Graphical
user interfaces (GUI); H.5.m [Information Interfaces and Presenta-
tion]: Miscellaneous

1 INTRODUCTION

The heart of video games is the user experience. Developers need
to make tough decisions to ensure the game is both challenging and
entertaining keeping players in the state of optimum flow experi-
ence [7]. One challenge presented to developers is the creation of
algorithms that control non-player characters (NPCs). Among many
other parameters, one of the primary aspects of NPC behaviour in-
volves how these characters move during gameplay. The creation of
realistic movements is necessary for individual NPCs whose move-
ment can be inspired by some individual character goal. On the other
hand, if the NPC is a member of a group of NPCs, some form of
group-based algorithm for movement is necessary to give the appear-
ance of purposeful group behaviour. These group-based movement
algorithms have collectively been labelled flocking algorithms.

While significant research effort has gone into the design of
flocking algorithm variants (blocks, particle swarms, and firefly, for
example), it is difficult to determine how important these algorithms
are in gameplay. By design, their goal is to create more realistic
NPC group behaviours, but do they? And if they do, does that
affect player perception of character realism and intelligence? Is
engagement and enjoyment in games also affected? Do players even
notice the change in NPC behaviour? While it is true that these
algorithms have been contrasted with realistic group behaviours to
validate their efficacy [35], we are aware of no work that has actually

*e-mail: rrwehbe@uwaterloo.ca

asked the above fundamental questions about the effect of these
algorithms on the player experience. This question is particularly
interesting given that the ultimate goal of these algorithms is to
enhance realism. Therefore, the contribution of our work is to test if
the changes between the flocking algorithms affect user experience.

In this paper, we explore player response to flocking algorithms
through two experimental studies. First, we invite users to play a
game where enemy types are controlled by four different algorithms:
Flocking, Particle Swarm Optimisation (PSO), and Firefly Algo-
rithms, and a control condition where NPCs in groups move in a
straight line toward their objective. We do this to assess the effect the
algorithms have on the player’s experience. Our results reveal dif-
ferences between algorithms. Players identified the particle swarm
optimisation (PSO) algorithm as their most preferred algorithm, but
it was also ranked as the easiest algorithm. In contrast, flocking was
less preferred by users but rated as the most difficult algorithm; they
felt that groups of enemies whose movements were controlled by
Flock were not as predictable, thereby improving realism. However,
the differences were not enough to cause a significant difference
in measures of engagement in gameplay. Players seemed little im-
pacted by the differences between the different group behaviour
algorithms in-the-moment.

To determine whether algorithms were truly of limited import
or if potential confounds in experimental design (e.g. players pre-
ferred conditions that were easiest because their success increased,
algorithmic parameters were poorly tuned, or the game design was
lacking) were resulting in limited impact on measures of immersion
in game play, we conducted a follow-on Mechanical Turk study. The
follow-on study further validates the limited utility of NPC coordi-
nated movement algorithms within our game platform, and provides
additional evidence that aspects of game play such as story and
aesthetics seem more important to overall measures of enjoyment in
gaming than do flocking algorithms.

While a superficial interpretation of our results might, at first,
argue that flocking algorithms have limited impact on game play,
it is the case that algorithms created significant differences in per-
ceived difficulty. One challenge with game play is the calibration of
difficulty levels to player skill, and flocking algorithms, with their
impact perceptions of difficulty, may be useful in engineering incre-
mental difficulty adjustments in games, thus preserving challenge
and engagement in the long term.

2 RELATED WORK

Maintaining presence and immersion in computer games is a core
component of creating a positive Player Experience (PX) [35]. Previ-
ous research has demonstrated the importance of the behaviour of ar-
tificial intelligence (AI) on maintaining immersion in games [26,35].
For Game AI, this has meant developing the (often imperfect) be-
haviour of non-player (usually enemy) characters [35]. Examples
of these behaviours include character movement behaviours such as
navigation or pathfinding.

The creation of game environments has been separated into two
distinct design approaches in past literature [12, 24]. The first is
scripting, which requires game developers to pre-specify every path

Figure 1: The above images show the original version of the game with each algorithm represented by a coloured fish. In S1 users played the
game. These algorithms were recorded for gameplay videos in S2.

of movement, interaction, and game objects that a player will expe-
rience throughout the game. The content for this gameplay must be
created and include NPC behaviour, scripts, location in area, among
many other factors. In pre-created, scripted interactions the linearity
of progression causes a direct path through gameplay limiting the
ability to create open worlds, flexible game play, and rich combi-
nations of human and NPC characters. The negative factors of this
static content approach extend beyond game play: they actually
begin at preconception of the game narrative and through the devel-
opment process. Overall, because scripting must fully specify all
in-game behaviours of NPCs, the process creates a high resource
cost in both programmer hours, and development time.

In contrast, another approach developers can take towards game
design is called emergence [12]. Emergence involves developers
defining general, global rules for interactions between game objects,
and then allowing the gameplay to emerge as the player proceeds
through the game. As a simple example, consider Conway’s Game
of Life [5] which illustrates the advantage of created emergence in
games. An algorithm can be a simple rule set which can mimic
complexity of a life form, and thereby leading to more emerging
gameplay. Advantages of emergent design can be balanced with
static content generation. Commonly, the spawning of enemy char-
acters in an area can be randomly generated with enemies moving in
accordance to predefined algorithms. For example, the Left 4 Dead
series [28, 29] combines NPC movement and horde behaviour with
narrative elements, and atmospheric game environments.

2.1 Biologically-Inspired NPC Movement Algorithms
Biologically-inspired algorithms mimic behaviours found in the nat-
ural world to solve optimisation problems. The Flocking algorithm
was developed by Craig W. Reynolds in 1987 [17] and simulates the
movement of a flock of birds or school of fish. At every iteration, an
agent must decide which direction to move in by taking three factors
into account: alignment, cohesion, and separation. Alignment can
be defined as an agent wanting to move in the same general direction
as it’s neighbouring agents are moving. Cohesion means that an
agent wants to move towards the average position of it’s neighbours.
However, separation means the agent does not want to be too close
so as to avoid collisions and hence, the agent will want move away
from the average position of any neighbours to which it deems itself
too near. Reynolds’ later 1999 paper [18] added steering factors to
his agents, allowing for them to seek roosts (i.e., function optima) in
the search space.

In 1995, Kennedy and Eberhart developed the Particle Swarm
Optimisation (PSO) algorithm [13], which took some inspiration
from Reynolds’ work and also from the way in which insects swarm.
The PSO algorithm determines an agent’s direction of movement by
considering two factors. The first is the best position the agent has
found at some point in the past, and the second is the global best
position that has been thus far determined by all the agents as a unit.

The Firefly algorithm, developed in 2009 by Xin-She Yang, [34]
was built upon the PSO algorithm and partially inspired by the
way in which fireflies flash their lights to communicate. With this
algorithm, each agent is assigned a ’brightness’ value which directly
corresponds to how good that agent’s current solution is. Agents
are then attracted to other agents who are brighter than they are and

will move towards them. However, this attractiveness of one agent
to another is proportional. Two agents that are further apart will
appear less bright to each other and hence will find each other less
attractive.

Games have taken advantage of the research on biological algo-
rithms to simulate enemy movements. Flocking, PSO, and Firefly
were all algorithms developed to simulate natural movement phe-
nomena. In contrast to the mechanical approach for scripted move-
ments, algorithms allow for emergence, or dynamic behaviour [15].
The use of emergence is strategically employed by game develop-
ers to create more unpredictable, immersive, and believable enemy
characters and worlds.

2.2 Forced Choice Experiments
The goal of this paper is to assess the effectiveness of a set of
biologically inspired algorithms used to define movement for col-
laborating groups of characters in video games. Overall, we wish
to determine whether or not there exists a difference between these
algorithms, and, in particular, if that difference has a meaningful
impact on game play. To do this, we conduct two studies: A first
study explores gameplay and finds limited effects on immersion. A
second study seeks to determine whether differences are observable
in real-world gameplay. In psychology, the experimental protocol
that determines whether discrimination between phenomena exists,
even at a subtle level, is a just-noticable difference (JND) study or
signal detection study [16, 25]. We leverage these concepts in a
forced choice protocol for our second study.

A noticeable difference is the minimum change in a stimulus
that can be detected 50 percent of the time [36]. This protocol
measures the confusion of the subject as they try to discern small
stimulus differences [23, 27]. In the past, this protocol has been
used in the HCI literature for a multitude of reasons from graphical
fidelity [3, 11] to lag control [32, 33]. JNDs in games user research
(GUR) is found in studies of game performance. JNDs were used to
select appropriate tempos for a thesis on the effect of music tempo
on game performance [14], and used as performance indicators in
discrimination tasks which showed video-game players to possess
benefits in multisensory processing [9]. JNDs have also been used
in the development of serious games which aim to motivate the
calibration of HCI tools [10]. More recently it has been proposed
that JNDs can be used to help create meaningful variations of game
constant by creating cognitively-grounded procedural content [2].

JNDs leverage force choice for signal detection [16,25], a concept
we leverage to assess algorithmically guided enemy behaviour have,
to the best of our knowledge, not been explored to date.

3 EVALUATING IN-GAME ALGORITHMS

One challenge with assessing end-user perspective on AI in games
is that each game includes slightly different AI behaviours and
each game also has different story lines, graphics, and gameplay
characteristics, all of which significantly influence realism in the
game. To control for individual game characteristics, this section
first introduces a bespoke game, a simple game of ‘tag’, which is
then leveraged during both phases of the study. Next we describe
the study protocol for our first study.

Our study is structured as a 4-factor within-participants mixed-
methods study. We explore four algorithms as our independent
variables (Control, Flocking, PSO, Firefly). We measure the de-
pendent effects on user-experience, immersion, feelings of realism
through self-report questionnaires, and interviews.

3.1 Game
The bespoke game created for this study is called Tag-o-rithms, so
named due to the testing of different algorithms in a tag-like game.
The game consists of four levels, each of which has its own distinct
enemy behaviour based on a biological algorithm. The levels contain
20 boids, rigid-body objects with applied steering algorithms, which
are pursuing the player’s character in an attempt to ‘tag’, i.e. make
contact with or collide with, the player’s character. The player’s
character is represented as a black circle.

Every level consists of one minute of gameplay in which the user
evades twenty enemy characters by dragging their player character
around the screen with the mouse. Mouse tracking leverages the
standard cursor acceleration algorithm. Each time the player is hit
by an enemy, the hit counter is incremented by one and the enemy
that made contact with the player vanishes and then ‘respawns’, i.e.
reappears, at a random on-screen location. If an enemy moves off
the side of the screen, it reappears on the opposite side at the same
relative height it disappeared. The player character cannot move
off screen. Should the user move their mouse off their character at
any point, the character will remain stationary until the user reac-
quires their character by moving the mouse cursor to their character
and begins dragging again. Figure 1 shows four different levels of
gameplay, each with a different flocking algorithm.

Enemies in each level all move at the same speed. The vector
representing the velocity of an enemy can be defined by the equation

v0 = a (1�b)v+bdir
k(1�b)v+bdirk (1)

where the new velocity, v0 is a normalized combination of the old
velocity and the new direction of movement, dir, which is deter-
mined by the algorithm governing each respective enemy type. b is
a constant that determines the weight of the contribution of the new
direction and a a constant that is multiplied by the normalized di-
rection to give speed. The github repository of the game is available
at github.com/rinarene

To maintain consistent scale across platforms, the game is defined
based upon its width and height. The boids were 0.066width x
0.059height game units (gu) large relative to the overall width and
height of the display. Move speed for boids was 0.1width gu/sec.
The applied unity-Rigidbody 2D had 0gu/sec Linear Drag, 0.05width
gu/sec Angular Drag, 0 gu/sec Gravity Scale.

3.2 Participants
Participants (n = 21,5 female) were recruited from our university
and our local community. Participants were required to be over
the age of 18: Ages ranged from 18-40. The majority (n = 10)
of participants were between 21-25 years of age, with the second
highest majority - 26 to 30 years - consisting of 6 participants. No
restrictions were made based on skill, gameplay experience, or level
of education. All but one participant, reported playing daily(10) or
weekly(10). Three self-described as causal or infrequent gamers, 11
as recreational or regular gamers, and 7 as avid gamers.

3.3 Independent Variables
The algorithm applied to each boid (one enemy character in the
group) is the independent variable of the study. For simplicity and
to control for bias, variations in condition were denoted by enemy
colour. In review: blue is the Control condition, green the Flocking
algorithm, yellow the PSO algorithm, and red, the Firefly algorithm.

For consistency, in game-design we measure games as proportional
relationships (e.g. this object is twice the size of object one). This
allows for games to be scaled and displayed on multiple screens of
different sizes, resolutions, and configurations. Therefore we present
our measurements in game-units.

3.3.1 Control: Blue
In the control condition (blue) at every iteration each enemy de-
termines the direction of the shortest straight path to the player
character and moves in that direction. An enemy character in this
level is unaware of the other enemies and it’s behaviour is in no way
influenced by other enemy characters’ motion. The control condition
is representative of the kinematic movement control algorithms that
were once commonly implemented [15].

3.3.2 Flocking: Green
The Flocking algorithm is implemented for the green enemies The
direction of movement in this case is controlled by four factors;
alignment, cohesion, separation, and target seeking. The first three
are weighted equally. Target seeking is weighted slightly more than
the other three as we found this was necessary in order to have
the enemies sufficiently interested in moving towards the player
character’s location.

3.3.3 Particle Swarm (POS): Yellow
The yellow enemies are our implementation of the PSO algorithm
Each enemy is aware of it’s own previous best position and the
global best position and uses these factors to determine direction
of movement. A position is determined to be best if the distance
between the enemy and the player when calculated is shortest. As
the player is constantly moving, the distances of all best positions
must be recalculated at every increment.

3.3.4 Firefly: Red
Lastly, we have the red enemies. In this condition, enemy move-
ments are dictated by the Firefly algorithm. The ‘brightness’ of
every enemy is determined by the enemies distance to the player; the
closer an enemy is, the brighter they are. As previously stated, the
attractiveness of one agent to another is proportional to the distance
between them. An agent that is further away will appear less bright.
We have simplified this into a neighbour radius and enemies are only
able to see other enemies that are within their radius. Therefore,
enemies will not be attracted to other enemies that are far away,
regardless of their brightness. It should be noted, that the radius
used is same size as that used earlier in the Flocking algorithm.

3.4 Protocol
Before receiving consent, participants were given a brief introduc-
tion to the game and controls. After written consent was obtained,
participants played each condition (Control, Flocking, PSO, and
Firefly) which were presented in a random order. Participants were
asked to fill out two standard GUR questionnaires after each play
period.

After all conditions were played, participants were asked to fill
out a bespoke exit questionnaire. Immediately after completing
the exit questionnaire participants took part in a one-on-one semi-
structured interview with the researcher. The researcher asked the
nine questions displayed on table 1; the semi-structured nature of
the interview, however, allowed the interview to probe for additional
details, clarifications, or relevant life-experience data to fully explore
perceptions of flocking algorithm behaviour.

3.5 Quantitative Measures: Game Score and Question-
naires

One obvious measure of game play efficacy is the overall score a
player obtains in any game. In this game, each time a boid made

Table 1: All questions asked of participants druing their semi-
structured interviews conducted after completing exit questionnaires.

Semi-structured Interview Questions
Q1: What did you think of the game?
Q2: Can you tell me about about how you felt about the different levels?
Q3: Was there a difference between the [red, blue, green, yellow] ene-
mies?
Q4: Was any level harder or easier?
Q5: Did the game remind you of any off-the shelf/released/popular
games? Or games you have played previously?
Q6: Do you think there was a difference between the enemies movement
patterns?
Q7: Can you describe in one word, or supply a name for the different
enemy types?
Q8: We built the game to reflect different biological algorithms (straight
at you, flocking, swarm, and firefly). If you had to match the movement
patterns to an algorithm which would you pair?
Q9: Any other overall feelings about the game?

contact with a player, the player’s score was incremented, meaning
that the goal was to score as low as possible. Alongside scores, we
also wish to capture player experience in the game, and we do this
using two standard questionnaires and an exit questionnaire.

To measure a self-report of player experience after each level
(flocking algorithm), we use the Self Assessment Manikin (SAM) [1]
and the Player Experience of Needs Satisfaction (PENS) [8, 19, 20].
Both the SAM and the PENS are established questionnaires that
have been shown to correlate well with aspects of immersion and
enjoyment. The SAM allows players to give a rating of Pleasure,
Arousal, and Dominance by asking players to identify the emotions
they feel by selecting the best fitting picture on a visual Likert
scale. The SAM allows for a break down of complex emotions.
For example, high pleasure, high arousal, and low dominance may
indicate a happy and excited player with a low feeling of self efficacy.

PENS [8, 21, 22] measures overall satisfaction with gameplay
along dimensions of immersion, challenge, satisfaction, and usabil-
ity via a set of 20 questions. For example questions ask: “When
playing the game, I feel transported to another time and place.” (im-
mersion), “My ability to play the game is well matched with the
game’s challenges.”(difficulty and challenge), or “Learning the game
controls was easy.” (satisfaction and usability). We focus partic-
ularly on the sections that correlate with immersion and presence.
Again, we operationalize immersion and presence to refer to the
feeling of being involved in the game and of being in the game world
respectively. [22].

Participants completed by the SAM and PENS after each level of
the game, i.e. after experiencing each individual flocking algorithm.

After participants completed all four levels, the participants were
asked to fill out a final exit questionnaire. This custom questionnaire
collected comparisons between conditions. Specifically, partici-
pants were asked which condition was most preferred versus least
preferred and which condition was hardest versus easiest.

4 RESULTS

The results of study 1 included game metrics in the form of enemies
hit, questionnaire data, and interview data.

4.1 Scores

The object of the game was to avoid being hit by the NPC enemies
in the different algorithm conditions. Figure 2 graphs the average
scores by condition.

To analyze the scores (categorical discrete count data) for sig-
nificant differences within participants, we used a repeated mea-
sures Analysis of Variance (ANOVA) in IBM SPSS Statistics v24.
Given that the sphericity assumption was violated, we applied a

Figure 2: Average in game scores by condition.

Figure 3: Participant ranking of algorithms on exit questionnaires:
easiest versus hardest and least versus most preferred algorithms.

Greenhouse-Geisser correction. Corrected ANOVA was signifi-
cant (F(2.347,12357.008) = 18.260, p < 0.0001). The differences
were further supported by a Poisson regression (x2(3) = 27.894, p <
0.0001). Scores were best (lowest) in swarm followed by firefly and
worst (highest) in flocking.

4.2 Questionnaires
Recall that there were two questionnaires tested after each condi-
tion, the SAM and PENS, that rated in-the-moment immersion and
enjoyment, and an exit questionnaire that asked participants to con-
trast algorithms. Considering, first, the SAM and PENS data, we
tested the data collected using all of a Poisson Regression, a test
for the significance of the fit of the discrete data model, and Fried-
man’s ANOVA. In all cases, we find that both the PENS and the
SAM scores are not significantly different for each algorithm tested.
Given the within-subjects design of our experiment, we find it un-
likely that algorithms are resulting in meaningful in-the-moment
differences in game play.

On the exit questionnaires, we do find a difference between algo-
rithms in overall ranking. Participants reported liking the PSO the
best, followed closely by Firefly enemies. Enemies liked least were
almost equally divided (Flocking and Control). When asked about
the hardest enemy, participants reported that the Flocking enemies
were most difficult, followed by the Firely. PSO was reported to
be the easiest to defeat, followed by Control. Figure 3 details this
information.

4.3 Interviews
The interviews reveal some insight into the player experience associ-
ated with each algorithm tested.

Given our exit questionnaire data, one factor we explored in our
interviews was whether the FireFly algorithm (2nd most preferred
and 2nd most difficult) might be a good compromise between pref-
erence and challenge. Although participants felt that the Firefly

algorithm was salient, the general consensus did not indicate that
the effect of the Firefly algorithm on player experience would be
positive. Players were very divided in their feedback. P6 describes:

”The red enemies for some reason caught more my attention
because they will move themselves their individual movement was
more quickly and I feel more tension, I need to focus more on specific
groups of fishes where they were moving around where I could not
even touch them or be in their way of moving.” P6

In contrast, it was also reported that: ”The red ones were very
peaceful for me, very relaxing. I did not even notice if they were
move individually; I just saw them move around the screen. I didn’t
pay much attention to their individual movements. The yellow ones
make me feel more happy more active, even friendly like if they were
my friends and I can touch them and they will not do anything bad
to me but then red ones were like dangerous. Don’t even get close to
me because they were like. I saw them as very, very dangerous . I try
to look at the specific figure of the fish and I think I saw they were
having like teeth like piranhas. Different kind of fish and enemies
then the red and the yellow. I don’t know if they are different or not
but I saw they looked a little different. And then the blue ones were
not dangerous but I feel mad at them. It was anger that I felt when I
played against them.”

Participants also felt that the salience of the red enemies made
them unnerving. Dialogue conveyed frustration with the novelty
they perceived coming from some of the algorithms. P8 was quoted
saying: ”...well I’d call the red the ’crazies’ or the *** fish.”

The mixed reports were also evident in feedback regarding the
necessary skill needed to avoid each enemy. ”It seemed like very
much up to chance a lot of the time, just hoping that there wouldn’t
a ton of fish coming at me from all different directions ... you know, I
couldn’t handle it. I didn’t feel like skill is involved too much, except
for the yellow level I felt like I was able to use skill but for red and
green I felt like I was just overwhelmed had no choice but to hit the
fish all the time.” P4

4.4 Synthesis of Results
In synthesizing our results from this section, we find that PSO was
considered the most-preferred condition for game play, but was also
ranked as the easiest. In contrast, Flocking was the least preferred
(even below control), but was also considered to be the hardest
condition.

Recall that the goal of our experiment was to analyse which
algorithms increased user engagement in games. Interestingly, the
more realistic an algorithm is – particularly in a tag-style game of
the kind we created – the more challenging that algorithm should
be. The challenge with interpreting data from our initial game-play
study is, therefore, as follows: Are participants ranking PSO highly
because it is the most engaging algorithm, or because it is the easiest
algorithm to defeat?

More generally, conventional wisdom in game design would
indicate that artificial intelligence, and, in particular, NPC character
behaviour, is very important for gamer engagement and enjoyment
[30]. This, then, begs the question of whether algorithm effects or
confounds (e.g. player dominance, algorithm tuning, game design)
might be impacting questionnaire data such that the SAM and PENS
data are unrevealing. To explore this question in detail, we present a
follow-on study that eliminates game play and instead focuses on
perceptions of NPC group behaviours.

5 STUDY II: UNDERSTANDING USER PREFERENCES

To further understand the results of S1, we conduct a 3-part study.
First, we seek to understand if there is a noticeable difference be-
tween the algorithms using a forced choice method. Forced choice
is a common psychological testing protocol, it is where absent a
real preference all groups would be equally likely. If there is a no-
ticeable difference, force choice detects subtle deviations between

categories [16, 25]. Using this protocol, we assess if optimization
of two of the preferred algorithms (Flocking and PSO) creates a
better user experience. Furthermore, since games are rich complex
environments, we wish to test ecological validity by also offering
game examples from two real world games (an earlier version and
the most recent version of a specific game series) and contrasting
these real world games with our simple bespoke game. The study is
performed on a crowdsourcing platform, Mechanical Turk (M.Turk),
for convenience.

5.1 Participants
Participants were recruited from M.Turk. The participants identified
as being from the USA. On average participants were 34 with a
range of 22-57. Because our primary goal was to cross-reference
results with our first study, we recruited 21 participants, a sufficient
number to determine whether and if confounds exist in our initial
study data. Participant were remunerated $4/hour for their par-
ticipation. Overall, 11 participants specified they played often , 5
moderately (> 1hr/week), 2 sometimes (> 1hr/month), 1 seldom
(> 1hr/6months), and 2 Never (almost never, or don’t play).

5.2 Protocol
As noted above, in this study we explore three aspects of algorithm
design. First, to further validate our first study with additional partic-
ipants, we repeat the algorithms and design from our first study on
the mechanical turk platform but using video rather than game play
(to eliminate easiness of condition as a factor that increases prefer-
ence). Next, we examine in more details algorithmic parameters of
two algorithms from the first study, the most preferred (PSO/Swarm)
and the most challenging (Flocking). Finally, to test whether game
attributes might colour judgments, we ask participants to assess AI
algorithms as they exist in two popular computer games.

5.2.1 Study Protocol Overview
We test noticeable difference using the a forced choice protocol;
we present two algorithmic options to participants and then forces
participants to choose one algorithm.

We deployed our study through Amazon’s Mechanical Turk 1.
Participants were first given the information letter and consent form.
With participant consent, the game was presented as a series of
minute long gameplay videos with a micro-questionnaire between
rounds.

The MTurk task had an embedded Google form with link pro-
vided. After asking basic demographic questions (age, gender, game-
play experience), the form allowed for users to view videos of two
of the tested algorithms and choose the most convincing algorithm
by asking participants to choose ”the videos that have AI which
seems more realistic, intelligent, or have intention.” We begin with
pairwise comparisons of each algorithm and then do one final overall
rating question in each section. The sections were:

Algorithm Comparisons Comparison of the algorithms of s1
(Control, Flocking, PSO, Firefly)

Flocking and PSO Variations here we contrast parameters associ-
ated with Flocking and Swarm

Game Examples Finally, we contrast two Off-the-Shelf Game Ex-
amples (L4D series and Grand Theif Auto Series) with two
different levels of AI sophistication (from an early release and
a recent one) for each game are contrasted.

For example, as per a JND experimental design, every permuta-
tion of pairs of videos was presented to the user to choose between
(e.g. Flocking vs. Control, Control vs. PSO, etc.). At the end of

1https://www.mturk.com/

Table 2: Specifications for each video and the adjustments made for
comparisons in Game Units.

Video Type Neighbour Swarm Speed Separation
1 PSO 3 6 1
2 Flocking 4 6 2
3 PSO 3 6 1
4 Flocking 4 6 2
5 PSO 3 6 1

Figure 4: In the optimization of the algorithms all boids were changed
to bugs to ensure that any found differentiation by participant were
from algorithm movements.

the section, users must rate all options (e.g. Control, Flocking, PSO,
and Firely) into 1st, 2nd ... nth placements. This two-part rating
process verifies consistency in user ratings.

5.2.2 Flocking and PSO Variations
A second confound associated with realism in algorithms designed
to control groups of NPCs during game-play is the specific tuning
of individual algorithms. In this section, we focus on two standard
algorithms, PSO and Flocking, and we explore how individual pa-
rameters of the algorithms might impact their realism, again using a
JND design.

Both PSO and Flocking have a set of variables, subject to ma-
nipulation, that are common between the two algorithms. While
Neighbour Radius, Swarm Speed, and Separation Radius can all
be varied, we focus on the density of NPCs within the vicinity of
the player by varying the neightbour radius and the separation ra-
dius. Table 2 defines the variations in variables we explore in Game
Units. By changing the weight factors we hypothesize that the algo-
rithm can be optimized to find a point which results in the best user
feedback.

As a control condition, the PSO in Video One weightings were not
set (all equal weights of 0) for alignment, cohesion, separation, and
target seeking. For all other iterations of flocking and PSO (video
2-5) alignment, cohesion, separation, and target seeking were set
to 0.6,0.6,0.2,0.4,0.5 game units respectively. In all cases forward
movement was set to 0.4 game units.

Identical to the first phase, algorithms were evaluated in pairs,
head-to-head, with forced choice followed by an overall ranking to
assess consistency in participant responses.

5.2.3 Game Examples
For ecological validity, we last test off-the-shelf published games to
understand if a user’s perceptions of algorithms may be impacted by
the overall aethetics of the in-game experience to such an extent that
minutia of character movement becomes unimportant. Since games
offer a rich environment, we choose two main series from two differ-
ent genres. The first series: Left4Dead (L4D) is a post-Apocalypse
zombie first-person-shooter (FPS). From this series we choose L4D1
and L4D2. The second series, Grand Theft Auto (GTA), features an
approximation to a real-world crime story line. From this series we
choose GTA San Andreas (third-person shooter)and GTA5 (FPS).

Both these series have one updated and one original AI configuration.
While it is difficult to map the AI algorithms from the games onto
our specific, research-based AI algorithms, there are clear differ-
ences in AI behaviour, and we wanted to determine whether these
differences were detectable by our participants.

6 MECHANICAL TURK RESULTS

6.1 Algorithm Comparison
For the algorithms: Control, Flocking, PSO, and Firefly; we begin
with a pairwise assessment. Figure 7 illustrates the voted placements.
The votes reveal noticeable differences between algorithms. In
first place: blue or the control condition; Yellow (PSO) in second;
followed by Green, Flocking; and last Red - Firefly.

To test if the rankings are significantly different, we used a
Friedman’s test. We found significant differences across values
X2(3) = 31.686, p < 0.01. All algorithms differed significantly
from one another in ranking (there were no ties). Posthoc tests
(Wilcoxon Signed Ranks Test) reveal the following for Flocking and
Control z = �3.891, p < 0.001 Negative signed rank (-) for PSO-
Control a non-significant relationship of z = �1.628, p > 0.103
(-), Firefly-Control z = �3.757, p < 0.001 (-), for PSO-Flocking
z =�2.611, p = 0.09 (+), Firefly-Flocking z =�1.954, p = 0.051
(-), and finally Firefly-PSO z =�3.170,0.002 (-).

Firefly
10%

PSO
90%

Control
86%

Flocking
14%

Flocking
81%

Firefly
19%

Control
86%

Firefly
14%

Flocking
48%

PSO
52% Control

71%

PSO
29%

Figure 5: One-on-One comparison of the different Algorithms

6.2 Flocking and PSO Variations
We compare the variations of the PSO algorithm and the Flock-
ing algorithm. Testing Flocking against PSO reveals that the re-
lationship between the two algorithms established in SII original
algorithm comparison stands: Flocking is second to PSO according
to user rating. Figure 7 (PSO in yellow and Flocking in Green)
illustrates the relationship with the PSO in yellow predominant
in 1st and 2nd places and the green Flocking algorithms domi-
nating 4th and 5th place. Using the same protocol as above, a
Friedman’s test was used to look for significant differences between
ratings. One participant was excluded due to not following instruc-
tions. Differences were significant for the different optimizations:
n= 20,x2(4) = 19.080, p= 0.001. Regardless of the specific param-
eter values we use, PSO consistently performs better than flocking.
The post-hoc Wilcoxon Signed Rank Test reveals significance be-
tween videos 1 and 2 z =�19.79, p = 0.048 (-) based on negative
rankings, videos 1 and 4 z =�2.462, p = 0.014 (-), videos 2 and 3
z=�2.774, p= 0.006(+), videos 2 and 5 z=�2.487, p= 0.013(+),
videos 3 and 4 z =�3.014, p = 0.003 (-), and finally, videos 4 and
5 z =�2.486, p = 0.013 (+).

6.3 Game Examples
To test that the game itself was not confounding the results of the
study, we test off-the-shelf game examples. From the chosen exam-
ples, we see that the L4D series AI is preferred over the GTA AI.
This finding is illustrated by Figure 7. Comparing the game series

Figure 6: One-on-one comparison of Flocking and PSO variations.

with each other, we can see that L4D1 and L4D2 are equally rated
by players; similarly, GTASA and GTA5 have similar ratings despite
the differences in AI behaviour. Using the same protocol to test
with a Friedman’s test, significant differences were found between
ranking of game examples: n = 21,X2(3) = 16.486, p = 0.001. The
post-hoc Wilcoxon Signed Ranks Test demonstrates not noticeable
differences between series franchises, and reveals significant dif-
ferences between game series with GTASA-L4D z = 0.344, p =
0.001 (-), GTASA-L4D2 z = �2.833, p = 0.005 (-), GTA5-L4D
z =�2.686, p = 0.007(-) GTA5-L4D2 z =�2.554, p = 0.11 (-).

7 DISCUSSION

Many interactive systems are designed such that the user interacts
with or is affected by AI systems. In games, these systems frequently
underlie the behaviour of NPCs, and, in particular, enemy NPCs.
Research effort into these algorithms is premised on the assumption
that improvements in AI algorithms that control NPC behaviour will
improve the in-game experience.

7.1 TAKE-AWAY 1: Difficulty is Not a Direct Predictor

In our initial study, our participants reported liking the NPC op-
ponents controlled by the particle swarm optimization algorithm
(i.e. the yellow enemies) the most, followed by NPC opponents
controlled by the firefly algorithm (red enemies). The PSO enemies
were also considered the easiest to defeat. The PSO enemies may
have been the easiest because the PSO algorithm directs movement
according to best global position, not according to player trajectory
or position. This may give players more room when fleeing these
enemies. Despite the correlation between preference and low diffi-
culty indicated by game scores and ease ratings, interview data in
our first study focuses on the salience of movement. Our results
indicate that further study may show that difficulty alone does not
fully account for ratings of enemy intelligence. Following up with
Study 2 provides perspective on the aforementioned results of study
1. Players do notice differences (even modest ones). Despite the fact
that our studies demonstrate that these differences are not easily ar-
ticulated. Unlike productivity applications, games purposefully need
to create challenge that is calibrated to player skill [31]. Calibrated
challenge in games keep players in a state of flow or optimized ex-
perience. The concept of optimized experience from psychology [6]
describes a state where the task is its own reward, with a reduced
sensation of time. Over time during game play, if enemies become
too predictable, the game will not properly calibrate challenge and
the experience will become less optimized, too easy. We believe that
our studies – particularly the difficulty rankings of algorithms noted
in study 1 – demonstrate that NPC flocking algorithms may be an
effective tool for preserving this balanced difficulty and therefore, a
sense of flow.

7.2 TAKE-AWAY 2: Direct Movement Can Be the Best
Initial Choice

Study 2 results articulate clearly that participants do see discernible
differences between algorithms of movement. However between
the optimized algorithms, when asked to identify which algorithm
seemed to be most intelligent or purposeful in movement participants
consistently rated the control condition as most realistic, intelligent,
or intentional. In the control condition the boid-enemies move di-
rectly towards the player. Any addition of a biological algorithm
movement pattern gave the perception of decreased intelligence. Par-
ticipants in our second study also did not significantly differentiate
between L4D1 and the updated AI of L4D2 [4]. Games are rich
environments (with sound, art, textures, etc.). The systematic higher
ratings for the L4D series supports the idea that AI algorithms matter
less to players’ perceptions of intelligence. Furthermore, in S1 the
lack of notice or comprehension seen in the qualitative data indicates
that game players may not be able to fully comprehend the distinc-
tion between different AI behaviours in-the-moment. In the absence
of distinction, an early instantiate of group behaviour can be direct
movement toward an objective. This seems purposeful to a player,
is immediately understandable, and can therefore represent early
agency by NPCs. Undoubtedly, over time, this algorithm would
become too basic, but initial game encounters can and should be im-
mediately obvious and sensible. Anticipation, ambushes, and other
subtle, indirect forms of NPC coordination can wait until players
develop increased familiarity with the subtleties of interaction.

8 CONCLUSION

As we note in the introduction, artificial intelligence is increasingly
applied in computer games to simulate agency and intelligence
in artificial characters, i.e. non-player characters or NPCs. This
paper specifically explores one aspect of NPC behaviour, flocking
algorithms, that control the coordination among members of a group
of NPCs. We present, to the best of our knowledge, a first study
examining how the contrasting behaviours of three different flocking
algorithms affect player perception of realism, player preference,
and player evaluation of difficulty. Overall, our initial results argue
that one cannot simply assume that any individual algorithm is better
than any other algorithm; instead, these algorithms exist as one
tool for game designers as they seek to create realistic end-user
experiences during game play.

ACKNOWLEDGMENTS

We thank Megan Antoniazzi for her contributions to the idea and
early project. We thank NSERC, SSHRC, and the Games Institute
at University of Waterloo for supporting this study.

0

5

10

15

20

25

1st 2nd 3rd 4th

N
um

be
r o

f P
ar

tic
ip

an
ts

Rated Comparison of Algorithm Preferences

Control Flocking Firefly PSO

Figure 7: Comparison of the different (a) Algorithms, (b)Weighted
Optimizations of the Swarm and Flocking Algorithms, and (c) off-shelf
Game Algorithms

REFERENCES

[1] M. M. Bradley and P. J. Lang. Measuring emotion: the self-assessment
manikin and the semantic differential. Journal of behavior therapy and
experimental psychiatry, 25(1):49–59, 1994.

[2] R. E. Cardona-Rivera. Cognitively-grounded procedural content gener-
ation. In Games@ AAAI, 2017.

[3] I. Cheng and W. Bischof. A perceptual approach to texture scaling
based on human computer interaction, 2006.

[4] V. D. Community. Artificially intelligent(ai) systems of l4d, 2011.
[5] J. Conway. The game of life. Scientific American, 223(4):4, 1970.
[6] M. Csikszentmihalyi and I. Csikszentmihalyi. Beyond boredom and

anxiety, vol. 721. Jossey-Bass San Francisco, 1975.
[7] M. Csikszentmihalyi and I. S. Csikszentmihalyi. Optimal experience:

Psychological studies of flow in consciousness. Cambridge university
press, 1992.

[8] E. L. Deci and R. M. Ryan. Intrinsic motivation and self-determination
in human behavior. 1985. Consultado en septiembre, 2013.

[9] S. E. Donohue, M. G. Woldorff, and S. R. Mitroff. Video game players
show more precise multisensory temporal processing abilities. Atten-
tion, perception, & psychophysics, 72(4):1120–1129, 2010.

[10] D. R. Flatla, C. Gutwin, L. E. Nacke, S. Bateman, and R. L. Mandryk.
Calibration games: Making calibration tasks enjoyable by adding mo-
tivating game elements. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology, UIST ’11, pp.

403–412. ACM, New York, NY, USA, 2011. doi: 10.1145/2047196.
2047248

[11] J. R. Flynn, S. Ward, J. Abich, and D. Poole. Image quality assess-
ment using the ssim and the just noticeable difference paradigm. In
International Conference on Engineering Psychology and Cognitive
Ergonomics, pp. 23–30. Springer, 2013.

[12] J. Juul. Half-real: Video games between real rules and fictional worlds.
MIT press, 2011.

[13] J. Kennedy and E. R. Particle swarm optimization. In Proc. IEEE
International Conf. on Neural Networks, vol. 4, pp. 1942–1948, 1995.

[14] D. Lawrence. The effect of musical tempo on video game performance,
2012.

[15] I. Millington and J. Funge. Artificial intelligence for games. CRC
Press, 2016.

[16] J. A. Nevin. Signal detection theory and operant behavior: A re-
view of david m. green and john a. swets’ signal detection theory and
psychophysics. 1. Journal of the Experimental Analysis of Behavior,
12(3):475–480, 1969.

[17] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral
model, in computer graphics. ACM SIGGRAPH Computer Graphics,
21(4):25–34, 1987.

[18] C. W. Reynolds. Steering behaviors for autonomous characters. In
Game Developers Conference, vol. 1999, pp. 763–782, 1999.

[19] R. M. Ryan and E. L. Deci. Intrinsic and extrinsic motivations: Classic
definitions and new directions. Contemporary educational psychology,
25(1):54–67, 2000.

[20] R. M. Ryan and E. L. Deci. Self-determination theory and the fa-
cilitation of intrinsic motivation, social development, and well-being.
American psychologist, 55(1):68, 2000.

[21] R. M. Ryan, C. S. Rigby, and A. Przybylski. The motivational pull of
video games: A self-determination theory approach. Motivation and
emotion, 30(4):344–360, 2006.

[22] R. M. Ryan, C. S. Rigby, and A. Przybylski. The motivational pull of
video games: A self-determination theory approach. Motivation and
Emotion, 2006. doi: 10.1007/s11031-006-9051-8

[23] S. S. Stevens. Psychophysics: Introduction to its perceptual, neural
and social prospects. Routledge, 2017.

[24] P. Sweetser and J. Wiles. Scripting versus emergence : issues for game
developers and players in game environment design. International
Journal of Intelligent Games and Simulations, 4(1):1–9, 2005.

[25] J. A. Swets. Signal detection theory and ROC analysis in psychology
and diagnostics: Collected papers. Psychology Press, 2014.

[26] R. Tamborini, M. Grizzard, N. David Bowman, L. Reinecke, R. J.
Lewis, and A. Eden. Media enjoyment as need satisfaction: The contri-
bution of hedonic and nonhedonic needs. Journal of Communication,
61(1):10251042, 2011.

[27] R. Teghtsoonian. Psychophysics: Introduction to its perceptual, neural,
and social prospects, 1975.

[28] Valve Corporation. Left4Dead. Game [Windows, Xbox 360, OS X],
2008. Valve Corporation, Bellevue, Washington, USA.

[29] Valve Corporation. Left4Dead2. Game [Windows, Xbox 360, OS X],
Linux, 2009. Valve Corporation, Bellevue, Washington, USA.

[30] R. R. Wehbe, E. Lank, and L. E. Nacke. Left them 4 dead: Perception
of humans versus non-player character teammates in cooperative game-
play. In Proceedings of the 2017 Conference on Designing Interactive
Systems, pp. 403–415. ACM, 2017.

[31] R. R. Wehbe, E. D. Mekler, M. Schaekermann, E. Lank, and L. E.
Nacke. Testing incremental difficulty design in platformer games.
In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, pp. 5109–5113. ACM, 2017.

[32] J. Xu and B. W. Wah. Concealing network delays in delay-sensitive
online interactive games based on just-noticeable differences. In 2013
IEEE International Conference on Multimedia and Expo (ICME), pp.
1–6. IEEE, 2013.

[33] J. Xu and B. W. Wah. Consistent synchronization of action order with
least noticeable delays in fast-paced multiplayer online games. ACM
Trans. Multimedia Comput. Commun. Appl., 13(1):8:1–8:25, Dec. 2016.
doi: 10.1145/3003727

[34] X. S. Yang. Firefly algorithms for multimodal optimization. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Arti-

ficial Intelligence and Lecture Notes in Bioinformatics), 2009. doi: 10.
1007/978-3-642-04944-6

[35] G. Yannakakis. Game ai revisited. In Proceedings of the ACM Com-
puting Frontiers Conference, p. 285292, 2012.

[36] R. M. Yaremko, H. Harari, R. C. Harrison, and E. Lynn. Handbook
of research and quantitative methods in psychology: For students and
professionals. Psychology Press, 2013.

