
XEROX COMPUTER GRAPHICS

Timothy K. Dudley
Xero x Corporation

El Segundo, California
USA

ABSTRACT

Xerox corporation has developed a graphics system
capability which is comprised o f a graphics language, GL-l, and
a graphics tube (with optional accessories such as light pen,
function keyboard, etc.) interfaced to an intelligent 'program
mable' controller, which in turn interfaces to a standard lOP
on a Sigma computer. This paper briefly describes the overall
hardware system, dealing specifically with the Vector General
Graphics Display System. It deals primarily with the GL-l
software, which may be classif i ed into nine groups: initiali
zation and termination routines, device routines, logical
structuring routines, vector and character routines, mode
setting commands, attention handling routines, control commands,
keyboard data entry, and error handling.

'" RESUME

13.1

La Xerox corporation a realise un systeme graphique
consistant en un langage graphique, GL-l, un tube cathodique
(avec les accessoires a option comme un crayon electronique, un
clavier a fonctions, etc.) connecte a un I contr8leur intelligent'

• JI\ /. " , "
qu~ peut etre programme et qu~, a son tour, est connecte a un
calculateur-entree-sortie lOP standard d'un ordinateur Sigma.
Dans cette communication, on decrit brievement le systeme
d'equipement global et, plus specifiquement, le Vector General
Graphics Display System. On discute principalement la program
mation GLI qui est divisee en neuf groupes: programmes pour
mettre a la valeur initiale et pour terminer, programmes pour
contr~ler les appareils, programmes pour former les structures
logiques, programmes pour representer les caracteres et les vecteurs,
instructions pour disposer la mode d'op~ration, programmes pour
manier l'attention, programmes pour commander la controle,
programmes pour l'entree de donnees par clavier, programmes
pour resoudre des erreurs.

13.2

INTRODUCTION

XEROX COMPUTER GRAPHICS

Timothy K. Dudley
Xerox Corporation

El Segundo, California
USA

Xerox Corporat ion has developed a computer graphics capability com
prised of a graphics language, CL-I, and a graphics tube with optional
accessories such as light pen, function keyboard, etc., which is interface d
to an intel ligen t controller which in turn interfaces to a standard lOP
on a Sigma computer. The system is executable in the background, foreground,
or under time-sharing. GL-l is re-entrant and runs on the Sigma 6, 7, and
9 computers under UTS. This paper deals with ghe GL-l system running in
conjunction with the Vector General Graphics Display System on a Sigma 6
under UTS.

HARDWARE DESCRIPTION
The overall hardware configuration is shown in Figure 1. The main

computer is any standard Sigma 6, 7, or 9 configuration. The 'programmable '
controller is an intelligent controller known as the System Control Unit
(SCU). The graphics controller in this case is the VG display system.

VECTOR GENERAL DISPLAY SYSTEM
The VG display system is a CRT display with an interface unit,

a display controller, a dual D/A converter, and a vector generator.
Optional features include a character generator and three coordinate
transformation generators: 2D, 2D with rotation, and 3D with rotation.
Any of six interactive control devices may be connected to the system
including a joystick, four A/N keyboards, sixteen or thirty-two func
tion switches with manual interrupt, a data tablet, ten control dials,
and four light pens. The character generator generates anyone of
four standard sizes in horizontal or vertical format, selected by the
user. The 2D option provides hardware scaling and translation, 2D
with rotation adds rotation in a single plane, and the 3D option gen
erates three-dimensional constructs and displays them with scaling,
translation, and rotation about any axis.

The r efr esh rate of the CR'!' is 60, 40, or]0 times a sl' cond, or
asynchronously. The r esolution is 4096 x 4096 over a fifteen inch

square display area, with thirty-two levels of beam intensity.
Limited hardware clipping is made possible as follows: displacement
registers allow the picture described in the image space (see Figure
2) to be shifted into the maximum picture space without distorting any
vectors.

One VG controller may control up to four CRTs, four sets of
function keys (sixty-four total), four A/N keyboards, four light
pens, one data tablet, one joystick, and one set of ten control dials.

SYSTEM CONTROL UNIT
The System Control Unit (SCU) is essentially an intelligent

programmable controller. The refresh and the refresh buffer are
under SCU program congrol. The SCU handles attentions from the VG
controller, and also handles communication protocol with the main
computer. There is also limited interaction between the user and
the display via the SCU without involving the main computer. The SCU
is interfaced through a 7907 controller and a standard lOP channel.
One VG controller is connected to one SCU, which is connected to one
lOP channel.

SOFTWARE DESCRIPTION
Figure 3 shows the overall software structure and its relationship

to the hardware. There are three pieces of software which are defined by
function: the Graphics Control Program (GCP), the Graphics Access Method
(GAM) , and GL-I.

GRAPHICS CONTROL PROGRAM
The GCP resides in the SCU. It communicates to GL-I via a 7907

and interface and the lOP. The SCU contains memory for the refresh
list of the CRT(s), and the refresh is under GCP control. When data
is received from GL-I for insertion into the display list, the GCP
does the insertion. It also responds to attentions (interrupts) from
the VG controller and extracts appropriate information (such as what
type of device caused the interrupt, where was the refresh currently
executing, etc.) for transmittal to GL-I. The GCP also has facilities
for queueing attentions.

GRAPHICS ACCESS METHOD
The GAM is part of the operation system and is essentially a

graphics device handler. It provides features for defining a
graphics device to the operating system, for transferring control to
GL-I in response to a graphics device interrupt, and for GL-I to read
from and write to the graphics device.

GL-I
GL-I is not a language as such, but is rather a set of FORTRAN

callable subroutines which allow a user to interact with a graphics
device. It is completely re-entrant. One user program may access
one or more graphics devices, or any number of user programs may eac~
access any number of graphics devices. However, more than one user
may not a~cess the same device. GL-I may reside in the public library,
user library, or it may be loaded with the user program. It is
monitor independent, and can be modified to accomodate different

13.3

13.4

graphics devices such as storage tubes and raster-type devices.
Each user of GL-l has a separate context area which is always assoc
iated with him and contains information pertinent to his program.

The GL-l calls are functionally independent ... they are simple
calls with a minimum number of arguments, and each call performs
only one function. The calls are hopefully self-documenting. As
will be seen, GL-l provides the basic tools to interface to a graphic
device attached to a Sigma computer. It is based on a table structure
which can easily be expanded to incorporate new features or to correct
oversights. It also maintains a hierarchial data structure for
creating , omitting , and displaying graphic images, in addition to
doing memory mana gement for both the Sigma memory and the SCU memory.

The GL-l calls which are available to the user can be classified
into nine groups: initialization and termination, device routines,
logical structuring routines, vector and character routines, mode
setting commands, attention handling routines, control commands, key
board data entry, and error handling.

INITIALIZATION AND TERMINATION ROUTINES
BGNGL(AREA,SIZE)

where AREA is the address of the user context area, and SIZE
is the size of the context area. ThE routine initializes a work
area in the user program for GL-l to use. It sets up a free
space chain for memory allocation, clears the user context area
to zeroes, and stores the contex t address in the user's TCB.
This routine must be included in every program which uses GL-l.

TRMGL
This routine closes all the graphics devices associated with

the user and zeroes the address of the context area in the TCB.
It effectively sinks the ship.

GRAPHICS DEVICE ROUTINES
BGNGD (DCBUNITC HATID, SAT ID))

where DCBUNIT is the unit number assigned to the particular
graphics device, HATID is the pointer to the Hardware Attribute
Table, and SATID is the pointer to the Software Attribute Table.
This routine is called to define a graphics device to the system
and must contain a DCB unit number. It enables the user program
to write to a specific graphics device. The HAT/SAT tables
localize the hardware definition of the device and the memory
configuration of the SCD. If mUltiple device configurations
exist 'at an installation, the appropriate HAT/SATs are assembled
as separate modules and placed in the GL-l library.

SELGD(DCBUNIT)
where DCBUNIT is as described above. This call enables the

user to select the device on which he wishes to display his
picture.

TRMGD(DCBUNIT)
where DCBUNIT is as described above. This call closes the

specified DCB to allow it to be used by other program elements.

LOGICAL STRUCTURING ROUTINES
A collection of GL-l orders is called a block. A block may be

a single contiguous set o f memory words or a collection of these
set s linked t oge ther. In either case. the block name refers to the
entire col l ec t ion o f orders. Compound pictures are f ormed by con
necting blocks t o other blocks~ ye t blocks retain their identity
even when connec ted to other blocks. Operations are available for
creat i ng and r e turning blocks to available space through the storage
alloca tor. All e lements within the block have the same input data
type and scal e fa c tor. A block is named and may be displayed, deleted,
modified, and /or used as a subroutine.

BGNBLK (NAME,~IZ~])
whe r e NAME is the name o f the block, and SIZE is the size of

the b l ock bu f fer in bytes. I f SIZE is not included, 128 is
as sumed. l~i s call begins the creation of a new block. All
orde r s wh i ch follow this call and preceed the ENDBLK call will
be associa ted with this named block.

ENDBLK(NAME)
wh ere NAME is as above. This call ends creation of a block

and places the block of graphic orders in the display buffer,
r eady to be displayed.

DSPBLK(NAME)
where NAME is as above. This routine causes the named block

and its associated subroutines to be displayed. Any number of
blocks may reside in the refresh buffer, but only one block and
i t s associated subroutines may be displayed at one time.

INCBLK(NAME)
causes the named block to be included in the displayed image .

It does this by causing a branch order to be inserted into the
display list which branches to the block.

OMrBLK(NAME)
causes the named block to be omitted from the displaye d image .

In this case, the branch order in the display list branches
around the block.

SELBLK(NAME)
selects and opens a previously defined block. This call is

used for including, altering, or omitting a named element within
a block which is no longer current.

LNKBLK(NAME)
connects the current block to the named block. The name d

block then becomes a subroutine to the current block and may be
displayed or not by using the INOBLK or OMTBLK calls.

EXTBLK(NAME)
reopens an existing but previously ended block to enable the

user to add graphic orders to it. It is closed again with ENDBLK.

13.5

13.6

RSTBLK(NAME)
releases the refresh buffer associated with the named block

and begins creation of a new block to be identified by NAME.
The new block must be of equal or shorter length than the old
block. The block buffer size specified in the original BGNBLK
is used.

TRMBLK(NAME)
releases all memory and the refresh buffer occupied by the

specified block. After this call, the block no longer exists.

VECTOR AND CHARACTER ROUTINES
GL-l contains subroutines for constructing each type of graphics

display unit command and adding it to a specified block. If no space
remains in the block, memory management will allocate additional
storage. Commands include moving the beam, drawing lines, plotting
point s, drawing charact.ers, and naming element s.

AMOVE (X, Y)
moves the beam to screen coordinate (X,Y). This has the same

effect as CALL PLOT(X,Y,3) in the CALCOMP system.

MOVE (X,Y)
either moves the beam to screen coordinate (X,Y) or moves to

the current beam position plus (X,Y), depending on the setting
of a preset mode (see mode description below). This call cor
responds to either an absolute or relative move.

DRAW(X, ye NUMBER1)
Where X is a list of x-coordinates, Y is a list of y-coordinates,

and NUMBER is the number of elements in both lists. DRAW moves
the beam with beam on, drawing as it moves. The X and Y lists
may be absolute positions or relative displacements, depending on
the preset mode setting. If NUMBER is missing, 1 is assumed, and
the call becomes similar to CALCOMP'S CALL PLOT (X,Y,2)

PLOT(X,yr,NUMBE~)
where ~e arguments are as described in DRAW ahnve. The only

difference between PLOT and DRAW is that PLOT merely spots the
points and no connecting lines are drawn. Again, if NUMBER is
missing, it is assumed to be 1.

DRSGMT(XST,YST,XND,YNnC,NUMBER)
where XST is a list of x-coordinates of the starting points of

the line segments to be drawn, YST is the list of y-coordinates
of the starting points, XND is the list of x-coordinates of the
endpoints, YND is the list of the y-coordinates of the endpoints,
and NUMBER is the number of elements in each list. This routine
enables the user to draw sets of line segments. If number is
absent, it is assumed to be 1.

PUTTXT (TEXT C NUMBERl)
where TEXT is a literal string or the address of a literal

string, and NUMBER is the number of characters in the stringo

This call allows the user to put text onto the screen. If
NUMBER is absent, it is assumed to be 1.

NAMELT(NAME)
An element is defined as a graphic order and its associated

data o Elements can be named, then altered, included, and omitted
in much the same manner as blocks. The routine NAMELT takes the
graphic order immediately following the call and builds an element
table for it, then includes that table in the element chain.

INCELT(NAME)
includes the named element in the displayed image in the same

manner as INCBLK.

OMTELT (NAME)
omits the named element in the displayed image in the same

manner as OMTBLK.

ALTELT(NAME)
replaces the named element with the graphic order which imme

diately follows the ALTELT call.

ORDER (ORDER)
allows the user to construct a graphics order and send it to

the GCP. Very dangerous.

MODE SETTING COMMANDS
GL-l contains operations for setting modes for blinking, inten

sity, character size and orientation, scaling, vector type, vector
mode, blanking the beam, and modes for the light pen, A/N keyboard,
and function keyboard.

SCALE(USRLMT~SCRLMT1)
where USRLMT is a four-word list specifying the limits of the

user's data in user units, and SCRLMT is a four-word list speci
fying the screen limits in raster units. If SCRLMT is absent,
full screen limits are assumed. If SCALE is not called, all input
is assumed to be in raster units. Both lists have the following
format:

word 1: x lower limit
word 2: y lower limit
word 3: x upper limit
word 4: y upper limit

VTYPE(TYPE(,AUTO)
where TYPE is on 0 f "ABS", "REL", "INCL", or "INCH", and AUTO

is either "X" or "y". This routine sets a mode flag in the
current block table. This affects such routines as MOVE and
DRSGMT as to whether their lists contain actual coordinates or
displacements. The data being passed to the SCU may be a time
plot in which case the x values could be automatically incre
mented by a specified amount, which would necessitate only a
y list, a starting x value, and x increment. This would save
considerable space in SCU memory. Similar arguments hold for

13.7

13.8

auto yo The high order bits or the low order bits of either x
or y may also be automatically incremented. Defaults are noe
autoincrement and ABS mode.

VMODE(MODE)
where MODE is one of IILINE", "DASH", OR "DOT". Default is

"LINE" 0

INTENS(INTS)
where INTS is an integer between 1 and 31. This selects the

relative intensity of the beam. Default is 15.

BLINK
begins the blink mode. The selected data will blink at a rate

of approximately twice per second.

NBLINK
terminates the blink mode.

BEAM, NBEAM
turns the beam on (BEAM) or off (NBEAM).

CHRSZE (HEIGHT)
where HEIGHT is one of .1, .2, .3, or .5 and produces char-

acters of the following heights:
.1 yields characters .124523 inches high (default)
.2 " " .183105 " "
.3 " " .249023 " "
.5 " " 0468750 " 11

CHRORT(ORT)
where ORT is either 0 or 90 and specifies degrees of counter

clockwise rotation of following character strings. Default
is zero.

LPMODE(MODE)
where MODE is 11 SNGL' , or "MULT" 0 This routine sets up the seu

to handle light pen interrupts. If MOlE is "SNGLII
, only single

interrupts are recognized, and the light pen must be reset before
another interrupt can be recognized. (See Attention Handling
Routines.) If " MODE is ItMULTt!, then all light pen interrupts
are acknowledged and queued. The humber of multiple attentions
allowed from the light pen is a parameter in the HAT/SAT tables.
Default (and safer) mode is "SNGL".

KBMODE(MODE)
where MODE is as above. This routine works the same way as

LPMODE except it is for the A/N keyboard.

FKMODE(MODE)
where MODE is as above. Works the same way as LPMODE except

it is for the function keyboardo

ATTENTION HANDLING ROUTINES
The light pen, alphanumeric keyboard, and/or function keys may

be selectively enabled, reset, or disabled. The user program may
request GL-l to wait for an attention, or attentions can be queued
in the SCU and returned when requested in the same order in which
they occurred.

ENBLLP
enables the light pen to allow it to cause interrupts.

RSETLP
resets the light pen to allow more interrupts to be caused.

DSBLLP
disables the light pen.

ENBLKB
enables the A/N keyboard to allow it to cause interrupts.

RSETKB
resets the A/N keyboard.

DSBLKB
disables the A/N keyboard.

ENBLFK(KEYi(,KEYj •••)
enables .the function keys selec ted in the parameter listo

DSBLFK(KEyi[,KEYj •••)
disables the selected function keys.

RSETFK
resets all enabled function keys.

DSBLAL
disables all attention sources.

CLRATN
clears the attention queue in the SCU.

CHKATN(INFO)
where INFO is a 16 word list describing the attention. This

routin~ reads the attention queue from the SCU and builds the
INFO table. This table contains such information as the DCB
number of the interrupting graphics device, a mnemonic des
cribing the type of attention, block and element names which
were current when the interrupt occurred, function key pattern
if the interrupt was caused by function keys, keyboard charac
ter if caused by the A/N keyboard, and (X,Y,Z) coordinates (in
user units) of the light pen hit if caused by the light pen.
This table is made available to the user. If no interrupt has
occurred, the type of attention will be zero. Execution of the
user program proceeds immediately after the call to CHKATN.

WfATN (INFO)
where INFO is as described above. This routine is identical

13.9

13.10

to CHKATN except that execution of the user pro~ram is not
resumed until an interrupt has occurred .

CONTROL COMMANDS
There are merely the START and STOP commands to the display

controller.

KEYBOARD DATA ENTRY
GETTXT(ARRAY,NUMBER , ENDCOD)

where ARRAY is the name of the area in the user program where
the text string is to be stored, NUMBER is the number of char
acters requested, and ENDCOD is returned by GL-l as either "EOB"
or "CMPV'. "EOB" indicates that the end of block was hit before
the correct number of characters was passed, and "CMPL" indicates
that the requested number of characters was read.

ERROR HANDLING
GL-l forgives the user and proceeds whenever possible. Any time

an error occurs in a GL-l routine, a code is posted in the user's
context area and also output to the LO device with a message. The
error code indicates the type of error and which GL-l routine posted
it. If the error is irrecoverable, uncorrectable, or prevents GL-l
from proceeding, the job is aborted . In most cases, however, defaults
are assumed and the user program is allowed to continue. The user can
find out how many errors have occurred and what the first one was by
calling the f ollowing routine:

ERROR (CODE ,COUNT)
where CODE is as describe above and COUNT is the number of

errors which have occurred since the call to BGNGL or the
previous call to ERROR, whichever occurred later.

OTHER SUPPORTING ROUTINES
In addition to the routines described above, there are five basic

subroutines which manage memory and data buffers, build and search
chains of blocks and elements, and a routine which builds and main
tains block tables and block buffers. There are also eight subroutines
which provide supporting functions including argument handling, error
reporting, initialization, and conversion routines to convert from
real to integer, integer to real, ASCII to EBCDIC, EBCDIC to ASCII,
and hexadecimal to EBCDIC.

..
-
'" co
:" --
~ --
)(

:r: --+- Programmable ~GraPhiC Display System
r
0 Main Computer Controller
"

~ -
~
r
m

Sigma
6, 7, or 9

CPU

7907 X
.- r/o Mini- Systems

/CRT

"
Processor Computer Control Graphics y

Interface Unit Controller Z '" . ~ I--t- Unit

Memory Alphanumeric
Rads Keyboard .. ~ .-

Discs Li~ t\ ': Pen

en Tapes 16 or 32 Function
I X Keys etc. m
m m ~

;0
0 Printers ·
>< ·

·
0 Card Readers (Up to 4 sets maximum)
"T1

I
I

Card Punches

t-'
I-- w

FIGURE 1. HARDWARE CONFIGURATION
.
t-'
t-'

A

13.12

... _----_ ..•. . -._ ... _-_ .. _--_._---------......

I
I

..------- ._--_ .. _ . .. -._-_._ - - ... ~

--_ _--_.

30 meJes

~--

f),_, :!_' 1_11 iI_C_= R_/_l'._G_E_, _C_F_' _V_V_C_'"_I'O_R_\ _G_J_~N_'_E:~~-'~_OT1 ___ m_:1_x_i r_n.ll m P ic:tll l' f' _s_p_a_c_c __ . ____ ~
---- 30 I1~C)fJ~ - .-----.------ :'-'1

Figure 2. Imagc Areas , 21-1;1eh Dh:pluy

.x
r'

o
>

(fl

I
m
m
-i

o
-n

-f

-f
r
m

I/O Options
I , Not Included
I I I n Ba seline
1 __ ...1 Syst em

S igma t>, 7, or 9

Graphic s
Ap plic <3 don

P~cg r a :!l

(GAI-)

~'-.... I
Grapldcs I
Library
(GL-l) Systems

Control Unit
(SCU)

Graphics Graphics
Access Me thod Con trol

(GAM) Pr ogram
(GCP)

~ - - - .- -

UTS I
Dis pla y

Buffer ·

--"~.

FIGURE 3. I NTERACTIVE GRAPHICS SYSTEM (IGS)

BLOCK DIAGRAM

t
1- - - ~ -- - - - - - - ~-

3 Axis
Joys t i ck I

I
I Hardcopy

(Paper and/or
I Mi crofilm)

I

I
I

'- - -- - - '--

Display
Generator

Unit
(DGU)

Basic 2D

- - - --- ---
I

2D Translation
I & Rotation

I , 3D

I Picture Scale
I

1
I

I

ry I
1

10-

1--' ul ' . ,.,.

r<)
- --- I - -

kJ

r-I /
1 I I

- - -- -

X-Y Data
Tab l e t

10 Control
Dia l s

Cu l or
M0nitor

B&W
Monitor

Light Pen

. ,
-~

Alphanumeric
K~yboard

16-32 Key
Func tion
S\ ... i tc h - (Up t

f-<)
o 4 max imum)

t-/

L ____ ___ __ __ ____ _

It-'
I~
It:;

13 .14

7.1.2.1

GL-1 Jniti~lizntic~

Clnd "'erni n;,tin'l (?)

I3C:IG T, (ar (:1! / s). ~:c)

TPJICr.

BG:1Gil (d el.> [,1 1"'1' ,
[,1\ ';'))

s];J,cn (cleb)
'l'nI-t(;D (deb)

L0(1ica1 ~ ;t r\lcl:\lre (10)

DGnBJ,i; (blocl~name

[,lJuffcJ-sizc))
r.lmBJ,J~ (bJocl~lFme)

DSJ' nJ.): (illor;l : nc1T'le)
nlCnJ,l~ (h}ocknaflc)

O:lTBLJ: (l>loc}~na.l'lc)

SI~Lnr.l~ (lJl oc]~n(me)

LTll;I\Ll: (l;lockn<1r~c)

EXTDLK (blocknnrne)

nSTDL1: (b1ocl:nClne)

'l'PJ.:BLK (b locl:nume)

V(' ct_or f~ r. Cl\, :ri1cten; (1~)

l\r~ovr: (x, y)
HnVL (x,y)
f):~/,I! (>: ,y [, n unbcr])

PLOT (}: , y [, !l11rj l Cr.))

Dn~; C; i'? (:-: s till" t, ys tilrt,

y.cncl , 1'on(((I nUMber])

PlJT'J';':~' (1~('): f: (I l1uJlbcr))

11l,r~r;L'J.' (c l cnrJntnanc)

l'"IJTI:I/l' (0.1c:r'~n tnur1C)

INCJ~ J,'l' « (c~lt'-! n0.ntni1r1c)

Ol·~'J'ELT (e lcnentnaT".e)

ORDJ':R (order)

!loc10 r:cttinq COf":T:'.,mc1s (13)

SChLE (uscrliMits [,
screcnl ini b;])

VTYPl: (vectortypc [,auto])

vr~DE (vectorrnodc)

INT1:ns (intensity)

nLHlJ:
NDLnl1~

REM\
Imr.Nl
ClInSZE (charactersi7.e)

CIlHOP'r (oricnt2tion)

LPf10DE (lprock)
KDHODr. (kbnodc)

FKtlODE (fkl'lode)

lIttention l:Cll1(Uin(: ('3)

ENBLLP
HSETI.P
DsnTJLP
ElmLn~

n.SE':'I~I3

DSDLlm
EUBLFK (fnkey[,fnkcy,

... n
nsr.'!'Fl<
DSBLrI((fnkey [, fnkey ,

...))
DSBLl\L
cm: l\T?1 (atninfo)
H'!'l'.'_f.'n (Cltninfo)
CJ,Pl\TI'l

Kcyhoarc. !' Et t2. r.n tn' (1)

GETTXT (.::trrny ,nul"lbcr,

cndeo.de)

Control ConmClnn.s (3)

STJlHT
STOP
Cf'!ElD (comrmncl)

Error lICln(llinq (1)

ERnOR (error,errorconnt)

COR R E C T ION S

TO

XEROX COMPUTER GRAPHICS

by

Timothy K. Dudley
Xerox Corporation

U.S.A.

1. All references to "SYSTEM CONTROL UNIT"

should read "MICROPROGRAMMABLE CONTROLLER".

2. All references to "scu" should read "MPC".

13.15

