
PlCADE 
PROMPT INTERACTIVE CREATION OF ACTIVE DISPLAY ENVIRONMENTS 

R.D. Trivett 
Carleton University 

ABSTRACT 

15.1 

Techniques developed at Carleton University as a 
basis for interactive graphics program development are presen­
ted. These techniques are premised on the objective o f creating 
an environment that facilitates the task o t programming graphics 
applications. Three distinct sections describing the program 
packages are included. The first specifies a set of subroutines 
used for the programming of graphics interrupt handlers in 
FORTRAN. The second section describes a system which controls 
the interactive creation of display images. This technique 
can be interfaced with the first to produce the PICADE system 
which facilitates the generation of graphics application programs. 
The last section of the paper describes an approach used to 
cause lines on the screen to appear to flow in a defined direc­
tion. The integration of support for this technique into the 
basic graphic's system programs is described. This technique 
can be used for the animation of system or computer flow 
diagrams. 

RESUME 

On decrit des techniques developpees a l'universite 
de Carleton qui sont a la base de developpement de programmes 
de la representation graphique interactive. On a presuppose 
que le but est de creer une ambiance appropriee au travail de 
la programmation des applications graphiques. 11 y a trois 
sections distinctes dans la communication. Dans la premiere 
on decrit une serie de sous-programmes utilisee pour programmer 
en FORTRAN le maniement des signaux d'interruptioni dans la 
deuxieme section on decrit un systeme de programmes pour dessiner 
et representer des images selon la methode interactive. On peut 
employer conjointement les deux techniques pour former le 
systeme PICADE qui facilite la creation de programmes graph iques 
d'application. Dans la derniere section, on decrit la pr ogram­
mation pour que les lignes se deplacent sur l'ecran dans une 
direction definie. On decrit aussi la combinaison de cette 
programmation avec le systeme de base de programmes graphiques. 
On peut utiliser la programmation pour dessiner les organi­
grammes et les ordinogrammes. 



15.2 

PICADE 
PROMPT INTERACTIVE CREATION OF ACTIVE DISPLAY ENVIRONMENTS 

R.D. Trivett 
Carleton University 

Introduction 

This paper describes techniques developed at Carleton 
University as a basis for interactive graphics program develop­
ment. The paper is divided into two parts. Part A discusses 
basic graphics techniques and contains two sections; 1) a tech­
nique for handling graphic's interrupts in FORTRAN, and 2) a 
system for the interactive creation of display images. Part A 
concludes with a description of the integration of these two 
techniques into a system (given the acronym PICADE) which per­
mits the Prompt Interactive Creation of Active Display Environ­
ments. Part B discusses a technique for the generation of 
flowing lines on the display. This could be used as part of a 
package for animating system or computer program flow diagrams. 

The development was performed on a PDP-15 computer with 
an associated Graphics-15 processor. These units operate in a 
dual processor environment both sharing the 24K of 18 bit core 
memory. The basic mechanism for creating displays is one that 
uses the PDP-15 processor to run a program which generates the 
required display file code and stores it in a reserved data 
area in memory. When the display file is complete the PDP-15 
executes an instruction which commands the display processor 
(in the Graphics-15) to start executing the display file 
instructions. By executing these instructions the graphics 
processor performs the corresponding display controlling func­
tions and, vectors and characters are drawn on the cathode ray 
tube as specified in the display file. The display processor 
has, included in its basic instruction set, a jump or branch 



instruction. The last instruction of a display file is one which 
transfers control back to the beginning. Thus, a display file 
will be repeatedly executed by the display processor. It is 
this cyclic re-execution of the display file which causes the 
display to be refreshed on the cathode ray tube. 

Part A - Basic Graphics Techniques 

1. Graphics Interrupt Handling in FORTRAN: An interactive 
environment is created by the provision of a lightpen and/or 
pushbuttons at the display console. These are used for com­
munication between the operator and a running program. Activa­
tion of either mechanism results in a "program interrupt". 
Normally a program is executed sequentially from memory until 
a branch or jump instruction is encountered. The "flow of 
control" is pre-programmed and can aptly be described as 
"linear". When an interrupt occurs the currently executing 
sequence of instructions is abandoned and a special interrupt 
handling sequence is entered. When this sequence is completed 
the original program can be re-started at the point of inter­
ruption or control can be transferred to a completely new 
sequence of code. The programming of interrupts can be desc­
ribed as "non-linear". This section describes a method for 
programming the handling of graphic's interrupts in FORTRAN. 
Two factors contributed to the decision to develop this 
technique: 

i) a FORTRAN compiler existed on the PDP-lS computer, as 
it does on most computers, and thus a fast, efficient 
compilation of the resulting programs would be possible, 

ii) FORTRAN is a widely known language, and the effort 
required to learn how to apply the graphics extensions 
would be minimal. 

These factors in the light of limited programming and 
computer resources were sufficient to determine the decision. 

It is required that certain operations be performed when 
either of the interrupt mechanisms is initiated. This occurs 
when a pushbutton is depressed on the console, or the lightpen 
is pointed (with the shutter open) at a section of the display 
that is defined as lightpen sensitive. As the hardware detects 
a graphic's interrupt, the graphics processor suspends execu­
tion of the display file. An assembly language program extracts 
several parameters from the display processor, re-starts 
execution of the display file and, when this technique is 
enabled, transfers control to the appropriate FORTRAN routine. 
Because the graphics processor has re-started execution of the 
display file another interrupt could be generated before comp­
letion of the handling in FORTRAN of the first interrupt. Re­
entry to the FORTRAN handler is blocked, by software, until a 
"return from interrupt" sequence is entered from FORTRAN. This 

15.3 



15.4 

prevents multiple entries into the FORTRAN program section 
and thus preserves the integrity of the variables local to the 
interrupt handler. The parameters stored by the assembly lan­
guage sequence which define the nature of the graphic's inter­
rupt are: 

i) the name register (NREG) , 

ii) the graphics processor program counter (INTPC), 

iii) the X and Y position of the lightpen on lightpen 
generated interrupts (INTX, INTY) , 

iv) the pushbutton number on a pushbutton generated inter­
rupt (INTPB). 

The capitalized words bracketed with each item in the 
above list are the FORTRAN variable names used to store the 
corresponding parameter values. The use of these variable 
names is clarified in the description of the system's sub­
routines included below. 

The "name register" is a register in the graphics pro­
cessor which can be set to contain different values under 
graphic's program ontrol. The name register can be loaded 
with a unique number before each different section of light­
pen sensitive display file code is executed. The number in 
this register identifies the source of a lightpen interrupt 
and can be used by the interrupt handling sequence. In the 
Graphics-IS it is a 7 bit register and, therefore, 128 dif­
ferent "names" or register values are possible. 

The "graphics processor program counter" is a register 
that stores the core memory address of the instruction in 
the display file being executed by the graphics processor when 
the interrupt occured. This parameter can also be used to 
identify the source of lightpen interrupts. 

The "X and Y position" registers indicate the source of 
the lightpen interrupt and are referenced when the physical 
screen position of the lightpen is required. In some graphics 
systems this is the only information available to the pro­
grammer after a lightpen interrupt has occured. 

The "pushbutton number" is of abvious value when pro­
cessing a pushbutton interrupt. There are six pushbuttons on 
the Graphics-IS console and various program determined func­
tions can be associated with these. 

Several subroutines are used to set up and control the 
handling of interrupts in the FORTRAN environment. Table I 
summarizes the names and uses of these subroutines. The sub­
routines are now described in detail with the required call­
ing sequence given in each case. 



CALL DEFREG(NREG,INTPC,INTX,INTY,INTPB) The argument list 
defines locations in the FORTRAN program that will receive the 
display parameter values when interrupts occur. All of the 
arguments are FORTRAN integers. This subroutine also init­
ializes the assembly language interrupt processing support. 
The meanings of the argument list variables have been giv en 
above. 

Table 1. Summary of FORTRAN interrupt processing subroutines 

SURBROUTINE N&~E 

DEFREG 

ENABLE 

DISABL 

INTON 

RETURN 

WAIT 

FUNCTIONAL DESCRIPTION 

Initializes the system and defines 
graphic parameter's registers. 

Used to e nable or select those inter­
rupts desired. 

Used to selectively disable any of the 
interrupts previously enabled. 

P l aces all ENABLE'd interrupts into an 
active state. 

Re-sets interrupt conditions, and, if 
desired returns the program execution 
to the point of interruption. 

Generates a variable length programmable 
delay. It is used to wait for interrupts 
by setting the delay equal to infinity. 

CALL ENABLE(ARGl,ARG2(,ARG3}} This subroutine is used to 
define the entry points (FORTRAN line numbers) for either of 
the interrupt types. ARGl specifies the interrupts to be 
enabled while ARG2 (and ARG3 if required) defines the FORTRAN 
line number where the interrupt processing is to begin. If 
ARGl=l then lightpen interrupts are enabled. If ARGl=2 then 
pushbutton interrupts are enabled. If ARGl=3 (ie:l+2) then both 
lightpen and pushbutton interrupts are enabled. ARG2 and ARG3 
must be defined in a FORTRAN ASSIGN statement. This stores 
the address associated with a particular line number in the 
specified variable location. For example "ASSIGN 100 TO IADLP" 
causes the real memory address associated with line 100 to be 
stored in the variable IADLP. ARG3 is needed only when both 
interrupts are to be enabled (ie:ARGl=3). In this case it 
corresponds to the line number entry point for the pushbutton 
interrupts. ARG2, in this case, corresponds to the lightpen 
interrupt entry point. When only one interrupt is enabled 
ARG2 defines the line number entry point for the corresponding 
interrupt. 

15.5 



15.6 

CALL DISABL(ARGl) The argument is composed indentically as the 
first argument of t.he ENABLE subroutine described above. The 
subroutine is used to selectively disable any previously 
ENABLE'd interrupts. 

CALL INTON All interrupts that have been enabled are activa­
ted by the calling of this subroutine. It does not have an 
argument list., 

CALL INTOF This subroutine de-activates all graphics' interrupts. 
Interrupts previously ENABLE'd remain so but are de-activated 
until the INTON subroutine is called. 

CALL RETURN(ARG) This subroutine is used to terminate an 
interrupt processing sequence. The software block inhibiting 
entry into the FORTRAN interrupt handling sequence is 
removed. If ARG=~, the interrupted p~ogram is re-started 
from the point of interruption. If ARG=l program control is 
passed to the FORTRAN statement following the subroutine call. 

CALL WAIT (ARG) This subroutine is us~d to produce a variable 
length programmable delay. Return from the subroutine occurs 
after ARG milliseconds unless ARG=~ in which case return 
never occurs. In the latter case the subroutine can be used 
to wait for interrupts. 

This interrup-t programming technique and the correspon­
ding set of subroutines have been implemented and used 
successfully in the development of interactive graphics soft­
ware. All of the graphics interrupt handling required in the 
development of the next technique discussed was programmed 
using this set of FORTRAN subroutines. 

2. The Interactive Creation of DisPla~ Ima~es: Normally 
graphiCs display layouts are specifiedy co ing in a high 
level language, say FORTRAN, and the resultant code is compiled 
and run in order to test the "acceptability" of the corres­
ponding display image. Typically several interations are 
required to produce the desired image, and consequently, this 
can be a time consuming phase in the development of graphics 
programs. The interactive method developed allows a user to 
sit in front of the display console and, via two modes of 
operation, create lines and text strings positioned as desired 
on the cathode ray tube screen. Immediate feedback as to the 
result of an operation allows him to detect and correct dyna­
mically any mis ·takes. The modes of operation are; 

i) Text mode: text command lines are entered and 
interpretively decoded to perform such operations 
as the drawing of lines, the creation and copying of 
subpictures, and the addition of text strings, 



ii) Track mode: A tracking octagon and several push­
button functions combine to provide for the inter­
active creation of sketchy images. 

Text mode commands exist which provide for the creation of 
lightpen sensitive display parts (also referred to as "light 
buttons"). The image resulting from a display development 
session can be stored in a special disk or Dec-tape (a type 
of magnetic storage tape) file and can subsequently be re­
loaded and used by a graphics application program. This 
application program can use the FORTRAN interrupt processing 
technique to service the interrupts from the TEXT mode defined 
'light buttons'. The net result of the integration of these 
two techniques is the PICADE system. 'I'he primary advantage 
achieved using PICADE is the quick, accurate, and easily 
mastered process for the generation of active display environ­
ments (ie: environments using display images with 'light 
buttons'). In some cases program size savings are achieved 
as the basic graphics drawing package will not be loaded into 
memory if there are no drawing functions performed at appli­
cation's program run time. 

Part B - Flowing Lines on the display 

A package used to animate system or computer flow dia­
grams requires some method for indicating the flow of control 
from one box in the chart to the next. The technique used 
presents a dashed line connecting successive boxes and causes 
the dashed line to appear to be flowing in the same direction 
as the desired transfer of control indication. This illusion 
is created by causing the origin of the dashed line to move in 
the desired direction in real time. The origin is moved, in 
steps, a distance equal to a dash and a space of the given line 
and re-cycled through this sequence and thus the line appears 
to be flowing in the given direction. The rate of flow is 
a function of the step size and the time between steps. As the 
vectors drawn on the Graphics-IS are relative, the origin of 
the dashed line is moved by changing the length of a short 
initial vector. Another varying length vector is drawn after 
the end of the "flowing" line of a length such that the total 
line length is constant. (See the drawing) . 

Display file execution on the graphics-IS is synch'ed 
to the 60 c.p.s. line frequency. The graphics interrupt 
handler is entered every l/60th of a second at the end of each 
complete execution of the display file. The initial and end 
vecotrs used to animate the flowing line are modified in 
length in the regularly entered graphics interrupt handler. 
The time between steps is therefore accurately determined. 
As an additional pair of these short varying length vectors 
is required for each additional line direction, eight pairs 
of lines are included. Thus flowing line illusions are 

15.7 



15.8 

possible in the eight basic vector directions (spanning a 
full 360 0

). The initial and end vectors for a given line 
are accessed as subpictures. Thus all lines flowing in the 
same direction use the same initial and end vector pair. 

initial 
vector If+--
~ . t 

'flowing line' 

--~f\ 
end - r ~~ector 

-+- total line length - - - .----'31-1 

is constant 

This approach removes all support for the flowing 
line illusion to the interrupt handler and thereby facili­
tates the use of this feature at the graphics application 
program level. A" flowing line" drawing subroutine copies 
the initial vector as a subpicture, draws the desired dashed 
line, and then copies the end vector. In this manner a 
flowing line is created by one subroutine call specifying 
the line's length and direction (a number from 0-7). This 
feature will ultimately be integrated into a system which will 
animate system and computer flow diagrams. 


