GRAPHICS SIMULATING LOGIC CIRCUITS

Rashpal Ahluwalia* and Irene Gargantini

University of Western Ontario

ABSTRACT

This paper presents a system developed for inter-
active circuit design by the use of a graphic display unit.
Such a system was conceived primarily as a teaching aid for
the tutorial sessions of a course on Computer Logic. It
provides the student with the possibility of testing the design
of a sequential circuit of medium complexity.

The system description emphasizes the structure and
generation of display formats for graphic output, more than
the applications themselves.

Interaction may take place by using the light-pen
for designating the location of a gate and/or through the push-
buttons of the display console. A special feature of the
system is the display of the output or state value inside each
logical element.

*Supported in part by the National Research
Council of Canada (Grant No. 1304T9l)

ABREGE

Dans cette communication, on décrit un systéme
interactif, avec console de visualisation pour faire des plans
de circuits électroniques. Ce systéme graphique a éte congu
comme aide pédagogique utilisable par ceux qui donnent un cours
sur les circuits numériques d'ordinateurs et par leurs eleves.
On donne a l'étudiant la possibilité d'essayer un circuit de
logique séquentielle d'une complexité moyenne.

On met plus l'accent sur la structure et la gene-
ration de formats pour le rendement graphique que sur les
applications elles-memes.

Pour un action reéciproque 1'étudiant peut désigner
la position d'une porte avec le crayon électronique ou avec
les boutons-poussoirs de la console de visualisation. Une

7 . . . ~ .
caractéristique spéciale de ce systéme est sa capacité de
y ' i o,
preésenter sur l'ecran le valeur logique, de tout element
intérieur d'un circuit numérique.

22.1



22.2

GRAPHICS SIMULATING LOGIC CIRCUITS

Rashpal Ahluwalia* & Irene Gargantini
University of Western Ontario

1. Introduction

The present paper is a description of the Interactive
Logic Circuit Design system (ILCD) developed at the Depart-
ment of Computer Science at Western.

ILCD was mainly designed to offer laboratory sessions on
a man-machine interactive basis, in order to complement the
lectures of the course on Computer Logic. Our facilities
consisted of a PDP-15/20, equipped with 16K core memory, a
graphic processor and a VITO4 display unit. Our main goal was
to develop a descriptive language easy to understand and use.
The most recent version of ILCD consists now of several
service routines, part of which are written in assembly
language, and part in Fortran IV.

The natural flow in presenting a Computer Logic course
is first to introduce the combinational gates, and then some
sort of memory device, so that the students can combine them
in order to obtain circuits closely related to the familiar
world of arithmetic. Thus, subplicture files were created for
AND-, NOT-, OR-, NAND-elements, J-K flip-flops and shift-

*Supported 1In part by the National Research Council of
Canada (grant No. 1304T91).



22,3

registers. Each of the above elements was simulated as an
independent unit in the sense that a corresponding directory
was created for its display. Sequential circuits can then be
designed by assembling the logical elements mentioned above.

Man-machine interaction takes place through a combina-
tion of the following devices: 1light-pen, teletype, LK-35
keyboard and pushbuttons of the display unit. For the dis-
play of a logical element or of a connecting line, the user
can eilther supply the coordinates of the desired location
via teletype or he can point the light-pen directly to the
required position on the screen.

ILCD basically performs two operations, namely the
placement of elements on the graphic display unit and the
logical evaluation of gates. We correspondingly can
distinguish two categories of data structures—- the topological
and the functional data structures. The first set is
involved in the creation of the image of a circuit, the
second establishes a connection between some truth tables.
The distinction between the two categories appears to be
particularly important in our case, because of the extension
of the system to fault detection simulation, when we want
to be able to change the logical value at some terminals
while retaining the remaining structure.

The dimensions of the graphic display (9-1/4" by 9-1/L4")
have posed a fan-in problem in the sense that the number of
inputs (and, in general, of connecting lines) had to be
kept low enough to allow a good visibility on the screen.

Finally, just to give an idea of the capabilities of the
System, we mention some of the circuits which have been
implemented: a two-step algebraic adder, a circuit for
multiplication using single length registers, a circuit for
division using the principle of comparison (three digits),
and a circuit for correcting single errors in the Hamming
code with three checking digits. Slides will illustrate
some of the circuits.

2. General Characteristics

The logical elements consist of AND-, OR-, NOT-, NAND-
gates, full adders, J-K flip-flops and shift-registers. The
geometrical elements, which create the connection between any
two gates, consist of the input and output elements, joining
lines and branching points (nodes). If the light-pen is
used to designate a location, some adjustment takes place in
order to guarantee straight lines as connections. A1l gates
and the input component are characterized by the coordinates
of their outputs, while the output element is defined through
the coordinates of its input.



Similar gates are serially numbered according to the
order of their appearance on the screen; all combinational
elements (other than the inverter) are assumed to have three
input terminals numbered 1, 2 and 3.

As an example we 1list below the statements relative to
the display of the OR-gate numbered "1", followed by the
inverter numbered "2".

(1) OR X1 Y1 jgz:)

(2) INV X2 Y2

(3)A CON | OR 1 INV 2
g /}

(4) CALC OR 1

NV

(5) CALC INV 2

The specification of the coordinates in (1) and (2) are
not necessary if the light-pen is used. The statements
"CALC(ULATE) OR 1" and "CALC(ULATE) INV 2" do not have any
effect on the screen until some values are entered as inputs;
(for instance, through the pushbuttons). Then all output
values of the gates appear inside the elements themselves.
Computation is possible only when the circuit is logically
complete.

For the convenience of the user, the images of all
logical elements are continuously displayed in the offset
area of the screen during the production of a display file.
Also, all user commands are checked for syntax errors and
appropriate error messages are printed out.

3. Topological Data Structure

When the user requests a logical component to be
displayed at a certain location, the coordinates of that
position are stored in an appropriate table. Such a table
has two entries, one for the X-coordinate and one for the
Y-coordinate. Since similar logical elements are sequentially
numbered, so also are their corresponding tables.

The main display file created by ILCD contains three
special features dealing with:



(1) branches to subpicture files for drawing a logical
element,

(ii) production of lines connecting any two logical
components,

(iii) branch to the subpicture file containing the logical
values of all the elements.

(1) The shape of each logical component is, of course, pre-
defined. Thus, when an element has to be displayed, the
corresponding subpicture file is called for. For example,
if the commands "OR X1 Y1" and "INV X2 Y2" are typed in,
the interaction between the main display file and the
required subpicture files would take place as follows:

Subpicture File

<CALL LINE (0,12,1,POR(1))
SET POINT AT X1 Y1 “CALL LINE (-8,8,1)
/ CALL LINE (40,0,1)
Branch to OR Subpicture CALL LINE (20,-20,1)
CALL LINE (-20,-20,1)
CALL LINE (40,0,1)
\ CALL LINE (8,8,1)
CALL LINE (0,12,1)

The corresponding drawing would be ; } X1 Y1
r A

Subpicture File

SET POINT AT X2 Y2 __~CALL LINE (-20,20,1,PINV(1))
Branch to INV Subpicture < CALL LINE (0,-40,1)

“\\CALL LINE (20,20,1)

The corresponding drawing would be £> X2 Y2

(1i1i) The production of connecting lines is a part of the
main display file. When a line is displayed, its coordinates
are stored in an appropriate four entries table. Two of the
entries are used to specify the coordinates of the source and
the remaining two are used to specify the coordinates of the

22 .



224

destination.

(iii) The logical values of all elements are displayed through
a subpicture file, by branching from and back to the main
display file. Thus the functional values can be computed
without changing or re-defining the topological structure

of the circuilt.

4. TFunctional Data Structure

Since our final goal is to simulate the design of
logical circuits, ILCD must also create directories for the
evaluation of Boolean functions. This part is graphical in
nature too, since the logical values are displayed on the
screen inside the corresponding logical elements. This
requires linkages among:

(1) the directory which produces the Boolean values,
(2) the main display file.

Directories performing such linkages consist of:
(i) an array for the logical connectlons,
(ii) arrays for the input-output values of a logical element,

(i1i) an array for the control of the time sequence of the
circuit.

The array mentioned in (i) performs a dual function,
namely:

(a) the computation of values‘at the terminals,
(b) the evaluation of the state of an element.

Such an array has four entries as shown below:

Word 1 Code for Source
Word 2 Source Number
Word 3 Code for Destination

Word 4 Destination Number




If Word 3 is different from zero, then Word 1 and Word 3
specify the source and the destination in coded form, while
Word 2 and Word 4 specify the source and destination number.
If Word 3 is zero, then the logical value of the element,
defined by Word 1 and Word 2, is calculated.

Arrays mentioned in (ii) are basically logical tables
generated for the computation of the input and output values
of the logical elements. They vary in size and format
according to which logical component they refer. Since 1t
would take too much space to describe all the arrays, we
simply give an example. The logical table associated with an
AND-gate (LAND) has four entries:

Value of OUT

Value of IN1
LAND o

Value of INZ2

Value of INS3

LAND supplies the values at the terminals denoted by OUT,
IN1, IN2, IN3 as it is shown in the diagram below:

IN1 |
IN2 OUT
IN3

Finally, a short comment on the array mentioned in (iii).
Such an array is generated for the purpose of synchronizing
the various parts of a sequential circuit. The control of the
time sequence 1is achileved by specifying all possible values
of the input elements at integral times.

Acknowledgment. The authors wish to thank Mr. Peter Gredley
for his iInitial contribution to the simulation of logical
circults on a non-interactive basis.




