
An Interactive Cellular

Array Simulator

Doug Seeley
Department of Computer Science
University of British Columbia

23.1

23.2

Introduction

Much interest was generated by the popular description of John
Conway 's game of "life" ol This game incorporates an infinite array or
gr id of cells, within which simple objects are "born", "survive", and
"die". The development of populations of these objects is controlled by
simp l e rules at discrete time steps, rules that depend upon the number of
ne ighbouring cells that are "alive". The great interest centered around
the complex and unpredictable behaviour that certain innocuous initial
configuration of "alive" objects displayed. In fact, interest was such
tha t a second account appeared2 , one that popularized the related abstract
fi eld of cellular automata theory. In so doing, it made concrete the
potential of this theory as a framework for many fundamental areas of
knowledge.

Cellular automata models were f irst proposed by von Neumann3 in
order t o demonstrate the possibility of constructing self-reproducing
machines . Ulam4 persued very simple systems much like "life" in order
t o i nves tigate patterns of growth in two and three dimensional arrays.
Dis tributed computation has been investigated one-dimensionally with the
"f i rin g- s quad synchronization" problem, and multi-dimensionally in models
of neural behaviour such as the frog visual systemS and mammalian hearts6 .
There has also been much interest in retina-like cellular arrays t hat
woul d pe rform pattern recognition functions for robot devices 7 • Al s o sel f
repairing proserties of systems of like computers is an intense area of
investi~ation. The biological-like properties of "life" itself a r e being
studied in order to obtain models of cancerous growth, antibody action,
and t he evolution of large molecules, and life is only a simple model o

The author believes, in fact, that cellular models offer an exciting
a lternate world-view than those provided by essentially atomis tic models.
The latter are at the root of most of our science and mathematics and have
warped our perception of the world along atomistic lines.

The cellular approach to modelling can be used in broad areas of
information processing. What has held back its use is the following:
(a) the behaviour of these models can rarely be expressed in any closed
analytic form, (b) there are no formal descriptions of this behaviour (that
can be used in general situations), (c) moderately large arrays must be
used in order to investigate complex behaviour, (d) computing global systems
states at each time step is an arduous task by hand, and very cumbersome if
hard copy computer printout is used. Because our intuition is so weak in
conceptualizing the parallel behaviour of these models, it is clear that
one must substitute analysis by much exploratory empirical investigation.
An important example of this point is the way in which Codd9 found his
eight-state five-neighbour self-reproducing automata. He made incremental
changes to the behaviour of his cells in a trial and error approach until
the self-replication behaviour was observed. It is clear then, that an
interactive system that would allow easy model modification and display of
model behaviour is required. In this manner, simulation of specific models

are the only means whereby the concepts and principles that will deal
with the complex behaviour exhibited by cellular array models, may be
discovered.

A graphics facility and general purpose language for the inter
active simulation of cellular arrays has been designed and implemented by
BrenderlO on an IBM l800/PDP-7 graphic facility; it has been extensively
used at the University of Michigan. However, it was not portable to D.B.C.'s
System 360/67 - Adage AGT-lO system. Therefore, an exploratory system
called CELL was designed and implemented along somewhat different lines,
with a view toward the construction of a more general system. This system
also was implemented such that it executed the model simulation within the
small core of the Adage computer. This pilot version of CELL14 has now
been transformed into a suitable research tool with much more flexibility
in cellular model definition and exploration. What follows is a description
of the new CELL command language, sample protocols, and comments upon its
use.

The CELL SYstem

Physical Configuration

CELL models are displayed upon the advanced graphics terminal of
an Adage AGT-lO computer (8K 30 bit words, vector-oriented) in conjunction
with an adjacent IBM 3270 CRT terminal for communication with the operating
system (see figure 1). The simulation of a cellular model is controlled
by the AGT's function keys (an available light pen has not been found par
ticularly useful for this type of modelling). Cellular model definition is
carried out on the 3270 or read in from user files. Also current models
and spatial configuration may be saved using this same device.

However, a user need not always use the Adage graphics, he may
initially construct and debug a cellular model by carrying out the simula
tion entirely upon regular system terminals at a considerable saving in
computer costs, by using a TEST mode of the program.

Model Definition

In order to construct a cellular model the array must be described,
the connectivity or cell neighbourhoods indicated, the initial states of
each of the cells specified, and the locally-applied but universal trans
ition rules must be detailed. In addition, various alternative display
configurations may be chosen, certain simulation modes selected, and a
library of cellular displays saved. Control and interactive commands carry
out these specifications.

10 Cellular array description.
2. The neighbourhood of a cell.
3. Initial configuration of the array.
4. Local state transition function.

23.3

23.4

A description of the array includes the type of regular structure
it uses; that is, whether the cells are arranged in rectangular, hexagonal,
triagonal, etc., mosaics. Also, its size must be specified. CELL uses
only a rectangular grid of cells, although other structures may be embedded
in it. The limiting size in CELL is a 600 x 600 grid.

The neighbourhood of a cell is that group of cells that normally
hold a fixed geometric relationship to it within the grid. The current
states of its neighbourhood determine what the next state of a cell will
be after the next time step. Probably, the most common neighbourhood is
that of the 4 adjacent cells along the major axes of the grid. CELL
allows any combination of 8 neighbouring cells (includes diagonals) for
tabular functions, while the subprogram transition function can use arbi
trary and dynamic neighbourhoods.

The initial configuration of the array is simply a display of the
initia l states of each cell in the array. For graphical display convenience,
CELL provides an optional mapping function from those symbols used to des
cri be cell states to those symbols (including special characters) that are
a ctually displayed on the CRT screet. There are also a set of commands that
allow the user to describe a configuration without having to specify the
s t a te of every cell in the array.

The transition function describes the states that each cell enters
based upon its own current state and the previous state of its neighbourhood.
In CELL this function can be described by a table of neighbourhoods (for
convenience we shall call these latter entries, transition functions with
out ambiguity), or by a user-supplied Fortran subroutine (object module).
Th i s function is applied at each time step to each cell of the array in
turn, building a new configuration of states on an alternate array. Once
this pass has been accomplished, this new configuration can be displayed
giving the effect of a parallel global transformation of the array (note
that still-to-be-used information about the previous array must not be
destroyed in the process). For a nine-neighbourhood several-state model,
the number of distinct neighbourhood configurations possible grows very
large; hence CELL incorporates special definition features in order to
reduce the number of configurations that must be specified by table func
tions o

CELL Commands

Model Definition

Often a simulation will be desired of a model that has been pre
viously defined. The CELL system is initialized with such a model by using
the command:

SIMULATE 'model'
where model is the name of a file where a previously
defined model was saved

The gross characterization of the cellular space that is to be
simulated requires specification of grid size (~ 600), the boundary chara
cter, and whether wraparound is required (for arrays on surfaces). The
following commands carry out this function:

SIZE nnn
BOUNDARY
WRAP
XWRAP
YWRAP

'c'
ON/OFF}
ON/OFF
ON/OFF

default to OFF

An initial configuration is required for the running of the model.
This is done by filling the space with a background or quiescent state, and
then constructing a figure either by desc ribing a string of states along a
row or column, or by specifying a contiguous block of states. Note that the
numbering of the array cells has the left uppermost cell at location x=l, y=l.

FILL 'c'
ROWDATA
COLDATA
UPDATE
string
string

$ END

x y 'string'
x y 'string'
x y

the top left cell of this
block is at location x y.

The transition function that is to be applied locally to every cell
in the array can be one of several kinds specified by a "TYPE name" command
where name is one of the following.

RANDOM

DIRECTED

ORDERED

FORTRAN

the order, and orientation of the states in the neighbourhood
are unimportant.

order and orientation are significant.

order of states is significant but not orientation.

no table of functions will be used, instead the object code
of a special FORTRAN subprogram is provided (described in a
later example).

The above options for table-driven functions can make possible quite
compact descriptions when a default character and a universal character is
specified. Below is an example that describes in table form the rules for
"life", and illustrates the format of these commands:

TYPE RANDOM
BOUNDARY '0'
DEFAULT '0'
NEIGHBOUR AROUND
FUNCTION
'1' 0 0 0 0 0 0 1 1 '1'
'u' 0 0 0 0 0 1 1 1 '1'
$END

23.5

23.6

Inside the first pair of quotes is the current state of the cell
under consideration, and inside the las t is the new state. In between are
the neighbourhood states. If 1 = "alive" and 0 = "quiet", then the 1st
transition indicates that an alive state will remain alive if it has exactly
2 'live' neighbours. The 2nd transition indicates that a cell will always
be alive if it formerly had exactly three neighbours. All other neighbour
hood state configurations lead to the quiet state, since it is the default
state. These are exactly the transition rules of Conway's game.

If you number the 8 neighbouring cells of a cell in a rectangular
grid, starting from the upper left diagonal one, then the following neigh
bourhood specifications may be used:

NEIGHBOUR 1 2 3

NEIGHBOUR 1 3 5 7
etc.

NEIGHBOUR SIDES (= 2 4 6 8)
NEIGHBOUR CORNERS (= 1 3 5 7)
NEIGHBOUR AROUND (= 1 2 3 4 5 6 7 8)

An example of a Fortran subprogram that describes the transition
function of the cellular space is detailed in figure 2. Note that it will
implicitly define the neighbourhood. The calling convention for this sub
program is as follows:

Subroutine Sub (IROW, ICOL, 1ST, *)

I ROW

ICOL

1ST

integer *4 value of the row of the current cell under
consideration.

integer *4 value of the column of the current cell.

integer *4, whose last byte is the "alphanumeric" state
of the current cell upon entry.

this should also have the new state of the current cell
as computed by the subprogram upon return.

in order to convert to integer form 240 should be sub
tracted from this value.

a RETURN 1 will make the new state of the current cell
default.

These transition subprograms can interact with the cellular array
by acquiring the states of other cells, and the size of the space with
function calls, and by altering wraparound conditions:

ICELL (JROW, JCOL, ISW)

This function delivers the state of the cell that is JROW positions
and JCOL positions away from the current cell. Function ICELLA performs
similarily but with absolute co-ordiantes as arguments. ISW may be omitted
since it is only used to alter the wrapping conditions. A subprogram call
NSIZE(N) will deliver the current size of the array in N.

Display Commands

There are several commands that will alter the display on the Adage
screen and control the simulation from the adajacent system terminal. These
are also very useful when the TEST mode of the program is used for displays
only on a system terminal. They include:

TITLE
MAP
DISPLAY
INTER-DISPLAY
G0
IN
KEYS

'name of model'
'cl c2 ••• cn' dl d2 ••• dn'
(ON)/OFF (OFF is default)
ON/OFF (ON is default)

The MAP command just replaces the "c" symbols that have been used
to characterize the cell transitions to "d" symbols for display purposes,
the quiescent state being usually mapped into a blank. DISPLAY causes the
current space to appear on the screen, while INTER-DISPLAY OFF prevents
the space from being displayed during a simulation command of several iter
ations. In causes n interations of the current space to be executed, while
KEYS transfers CELL control to the Adage function keys. Both DISPLAY and
G0 (which alters the current space) can take the following arguments:

INITIAL the space when the user last defined a new space.

PREVIOUS the space from the iteration before the current one.

BUFFER n the nth space saved in the buffer library.

Since the arrays that can be simulated can be potentially 600 x 600
it is essential to have a windowing facility for display purposes. Hence
a WINDOW command allows the user to indicate a window of some size (square)
at a specific location of the upper left corner. e.g.

WINDOW SIZE 20 AT 9 12
or

WINDOW AT 9 12 SIZE 20

Display Interaction

Interaction with an ongoing simulation may be performed using function
keys. The only situation that would seem to favour the use of a light-pen
is when neighbourhoods are encountered that have not been specified in the
transition function definition . Such scenarios occur when one is still
developing the required transition function and is not depending upon the

23.7

23.8

default character (e.g. '?') for any of the transitions. When a iteration
encounters a strange neighbourhood the '?' appears; at this point it would
be useful to interrogate the array at such locations in order to determine
the neighbourhood from the previous iteration that produced it o However,
this can still be done using the current CELL system by using the Display
Previous function key.

There is a 4 x 4 function key grid available, the first 2 columns
of which are for simulation iteration counts of 1, 5, 10, 15, 20, 25, 30,
and m , The upper rightmost dial can be used as an interrupt to any of the
lengthy simulations (by turning it CW from the extreme CCW position).
Other keys act as switches for altering the inter-display mode (1, 3), and
wraparound in the horizontal and vertical directions, (2, 3; 2, 4). One
key (1, 4) will cause the current state of the array to be stored in a
buffer library, while others cause a new display of the array from the pre
vious iteration (3, 3), the array last sent to the buffer (3, 4), and the
initial array (4, 3). Finally, the remaining key returns control of the
simulation to the system terminal.

Model Manipulation

Facilities in the command language are provided for the temporary
or permanent saving of array states, transition functions, and entire
models, and their subsequent recovery. The command BUFFER, optionally
followed by a title «15) in single quotes, causes the current array to
be stored in the buffer library along with its title and iteration count.

A LIST command is available that allows various output to be copied
to user-owned system files; it may take the following operands:

BUFLIB - a list of the titles of the arrays currently in the
buffer.

BUFFER n - the nth array from the buffer library.

CURRENT - current array state.

FUNCTIONS - current transition functions.

INITIAL - initial array state.

PREVIOUS - previous array state.

The user file is specified by appending ON 'filename-or-device' to the
command; the default is the system terminal. Arrays may be brought back
into the simulation by a DATA FROM 'filename-or-device' command.

Entire models including all of the display and array parameters
may be stored permanently by using the SAVE command. Available operands
are CURRENT, BUFFER n, INITIAL (or blank), and PREVIOUS followed by "IN
'file-or-device'." Once a model has been saved in this manner, a simula
tion of it may be re-started by a SIMULATE 'file-name' command.

SYSTEM COMMUNICATION

Provision has been made for incorporating the operating system
into a simulation run. An EDIT command, for instance, will make the MTS
file editor available for altering tabular transition functions. Control
can be passed entirely to the operating system by the MTS command, and as
long as no other programs are run, control may be returned to CELL by a
RES command. An ECHO (ON)/OFF switch controls the echoing of commands
when read in from a file o STOP terminates a CELL run, returning control
to MTS.

Cellular Simulation Experience

The CELL system has been tested by using many of the cellular models
that are available from the literature. One example that has been part i
cularily useful for demonstration and testing purposes are the Fredkin
Winogradll self-replicating spaces o If the states of the system are mapped
into the integers 0, 1, 2, .•• p-l (p is prime) then applying a transition
rule that takes the sum of the neighbour states modulo p to some initial
configuration produces copies of this configuration in the direction of the
neighbourhoods some p iterations later. The transition rule for this space
is illustrated by figure 2.

Originally, interest in this area was generated by von Neuman's
exploration of selt-reproducing automata3 , and Ulam's investigations of
patterns of growth ,12. A recent version of a self-reproducing automaton
discovered by Banks13 has been run on the CELL system along with several
of Ulam's spaces. Of course, Conway's game of "life" has been done.

Another classic example of distributed computation is the Firing
Squad Synchronization problemS A solution to this has been successfully
implemented in CELL. Malzakl has seen this problem as a pattern recog
nition problem for one-dimensional arrays. He has suggested how complexity
measures for patterns, pattern distinguishability, and "local" and "global"
properties may be embedded in cellular arrays and arbitrary cellular spaces.

The author's own interest in this area of modelling is in the pro
blem of aggregation and its relationship to the validation of simulations.
Closely allied to this is the viability of cellular spaces as an alterna
tive world view, when seen as levels in a heterarchy that is open-ended
both at the micro and macro levels. 16 The viability of cellular space
models is also being examined in the physics of fields and particles, and
highway traffic flow. 17 CELL appears to be a reasonable system with which
to explore these possibilities.

23.9

23.10

Conclusions

The CELL system has demonstrated that a cellular array simulator
with reasonable graphic interaction, broad model definition, and array
saving capabilities can be implemented within a simple command language
(implemented in IBM System 360 Assembler Language). The only graphic
features that might improve its performance would be interactive windowing
and light-pen interrogation of cell neighbourhoods. A general purpose lan
guage and system such as Brender's Cellular Space Language (CSL)IO need
not be attempted.

It appears necessary that such a system be made available in order
that people become aware of the modelling potential of cellular arrays,
by observing concrete examples as they evolve. Also, it is clear that
highly interactive systems are required in order to fully explore and
acquire intuition for the complex behaviour that result from these models.
Particularly promising is the prospect of developing concepts to deal with
complex biological systems, parallel computation, distributed intelligence,
and systems exhibiting self-repair.

Most important however, is the making cellular arrays more readily
accessible as an alternative world-view for modelling. With some notable
exceptions, such as field theories and relaxation methods, practically all
of our mathematical and logical models, and especially those implicit in
our natural languages force sequential and linear causality, and fragmented
universes into our view of the world. In an age where the complexity of
artificial, social, and natural systems beseige us from all sides, the
holistic and all-at-once parallel characteristics of cellular models offer
fresh hope.

Acknowledgments

The author wishes to express his appreciation to the National Research
Council of Canada for its financial support and to John Lau who implemented
the CELL program.

Adage AGT-10
8k computer

Function
Keys

C

• •
o 0

Figure 1.

User
Files

The CELL system; Implemented Physical
Configuration

SUBROUTINE S(IR,IC,IST,*)

C ****
C

WINOGRAD, MODULO-5 SELF-REPLICATING SPACE

1ST = 1ST-240
MODSUM = °
DO 1 J=1,4
GO TO (2,3,4,5),J

2 IS = ICELL(O,IP)
GO TO 1

3 IS ICELL(O,-IP)
4 IS = ICELL(IP,O); GO TO 1
5 IS = ICELL(-IP,O); GO TO 1
1 MODSUM = MODSUM+(IS-240)

IS = MOD(MODSUM,5)
1ST = IS+240
RETURN
END

Figure 2. Example of a Subprogram Transition Function

23.11

tI

vi

23.12

References

1. Gardner, Martin, Mathematical Games, in Scientific American,
October 1970.

2. Gardner, Martin, Mathematical Games, in Scientific American,
February 1971.

3. Burks, W., Von Neumann's Self-Reproducing Automata, in Essays
on Cellular Automata, University of Illinois Press, editor
A.W. Burks.

4. Ulam S.M., On Some Mathematical Problems Connected with Patterns
of Growth of Figures, in Essays on Cellular Automata,
University of Illinois Press,

5. Didday, R.L., The Simulation and Modelling of Distributed
Information Processing in the Frog Visual System, Technical
Report 6112-1, Information Systems Laboratory, Stanford
University, August 1970.

6. Flannigan, L.K., A cellular Model of Electrical Conduction in
the Mammalian Atrioventicular Node, Ph.D. Thesis, University
of Michigan, 1965.

7. Minsky, M. and Papert, S., Perceptrons, the M.I.T. Press, 1969.

8. Avizienis, A., Theory and Design of Fault-Tolerant (Ultra
Reliable) Digital Computers: Protective Redundancy, Diagnosis,
Self-Repair Techniques, course notes UCLA short course, March
1972 •

9. Codd, E.F., Cellular Automata, Academic Press, 1968.

10. Brender, R.F., A Programming System for the Simulation of Cellular
Spaces, Technical Report, Computer and Communications Sciences
Dept., University of Michigan, January 1970.

11. Winograd, Terry, A Simple Algorithm for Self-Replication, M.I.T.
Project MAC Artificial Intelligence Memo no. 197, May 1970.

12. Ulam, S.W. and Schrandt, R.G., On Recursively Defined Geometrical
Objects and Patterns of Growth, in Essays on Cellular
Automata, University of Illinois Press.

13. Banks, E.R., Information Processing and Transmission in Cellular
Automata, M.I.T. Project MAC Report TR-8l, January 1971.

14. Seeley, D.A.R. and deKleer, J., CELL, An Interactive Cellular
Array System, Proceedings of the Canadian Computer Conference,
Session 72. JP

15. Melzak, Z.A., Companion to Concrete Mathematics, Wiley 1973.

16. Seeley, D.A.R., Epistemics, Holons, and Synchronicity, Progress
in Cybernetics and Systems Theory, Gordon & Breach, 1973.

17. Zeig1er, B.P., editor, Cellular Space Models for Particle Physics,
Biological Development, and Highway Traffic Flow: Some
Initial Explorations. Technical Report, August 1972, Dept.
of Computer and Communication Sciences, University of
Michigan.

23.13

