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Introduction 

Much interest was generated by the popular description of John 
Conway 's game of "life" ol This game incorporates an infinite array or 
gr id of cells, within which simple objects are "born", "survive", and 
"die". The development of populations of these objects is controlled by 
simp l e rules at discrete time steps, rules that depend upon the number of 
ne ighbouring cells that are "alive". The great interest centered around 
the complex and unpredictable behaviour that certain innocuous initial 
configuration of "alive" objects displayed. In fact, interest was such 
tha t a second account appeared2 , one that popularized the related abstract 
fi eld of cellular automata theory. In so doing, it made concrete the 
potential of this theory as a framework for many fundamental areas of 
knowledge. 

Cellular automata models were f irst proposed by von Neumann3 in 
order t o demonstrate the possibility of constructing self-reproducing 
machines . Ulam4 persued very simple systems much like "life" in order 
t o i nves tigate patterns of growth in two and three dimensional arrays. 
Dis tributed computation has been investigated one-dimensionally with the 
"f i rin g- s quad synchronization" problem, and multi-dimensionally in models 
of neural behaviour such as the frog visual systemS and mammalian hearts6 . 
There has also been much interest in retina-like cellular arrays t hat 
woul d pe rform pattern recognition functions for robot devices 7 • Al s o sel f 
repairing proserties of systems of like computers is an intense area of 
investi~ation. The biological-like properties of "life" itself a r e being 
studied in order to obtain models of cancerous growth, antibody action, 
and t he evolution of large molecules, and life is only a simple model o 

The author believes, in fact, that cellular models offer an exciting 
a lternate world-view than those provided by essentially atomis tic models. 
The latter are at the root of most of our science and mathematics and have 
warped our perception of the world along atomistic lines. 

The cellular approach to modelling can be used in broad areas of 
information processing. What has held back its use is the following: 
(a) the behaviour of these models can rarely be expressed in any closed 
analytic form, (b) there are no formal descriptions of this behaviour (that 
can be used in general situations), (c) moderately large arrays must be 
used in order to investigate complex behaviour, (d) computing global systems 
states at each time step is an arduous task by hand, and very cumbersome if 
hard copy computer printout is used. Because our intuition is so weak in 
conceptualizing the parallel behaviour of these models, it is clear that 
one must substitute analysis by much exploratory empirical investigation. 
An important example of this point is the way in which Codd9 found his 
eight-state five-neighbour self-reproducing automata. He made incremental 
changes to the behaviour of his cells in a trial and error approach until 
the self-replication behaviour was observed. It is clear then, that an 
interactive system that would allow easy model modification and display of 
model behaviour is required. In this manner, simulation of specific models 



are the only means whereby the concepts and principles that will deal 
with the complex behaviour exhibited by cellular array models, may be 
discovered. 

A graphics facility and general purpose language for the inter
active simulation of cellular arrays has been designed and implemented by 
BrenderlO on an IBM l800/PDP-7 graphic facility; it has been extensively 
used at the University of Michigan. However, it was not portable to D.B.C.'s 
System 360/67 - Adage AGT-lO system. Therefore, an exploratory system 
called CELL was designed and implemented along somewhat different lines, 
with a view toward the construction of a more general system. This system 
also was implemented such that it executed the model simulation within the 
small core of the Adage computer. This pilot version of CELL14 has now 
been transformed into a suitable research tool with much more flexibility 
in cellular model definition and exploration. What follows is a description 
of the new CELL command language, sample protocols, and comments upon its 
use. 

The CELL SYstem 

Physical Configuration 

CELL models are displayed upon the advanced graphics terminal of 
an Adage AGT-lO computer (8K 30 bit words, vector-oriented) in conjunction 
with an adjacent IBM 3270 CRT terminal for communication with the operating 
system (see figure 1). The simulation of a cellular model is controlled 
by the AGT's function keys (an available light pen has not been found par
ticularly useful for this type of modelling). Cellular model definition is 
carried out on the 3270 or read in from user files. Also current models 
and spatial configuration may be saved using this same device. 

However, a user need not always use the Adage graphics, he may 
initially construct and debug a cellular model by carrying out the simula
tion entirely upon regular system terminals at a considerable saving in 
computer costs, by using a TEST mode of the program. 

Model Definition 

In order to construct a cellular model the array must be described, 
the connectivity or cell neighbourhoods indicated, the initial states of 
each of the cells specified, and the locally-applied but universal trans
ition rules must be detailed. In addition, various alternative display 
configurations may be chosen, certain simulation modes selected, and a 
library of cellular displays saved. Control and interactive commands carry 
out these specifications. 

10 Cellular array description. 
2. The neighbourhood of a cell. 
3. Initial configuration of the array. 
4. Local state transition function. 
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A description of the array includes the type of regular structure 
it uses; that is, whether the cells are arranged in rectangular, hexagonal, 
triagonal, etc., mosaics. Also, its size must be specified. CELL uses 
only a rectangular grid of cells, although other structures may be embedded 
in it. The limiting size in CELL is a 600 x 600 grid. 

The neighbourhood of a cell is that group of cells that normally 
hold a fixed geometric relationship to it within the grid. The current 
states of its neighbourhood determine what the next state of a cell will 
be after the next time step. Probably, the most common neighbourhood is 
that of the 4 adjacent cells along the major axes of the grid. CELL 
allows any combination of 8 neighbouring cells (includes diagonals) for 
tabular functions, while the subprogram transition function can use arbi
trary and dynamic neighbourhoods. 

The initial configuration of the array is simply a display of the 
initia l states of each cell in the array. For graphical display convenience, 
CELL provides an optional mapping function from those symbols used to des
cri be cell states to those symbols (including special characters) that are 
a ctually displayed on the CRT screet. There are also a set of commands that 
allow the user to describe a configuration without having to specify the 
s t a te of every cell in the array. 

The transition function describes the states that each cell enters 
based upon its own current state and the previous state of its neighbourhood. 
In CELL this function can be described by a table of neighbourhoods (for 
convenience we shall call these latter entries, transition functions with
out ambiguity), or by a user-supplied Fortran subroutine (object module). 
Th i s function is applied at each time step to each cell of the array in 
turn, building a new configuration of states on an alternate array. Once 
this pass has been accomplished, this new configuration can be displayed 
giving the effect of a parallel global transformation of the array (note 
that still-to-be-used information about the previous array must not be 
destroyed in the process). For a nine-neighbourhood several-state model, 
the number of distinct neighbourhood configurations possible grows very 
large; hence CELL incorporates special definition features in order to 
reduce the number of configurations that must be specified by table func
tions o 

CELL Commands 

Model Definition 

Often a simulation will be desired of a model that has been pre
viously defined. The CELL system is initialized with such a model by using 
the command: 

SIMULATE 'model' 
where model is the name of a file where a previously 
defined model was saved 



The gross characterization of the cellular space that is to be 
simulated requires specification of grid size ( ~ 600), the boundary chara
cter, and whether wraparound is required (for arrays on surfaces). The 
following commands carry out this function: 

SIZE nnn 
BOUNDARY 
WRAP 
XWRAP 
YWRAP 

'c' 
ON/OFF} 
ON/OFF 
ON/OFF 

default to OFF 

An initial configuration is required for the running of the model. 
This is done by filling the space with a background or quiescent state, and 
then constructing a figure either by desc ribing a string of states along a 
row or column, or by specifying a contiguous block of states. Note that the 
numbering of the array cells has the left uppermost cell at location x=l, y=l. 

FILL 'c' 
ROWDATA 
COLDATA 
UPDATE 
string 
string 

$ END 

x y 'string' 
x y 'string' 
x y 

the top left cell of this 
block is at location x y. 

The transition function that is to be applied locally to every cell 
in the array can be one of several kinds specified by a "TYPE name" command 
where name is one of the following. 

RANDOM 

DIRECTED 

ORDERED 

FORTRAN 

the order, and orientation of the states in the neighbourhood 
are unimportant. 

order and orientation are significant. 

order of states is significant but not orientation. 

no table of functions will be used, instead the object code 
of a special FORTRAN subprogram is provided (described in a 
later example). 

The above options for table-driven functions can make possible quite 
compact descriptions when a default character and a universal character is 
specified. Below is an example that describes in table form the rules for 
"life", and illustrates the format of these commands: 

TYPE RANDOM 
BOUNDARY '0' 
DEFAULT '0' 
NEIGHBOUR AROUND 
FUNCTION 
'1' 0 0 0 0 0 0 1 1 '1' 
'u' 0 0 0 0 0 1 1 1 '1' 
$END 
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Inside the first pair of quotes is the current state of the cell 
under consideration, and inside the las t is the new state. In between are 
the neighbourhood states. If 1 = "alive" and 0 = "quiet", then the 1st 
transition indicates that an alive state will remain alive if it has exactly 
2 'live' neighbours. The 2nd transition indicates that a cell will always 
be alive if it formerly had exactly three neighbours. All other neighbour
hood state configurations lead to the quiet state, since it is the default 
state. These are exactly the transition rules of Conway's game. 

If you number the 8 neighbouring cells of a cell in a rectangular 
grid, starting from the upper left diagonal one, then the following neigh
bourhood specifications may be used: 

NEIGHBOUR 1 2 3 

NEIGHBOUR 1 3 5 7 
etc. 

NEIGHBOUR SIDES (= 2 4 6 8) 
NEIGHBOUR CORNERS (= 1 3 5 7) 
NEIGHBOUR AROUND (= 1 2 3 4 5 6 7 8) 

An example of a Fortran subprogram that describes the transition 
function of the cellular space is detailed in figure 2. Note that it will 
implicitly define the neighbourhood. The calling convention for this sub
program is as follows: 

Subroutine Sub (IROW, ICOL, 1ST, *) 

I ROW 

ICOL 

1ST 

integer *4 value of the row of the current cell under 
consideration. 

integer *4 value of the column of the current cell. 

integer *4, whose last byte is the "alphanumeric" state 
of the current cell upon entry. 

this should also have the new state of the current cell 
as computed by the subprogram upon return. 

in order to convert to integer form 240 should be sub
tracted from this value. 

a RETURN 1 will make the new state of the current cell 
default. 

These transition subprograms can interact with the cellular array 
by acquiring the states of other cells, and the size of the space with 
function calls, and by altering wraparound conditions: 

ICELL (JROW, JCOL, ISW) 



This function delivers the state of the cell that is JROW positions 
and JCOL positions away from the current cell. Function ICELLA performs 
similarily but with absolute co-ordiantes as arguments. ISW may be omitted 
since it is only used to alter the wrapping conditions. A subprogram call 
NSIZE(N) will deliver the current size of the array in N. 

Display Commands 

There are several commands that will alter the display on the Adage 
screen and control the simulation from the adajacent system terminal. These 
are also very useful when the TEST mode of the program is used for displays 
only on a system terminal. They include: 

TITLE 
MAP 
DISPLAY 
INTER-DISPLAY 
G0 
IN 
KEYS 

'name of model' 
'cl c2 ••• cn' dl d2 ••• dn' 
(ON)/OFF (OFF is default) 
ON/OFF (ON is default) 

The MAP command just replaces the "c" symbols that have been used 
to characterize the cell transitions to "d" symbols for display purposes, 
the quiescent state being usually mapped into a blank. DISPLAY causes the 
current space to appear on the screen, while INTER-DISPLAY OFF prevents 
the space from being displayed during a simulation command of several iter
ations. In causes n interations of the current space to be executed, while 
KEYS transfers CELL control to the Adage function keys. Both DISPLAY and 
G0 (which alters the current space) can take the following arguments: 

INITIAL the space when the user last defined a new space. 

PREVIOUS the space from the iteration before the current one. 

BUFFER n the nth space saved in the buffer library. 

Since the arrays that can be simulated can be potentially 600 x 600 
it is essential to have a windowing facility for display purposes. Hence 
a WINDOW command allows the user to indicate a window of some size (square) 
at a specific location of the upper left corner. e.g. 

WINDOW SIZE 20 AT 9 12 
or 

WINDOW AT 9 12 SIZE 20 

Display Interaction 

Interaction with an ongoing simulation may be performed using function 
keys. The only situation that would seem to favour the use of a light-pen 
is when neighbourhoods are encountered that have not been specified in the 
transition function definition . Such scenarios occur when one is still 
developing the required transition function and is not depending upon the 
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default character (e.g. '?') for any of the transitions. When a iteration 
encounters a strange neighbourhood the '?' appears; at this point it would 
be useful to interrogate the array at such locations in order to determine 
the neighbourhood from the previous iteration that produced it o However, 
this can still be done using the current CELL system by using the Display 
Previous function key. 

There is a 4 x 4 function key grid available, the first 2 columns 
of which are for simulation iteration counts of 1, 5, 10, 15, 20, 25, 30, 
and m , The upper rightmost dial can be used as an interrupt to any of the 
lengthy simulations (by turning it CW from the extreme CCW position). 
Other keys act as switches for altering the inter-display mode (1, 3), and 
wraparound in the horizontal and vertical directions, (2, 3; 2, 4). One 
key (1, 4) will cause the current state of the array to be stored in a 
buffer library, while others cause a new display of the array from the pre
vious iteration (3, 3), the array last sent to the buffer (3, 4), and the 
initial array (4, 3). Finally, the remaining key returns control of the 
simulation to the system terminal. 

Model Manipulation 

Facilities in the command language are provided for the temporary 
or permanent saving of array states, transition functions, and entire 
models, and their subsequent recovery. The command BUFFER, optionally 
followed by a title «15) in single quotes, causes the current array to 
be stored in the buffer library along with its title and iteration count. 

A LIST command is available that allows various output to be copied 
to user-owned system files; it may take the following operands: 

BUFLIB - a list of the titles of the arrays currently in the 
buffer. 

BUFFER n - the nth array from the buffer library. 

CURRENT - current array state. 

FUNCTIONS - current transition functions. 

INITIAL - initial array state. 

PREVIOUS - previous array state. 

The user file is specified by appending ON 'filename-or-device' to the 
command; the default is the system terminal. Arrays may be brought back 
into the simulation by a DATA FROM 'filename-or-device' command. 

Entire models including all of the display and array parameters 
may be stored permanently by using the SAVE command. Available operands 
are CURRENT, BUFFER n, INITIAL (or blank), and PREVIOUS followed by "IN 
'file-or-device'." Once a model has been saved in this manner, a simula
tion of it may be re-started by a SIMULATE 'file-name' command. 



SYSTEM COMMUNICATION 

Provision has been made for incorporating the operating system 
into a simulation run. An EDIT command, for instance, will make the MTS 
file editor available for altering tabular transition functions. Control 
can be passed entirely to the operating system by the MTS command, and as 
long as no other programs are run, control may be returned to CELL by a 
RES command. An ECHO (ON)/OFF switch controls the echoing of commands 
when read in from a file o STOP terminates a CELL run, returning control 
to MTS. 

Cellular Simulation Experience 

The CELL system has been tested by using many of the cellular models 
that are available from the literature. One example that has been part i
cularily useful for demonstration and testing purposes are the Fredkin
Winogradll self-replicating spaces o If the states of the system are mapped 
into the integers 0, 1, 2, .•• p-l (p is prime) then applying a transition 
rule that takes the sum of the neighbour states modulo p to some initial 
configuration produces copies of this configuration in the direction of the 
neighbourhoods some p iterations later. The transition rule for this space 
is illustrated by figure 2. 

Originally, interest in this area was generated by von Neuman's 
exploration of selt-reproducing automata3 , and Ulam's investigations of 
patterns of growth ,12. A recent version of a self-reproducing automaton 
discovered by Banks13 has been run on the CELL system along with several 
of Ulam's spaces. Of course, Conway's game of "life" has been done. 

Another classic example of distributed computation is the Firing
Squad Synchronization problemS A solution to this has been successfully 
implemented in CELL. Malzakl has seen this problem as a pattern recog
nition problem for one-dimensional arrays. He has suggested how complexity 
measures for patterns, pattern distinguishability, and "local" and "global" 
properties may be embedded in cellular arrays and arbitrary cellular spaces. 

The author's own interest in this area of modelling is in the pro
blem of aggregation and its relationship to the validation of simulations. 
Closely allied to this is the viability of cellular spaces as an alterna
tive world view, when seen as levels in a heterarchy that is open-ended 
both at the micro and macro levels. 16 The viability of cellular space 
models is also being examined in the physics of fields and particles, and 
highway traffic flow. 17 CELL appears to be a reasonable system with which 
to explore these possibilities. 
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Conclusions 

The CELL system has demonstrated that a cellular array simulator 
with reasonable graphic interaction, broad model definition, and array 
saving capabilities can be implemented within a simple command language 
(implemented in IBM System 360 Assembler Language). The only graphic 
features that might improve its performance would be interactive windowing 
and light-pen interrogation of cell neighbourhoods. A general purpose lan
guage and system such as Brender's Cellular Space Language (CSL)IO need 
not be attempted. 

It appears necessary that such a system be made available in order 
that people become aware of the modelling potential of cellular arrays, 
by observing concrete examples as they evolve. Also, it is clear that 
highly interactive systems are required in order to fully explore and 
acquire intuition for the complex behaviour that result from these models. 
Particularly promising is the prospect of developing concepts to deal with 
complex biological systems, parallel computation, distributed intelligence, 
and systems exhibiting self-repair. 

Most important however, is the making cellular arrays more readily 
accessible as an alternative world-view for modelling. With some notable 
exceptions, such as field theories and relaxation methods, practically all 
of our mathematical and logical models, and especially those implicit in 
our natural languages force sequential and linear causality, and fragmented 
universes into our view of the world. In an age where the complexity of 
artificial, social, and natural systems beseige us from all sides, the 
holistic and all-at-once parallel characteristics of cellular models offer 
fresh hope. 
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SUBROUTINE S(IR,IC,IST,*) 

C **** 
C 

WINOGRAD, MODULO-5 SELF-REPLICATING SPACE 

1ST = 1ST-240 
MODSUM = ° 
DO 1 J=1,4 
GO TO (2,3,4,5),J 

2 IS = ICELL(O,IP) 
GO TO 1 

3 IS ICELL(O,-IP) 
4 IS = ICELL(IP,O); GO TO 1 
5 IS = ICELL(-IP,O); GO TO 1 
1 MODSUM = MODSUM+(IS-240) 

IS = MOD(MODSUM,5) 
1ST = IS+240 
RETURN 
END 

Figure 2. Example of a Subprogram Transition Function 
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