
A SYSTEM FOR PROCESSING DIGITAL PICTURES 

W.A. Davis, R.N. McPherson, M.W. Smith & N. Tsang 

University of Alberta 

ABSTRACT 

This paper describes a Digital Picture Processing 
System (DIPPS) whose purpose is to quantize, store, manipulate 
and display images for picture processing operations. The 
hardware includes a TV camera, a quantizer, a PDP-9 computer 
and a storage scope. To facilitate the use of DIPPS a Picture 
Operating System is being developed for the computer. This 
will allow the hardware to be easily used by even the novice 
experimenter. The system has been used to compare various 
edge detection algorithms with some success. 

.. , 
ABREGE 

Dans cette communication on decrit un systeme pour 

3.1 

le traitement des images en forme numerique (DIPPS). Le systeme 
quantifie, stocke, manie et represente des images pour le traite
ment par ordinateur. L'equipement consiste en une camera de 
television, un convertisseur numerique, un ordinateur PDP9, et 
un oscilloscope a stockage. Un systeme d'exploitation pour images 
est en cours de realisation afin de faciliter l'utilisation de 
ce systeme (DIPPS) de traitement d'images. Ainsi, l'experimenteur 
debutant pourra utiliser facilement le systeme. On l'a deja 
employe avec quelque succes pour faire un comparaison entre 
divers algorithmes pour la detection de bords. 



3.2 

A SYSTEM FOR PROCESSING DIGITAL PICTURES 

W.A. Davis, R.N. McPherson, M.W. Smith & N. Tsang 
University of Alberta 

INTRODUCTION 

Basically DIPPS should provide a facility for experimenting 
with picture processing algorithms and techniques. In other 
words, it should be able to put pictures into a computer, do 
whatever processing is necessary and at any stage in that process 
be able to display them. This meant that DIPPS should have the 
following features: 

1) be able to quantize, store, manipulate, and display 
pictures, 

2) be quick and easy to build, 

3) be inexpensive, 

4) provide reasonable accuracy, 

5) be easy and convenient to use, 

6) be flexible and easy to change should the need arise. 

HARDWARE 

After some consideration it was decided to digitize the 
output of a standard TV camera for the quantizer reauirement, 
to use an existing PDP-9 computer to store and manipulate 
the quantized images, and to use a binary storage scope for 
display purposes. 

The camera used is a standard SONY DXC2000A TV camera, the 
output of which is sampled and converted to digital by the video 
quantizer. Because of the slow speed of the A to D converters, 
it is only possible to sample one point per line. Therefore, 
the time taken to quantize a complete picture is on the order of 
k/30 seconds, where k is the number of points to be quantized in 
each line. While this is relatively slow, the speed was not con
sidered to be important since with faster converters and a few 



changes in the quantizer control circuitry the time could be 
decreased. It is possible to manually control the size of the 
picture to be sampled by setting window switches. The vertical 
resolution is determined by the TV camera and is 525 lines, 
while the horizontal resolution is 500 points per line which 
may be changed by selecting every ith point where i = 1,2, .•. ,7 
which is also determined by a consol switch. 

The central control unit of DIPPS is a PDP-9 computer, 
which has 8K words of 18 bits each, and a cycle time of 1 
microsec. For secondary storage a 256K-words fixed head disk is 
used, having a cycle time of 16 microseconds. Tertiary storage 
is accomplished with a cassette tape recorder having a read/write 
speed 0f approximately 5 msec/8-bit character. 

Picture input requires the camera, the video quantizer, 
and the computer. The process is initiated, by pressing a 
switch located on the quantizer console. The video signals 
are sampled and digitized by the quantizer and the resulting 
data is placed in the output buffer. When the buffer is filled, 
the computer is notified by setting a flag. The computer then 
packs the data and stores it in the output buffers. The 
contents of these buffers are then copied onto the disk. The 
process continues until the whole picture, whose size is defined 
by the quantizer window switches, has been digitized. The whole 
process is asynchronously controlled by the quantizer. 

The display unit used is a Tektronix 611 Storage Scope. It 
has a l6cm x l6cm display area consisting of 1024 x 1024 points 
each of which are addressable. Although the operation of the 
scope is geared towards the storage feature, it may be operated 
in non-store mode. ' The display interface has three interesting 
features: 

1) With two consol switches the picture to be displayed 
can be reversed either left to right or top to bottom 
(or both). In other words, the origin can be placed in 
any corner. 

2) With another consol switch one of the four quadrants of 
the picture can be selected for display on the whole 
screen and this quadrant can be further enlarged by yet 
another switch which selects a subquadrant. 

3) The third feature is that whenever the beam is moved to 
display successive points, the delay time between the 
illumination of the points is a function of the distance 
that the beam has to move. 

Other than the four switches mentioned in 1) and 2) all other 
functions are under program control. Bulk picture storage is 
provided by a cassette tape unit. 

Besides the slow quantizer speed the hardware has two basic 
faults. The first is the presence of lines, both horizontal and 

3.3 



3.4 

vertical in the display which appear as a superimposed grid. 
This is due to the use of low quality D/A converters which 
produce transients at regular intervals. This will be rectified 
by the addition of high quality converters. The second fault is 
due to the fact that the horizontal resolution is not the same 
as the vertical and the fact that a video picture has a 4 to 3 
aspect ratio. During display it is assumed that any four 
adjacent points form a square which they do not. This feature 
tends to squeeze pictures together horizontally, and will be 
rectified by changing the frequency of the horizontal oscillator. 

SOFTWARE 

The software portion of DIPPS is referred to as the Picture 
Operating System (POPS). The purpose of POPS is to provide the 
user with a simple interactive means of initiating an operation, 
which may be comprised of many subroutines, and the facility to 
move from one operation to another at one level, that of POPS. 
To effect these requirements it has been necessary to construct 
a system which allows the composition, under one command word, 
of sets of routines and to effect the operations associated with 
these routines under control of Pops. POPS has done this; not 
as a totally new system to supplant the existing Keyboard 
Monitor System, but as a system program which runs under the 
existing System and usurps some of the control of that system. 
Prior to the inception of POPS, all operations performed under 
DIPPS had to be specified using the facilities of the existing 
system. The cumbersome nature of this approach, in addition to 
a number of other problems, not only led to the development of 
POPS but identified many of desired features, which have been 
included in the following set of requirements: 

1) In order to maximize memory space available for 
picture data, not all POPS routines should be 
simultaneously resident in core. Therefore POPS 
should be able to link, load and execute logical subsets 
of these routines. 

2) In the system there should be only one copy of any 
subroutine, which could be linked and loaded as required. 

3) It should be possible to specify a complete operation 
with a single command word. 

4) Parameters could be specified as a part of the command 
string. 

S) All systems routines and device handlers should be 
available to the user's programs in the usual manner. 
That is, other than identifying return destinations as 
either POPS or the Monitor, the user would have no 
changes to make in his programming and would have 
available to him all system facilities. 

6) All routines associated with POPS should be available 
to the user under the Keyboard Monitor operation alone 
(i.e. no subroutines would be specifically for POPS by 



virtue of their structure). 

7) It should be possible to define new commands, delete 
old ones, etc. with minimal difficulty. 

8) It should be easy to move between POPS and the 
Keyboard Monitor so as to have access to all the 
existing system programs without an involved 
regeneration of the keyboard system. 

9) Changes to the existing Keyboard Monitor System to 
allow the implementation of POPS should be minimal. 

10) It should be possible for successive operations to 
communicate various data. 

Implementation of POPS, to satisfy these requirements, 
implicitly required dynamic access to a linking loader (prefer
ably non-resident to preserve core). Since the existing 
linking loader could only be invoked by the Monitor, and writing 
a new loader was considered undesirable, a means was sought 
whereby the system could be designed to have the Monitor invoke 
the ex~sting linking loader, while allowing POPS to maintain 
control. The result was the implementation of POPS to operate 
as follows: 

1) For a cold start, a BOOTSTRAP first loads the Keyboard 
Monitor. 

2) The System command 'POPS' causes POPS to be loaded. 

3) POPS accepts and interprets command strings, stores 
info on disk, then reloads the Monitor, but with 
changes made dynamically so as to cause the Keyboard 
Monitor to communicate with POPS. 

4) The Monitor invokes the Linking Loader but again with 
communication directed to POPS as opposed to the 
Keyboard. 

5) POPS reloads command information, then communicates 
the string of programs to be loaded and establishes a 
new loader address below the resident portion of POPS 
as opposed to the standard address below the BOOTSTRAP. 

6) The Linking Loader now performs its function in exactly 
the same manner as if the string had been specified 
from the keyboard, except for the new loading address. 

7) Upon completion, the user program can return to the 
Monitor or to the resident portion of POPS which then 
reloads itself. 

This implementation of POPS required no changes other than 
those dynamically effected by POPS to the existing Monitor 
System, and to include "POPS '.' as a sys tern command. Further, by 
using the system facilities in this way, requirements 2,5, and 6 
were easily satisfied. The fulfillment of the other requirements 
of POPS were all realized through the command feature of POPS 

3.5 



3:f/ 

At the time of writing, POPS has been developed and 
implemented as described in the text, with capabilities to 
maintain its command file, take and store pictures, display 
pictures, perform some operations on pictures (e.g. edge 
operators), save and restore pictures on cassette, window and a 
few other operations. Due to the ease of implementing programs 
under POPS as a single command it is anticipated that not only 
will POPS have its picture processing repertoire developed, but 
also other routines associated with the 611 Scope. One of these 
already implemented is a command called *DRAW which allows the 
production of line drawings from combinations of lines, circles, 
etc. 

A number of possible improvements and extensions to the 
basic POPS systems as well as new commands have been identified 
and it is expected that most of these changes will be implemented 
in the near future. Some of these are: 

1) Allow invoking other system programs directly from 
POPS (e.g. assembler, editor, etc.) 

2) Allow specification of loader type strings instead of 
just commands so as to facilitate development of 
programs. 

3) Allow the user to specify an additional file of his 
own commands to be searched in addition to the POPS 
master file. 

4) Allow CUP to maintain these files. 

5) Develop other methods of displaying grey level 
pictures. 

6) Develop procedures for restructuring pictures from 
their current form as contiguous regions on disk to 
file type structures. 

7) Allow various other of the Keyboard Commands to be 
specified as input to POPS rather than having to 
return to the Keyboard Monitor. (e.g. assignment of 
device handlers). 

APPLICATIONS 

Currently, DIPPS is simplifying the evaluation and 
functional ; testing of several edge detecting algorithms. 
Photographic results of the scope images and their edge 
transforms are shown in Fig. 1. It is now apparent that almost 
any picture manipulation function can be implemented as a 
permanent or temporary DIPPS subroutine, and can be put to use 
quickly and accurately. Aside from the six edge detecting 
routines, there are proven programs that measure certain 
statistics of disc-stored images, and experimental programs 
whose intent is to evaluate the merit of edge transformations. 

Progressing from this basis, it will be a simple coding 



whereby the user could, after invoking the system, specify a 
command of the form 

*Command PAR=parameters 

which would then be interpreted and a corresponding set of 
routines loaded and executed. 

Most of the remaining software which has or is being 
developed for POPS takes the form of subroutines,to be combined 
as necessary, for the various commands of POPS. The Command 
Utility Program (CUP) in some sense overlaps the two areas, and 
a discussion of its function is a logical prelude to the 
discussion of other features of POPS. CUP is used to maintain a 
file of commands searched by POPS during command interpretation. 
This file is a sequential set of records consisting of command 
words with their corresponding loader strings and has the 
following performed on it by CUP: 

1) ADD a command 

2) DELETE a command 

3) CHANGE a command 

4) LIST one or all commands 

5) COpy the file to a hard copy backup 

6) RESTORE the file from a hard copy backup 

CUP itself is invoked through POPS by means of the command *CUP. 
Some other POPS programs which have been incorporated as 
commands in the system are: 

*SNAP-- essentially takes a picture from the quantizer and 
stores it on disk according to a number of 
specified and/or defaulted parameters. 

*SHOW-- displays a stored picture. 

*WINDOW- allows windowing an existing display and there
after the window can be displayed in expanded 
form (this utilizes the "communication area" to 
be discussed at the end of this section). 

*MON-- returns to the Monitor. 

The implementation of these commands is effected by defining 
through CUP each command as a combination of programs such as 
parameter interpreter, packer, unpacker, grey level generator, 
etc. These routines must all then be linked and loaded but the 
user need only specify a single command word. 

To satisfy the final requirement that successive operations 
be able to pass on information, a "communications area" was set 
up in the resident portion of POPS. The present use being made 
of this area is to retain information on the "last picture" 
(snapped or shown) and "window" data from the windowing routine. 

3 •. 70 



3.8 

task to implement the Fourier and Hadamard transforms in their 
fast version, and begin picture transformation experiments. 
Although much previous work on picture compression has been 
done with these transforms (at least as far as the Fourier is 
concerned), it will be a goal to use these algorithms in a 
pre-processing role to prepare images for pattern recognition 
purposes. In particular, the Hadamard transform would appear to 
be quite useful in this regard, since the transform matrix is 
clearly related to the number and strength of edges in the 
original image. Thus, work directed towards determination of 
edges in images should find the Hadamard quite useful. It also 
seems plausible to develop PR routines that are able to work 
with the transform matrix rather than with the original image. 

Another interesting application is "histogram equalization", 
where linear operations are performed on each pixel of a picture 
matrix, as a result of a histogramic analysis of a stored 
picture. The stored picture is then transformed to produce an 
image that 'appears' better than the original. This technique 
will be investigated and evaluated within DIPPS. 

With all this, one must keep in mind that DIPPS was 
designed primarily to move pictures. Specific picture 
processing tasks are, however, easily attached, and removed, 
from the system. 

Acknowledgement 

Financial support provided by National Research Council 
grants A7634, E3227 and C0304 is acknowledged. The assistance 
of Wayne Sherrard and Martin de Leeuw of Technical Services 
in construction of the interfaces is appreciated. 

Bibliography 

1) Digital Equipment, PDP-9 Advanced Software System Monitors, 
DEC-9A-MADO-D. 

2) DEC, PDP-9 User Handbook. 

3) DEC, PDP-9 Keyboard Monitor Guide, DEC-9A-NGBA-D. 

4) DEC, RF09/RS09 Decdisk System Vl, DEC-09-H9ZA-D. 

5) DEC, PDP-9 Utility Programs, Advanced Software Systems, 
DEC-9A-GUAB-D. 

6) Video Quantizer, Operation and Maintenance Manual, 
Technical Services, University of Alberta, May 1972. 



1.9 

a) Output on TV monitor. 
d) Face with window outline . 

• b) Digitized, output . on 611. 
e) Window area software eng1arged. 

c) Edge detected, output on 611. 
f) One quadrant hardware enlarged. 

Figure 1: Picture Examples 


