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Contour mapping is an effective way of transforming a collection of 
discrete data into a family of equipotential curves. This form of graphical 
presentation finds wide application in disciplines concerned with potential 
distributions, natural or abstract. Two methods are discussed. One requires 
data to be on a uniform rectangular pitch and is described because it is 
representative of a number of earlier techniques. The other makes direct 
use of randomly distributed data points by forming them into a mesh of tri­
angular cells. The relationship between neighbouring cells is easily des­
cribed by their node numbering sequence. This makes the process of ordering 
level points into contour strings quite convenient. 
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L'Hypsometrie est une methode servant ~ transformer un assemblage d e 
donnees discontenues en une famille ~ caracteristiques equipotentiels. Cette 
procedure graphique se trouve des usages diverses dans les disciplines 
reliees aux fonctions potentielles. Deux methodes pour construire les cartes 
hypsometriques sont presentees. La premi~re methode utilise des points 
donnees en espacement uniforme et rectangulaire et res semble de pr~s a 
certaines methodes utilis~s depuis dej~ plusieurs annees. Avec l'autre 
methode les donnees prises au hasard forment une maille de cellules tri­
angulaires. Les relations entre cellules adjacentes sont decrites par la 
sequence de numero nodal du sommet de chaque cellule. On peut ainsi tres 
facilement ordonner les points de contour. 
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illustrated in Fig . 6a for all horizontal segments and those in Fig. 6b f or 
the remaining vertical segments. When the search routine is complete the 
vector pairs (X,Y) and (XB,YB) contain all points along grid segments at l ev e l 
ZC. These points may, like P(k',l) in Fig. 4, lie between nodes of a horizontal 
segment, ma y lie on a vertical segment like P(i,j') or may be at a node Z(I , J ) = 
ZC like P(g , h). Note that e~ch of these 3 distinct configurations is defined 
by the relationship between actual, (X, Y), and base, (XB, YB), coordinates. 
These relationships are necessary to establish the criteria by which any given 
point in (X,Y) can be legally connected to any other point in (X,Y). The 
search routine is constructed so as to eliminate any ambiguity as to what 
constitutes the lower left corner of a cell. Only those points which lie on 
the L which proceeds upwards and to the right of a node, but does not include 
the 2 nodes which terminate the arms of the L, will have as their base the node 
at the intersection of the arms. 

The s e cond major block in Fig. 2 is the sort routine. A preliminary 
step in generating ordered sequences of coordinates at the current potential 
value ZC is to determine whether the disordered set (X,Y) contains branches 
which are 

1. Comprised of a single pOint, 
2. Potentially open, 2 ended curves, 
3. Potentially closed rings. 

Possible forking , a conceivable contour condition, is not entertained by this 
algorithm. Singular points are easily identified as those which cannot be 
validly joined to any othe r point. A valid or legal link exists only among 
points sharing the perimeter of a cell. A point in (X,Y) which links to only 
one other point signifies a potentially open branch. The term -potentially­
open is used to acknowledge that lorgnette-like structures such as that shown 
in Fig. 7a , along with a simple fork, may exist in some topographies. The 
algorithm, however, f orms open curves, as shown in Fig. 7b, instead because the 
possibility of a closing arc is lost as points are deleted from the disorde r ed 
set (X, Y). A potentially closed curve is characterized by a remaining set 
(X,Y) in which each member can be validly linked to 2 or more others. Although 
(X,Y) might be in a potentially closed curve state , a contour branch closing 
upon itself will not necessarily emerge. Links are formed to the clo sest 
eligible point remaining in (X,Y). Therefore an (X,Y) buffer in state 3. may 
well yield an open curve with some points left over. This remainder may in 
turn be potentially open or closed or even in a unique state 1. How any give n 
buffer in state 3. is disposed of depends on the situation of X(IQLAST), 
Y(IQLAST), the last remaining point in (X,Y). A possible result is illustrated 
in Fig. 8. A snapshot of the unsorted buffer (X,Y), the sorted buffer (U, V) , 
the vector (LS) and the counters JI and JJ may reveal a structure similar to 
that shown in Fig. 9. Points selected from (X,Y) and appended to the strings 
formed in (U,V) are deleted from (X,Y). Elements in (U,V) are counted as JI 
whilst the number of separate contour branches are counted as JJ. Each com­
pleted branch in (U,V) has its length recorded in the vector (LS). The sub­
s cript IXYS ref ers to the eligible point closest to the most recently s e l ected 
point U(JI-l),V(JI-l). The sorting process , repeated for each branch , begins 
with an attempt to discov e r a type 1. or type 2. link. If this attempt fa il s 
a type J. branch is assumed. This tentative linking, a s well as the linking 
which follows to actually form the point strings in (U,V) , relies on the 
relationship between every point in (X,Y) and its counterpart in (XB,YB) as 
shown in Fig. 4. Therefore all points which may legally connect with any 
given point are discovered by searching 6 grid segments as shown in Fig. lOa 
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Contour mapping is a means of interpolating between successive pairs 
of points of given potential value so as to construct a set of points of a 
desired , constant potential value; subdividing this set into ordered subsets 
and passing appropriate curves through these sequences; thus produc ing equ i­
potential lines or contours. The interpolation and ordering procedures are 
facilitated if the original points represent values on the nodes of inter­
section of a uniform, rectangular grid and the values are presented as a 
matrix whose elements correspond to the nodes of the grid. The methods 
proposed by Cottafava and LeMoli (1) are based on this principle . Even 
commercial contour plotting packages such as (2), which accepts arbitrarily 
distributed potential values, construct a uniform rectangular grid with noda l 
values inferred from those arbitrarily distributed. 

A particular method of drawing contours on a uniform rectangular grid 
is described in detail below, not because it differs markedly from earli e r 
methods but because 

1. These techniques and the inevitable difficulties which 
accompany them are best understood in the context of a 
specific algorithm, 

2. In view of the many scientific and engineering applica­
tions of contour plotting, the literature is conspicuously 
devoid of program listings or algorithms, 

3. The package described in (2) requires very large disc 
storage and, with an online plotter, is quoted as incurring 
run times of hours. The program described herein occupies 
less than 10000 core locations, including array storage, 
compiles in less than 3 minutes, including read-in, and 
produces annotated contour maps, typically, in 2 minutes . 
Useful contouring routines need not be huge, unwieldy and 
expensive. 

The input to this program, punched on cards, is described in the table 
of Fig. 1. Before proceeding with the search for interpolated contour values, 
ZC, from a minimum of ZMN to a maximum of ZMX in increments of ZI, an exponen­
tial scale factor, IFACT, is calculated. This is used to compute a value which 
is, instead of ZC, annotated to contour lines. In this way all labels can be 
presented in the same format; 3 numerals, 2 after the decimal point, and a 
sign. This computed value is 

Zlabel = ZC~'<lO. ,'o'<IFACT 

For example if ZMN = -15. and ZMX 753. then IFACT = -2 and the first contour 
would be labelled -0.15, the last ~7.53. 

During the first iteration all contours for the current value ZC = ZMN 
are formed. ZC is then incremented, ZC = ZC + ZI, and the next contour family 
is formed. This is repeated to ZC = ZMX. The entire process is summarized in 
Fig. 2. The 3 major blocks thereon bear elaboration. 

The first block is the search routine . This operates on the contents 
of the nodal value matrix, Z(I,J), shown in Fig. 3. For all horizontal and 
vertical grid segments, both nodes are checked to establish whethe r the value 
ZC exists at either node or along the internodal segment. If such exists, its 
coordinates are stored in (X,Y) along with the coordinates of the lower left 
corner of the rectangular cell containing it. These latter or base coordinates 
are stored in (XB,YB); see Fig. 5. The search routine performs the steps 
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or lOb or by searching 8 segments as in Fig. lOco The algorithm which 
determines whether (X,Y) is in state 1. , 2. or 3. for each separate branch 
ze and builds (U, V) , (LS), J1 and JJ is illustrated in Fig. 11. 

After all branches of a contour level ze have been inserted as point 
sequenc e s into (U,V) -i.e. when (X,Y) has been exhausted with 1QLAST decre­
mented to 0- the contour lines are drawn, starting with the last string of 
length LS(JJ). Each subset of points in (U,V) containing more than 1 point 
is searched to establish the rectangular range which embraces the maximum and 
minimum x and y coordinate in that subset. This information is required to 
fit a smooth curve through the points. One or, if the number of points warrant 
it, a sequence of parametric cubic curves are fitted through the points. For 
a detailed description of this type of curve, known as an F-curve or T-conic , 
and its properties, refer to the excellent thesis by Forrest (3), especially 
pp. 40-42, and to other work by Ferguson (4) and by Rowin (5). Each contour 
line is labelled, a t its beginning, with numerals in a 5/8xl/8 in. high rectan­
gular field whose lower left corner is coincident with the first point on the 
contour line and whose length is sloped parallel to the line between the first 
and second points. 

Before dealing with a contouring routine which forms a triangular mesh 
f rom a random distribution of data points and takes advantage of its connective 
topolo gy to combine the search and sort procedures into one step, consid er the 
alternative. This is illustrated by the following simple example. A collection 
of 13 randomly distributed points, Pi(xi'Yi)' of level zi is shown in Fig. l2a 
and a uniform r ectangular grid is required such that the levels Zg associated 
with the nodes Ng(x ,yg) convey a reasonable topographic equivalent to zi. The 
suggested proceduregbegins by choosing a rectangle whose sides are parallel to 
x,y and contain the 4 extreme points in Pi; Px+' Px - ' P +, P _; Fig. l2b. This 
rectangle is divided into n/2 cells, where n is the number of given points. If 
n = 13, n/2 is truncated to 6 or the smaller number nearest n/2 in the progres­
sion 

«(j + 1)/2)«j + 2)/2), j = 1,2,3, ... 

and the number of nodes is given by 

«j + 1)/2)«j + 2)/2) + j, 

a 12 node grid for n = 13. Node levels may be reasonably defined by the nodal 
level of the plane containing 3 points closest to that node. To be consistent 
with the rule that points on a grid segment can only influence contours within 
cells which share that perimeter, no node shall be defined if less than 3 points 
occupy the cells, including perimetric grid segments, which share that node. 
3 points are required to establish the plane which defines the nodal level . 
The 13 point example cluster will have its SE and SW corner nodes thus elimi­
nated as shown in Fig. l2d. Surviving grid points, Pg, will have levels given 
by 

The relation between Zg and the 3 points PI, P2, P3 which define it is illus­
trated in Fig. l2e. 

Two objections can be raised against preinterpolation of a randomly 
distributed collection of potential values onto a uniform grid. 



1. As a linear or any other arbitrary interpolation tech­
nique is an approximation of the actual topogr aphy, 
applying it twice, once to establish the new nodes , 
again to establish the level points along the rectan­
gular cell segments, may result in an unacceptable 
loss in fidelity between map and original data set. 

2. The freedom to present a random distribution of data 
points represents an efficient way to vary the fineness 
of the mesh. A closely space d network is requred in 
regions of highly convoluted contours. Where there is 
relatively constant gradien t, a coarser net with wider 
spacing between points is sufficient. The uniform 
grid transformation described above cannot exploit the 
inform ation in regions of high point density. 

A better approach consists of a scheme whereby 
1. A mesh composed of triangular cells, whose nodes include 

only and all of the given data points, is formed and 
2. The cells are systematically searched so as to assemble 

all nodal and segmentally interpolated level points 
into individual contour branch sequences. 
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These two operations are equivalent to the search and sort routines pert a in­
ing to the uniform grid contouring method described before. However it is 
herein that the two methods differ most significantly. The only other dif­
ference that need be pointed out is that the uniform grid method sorted out 
all contour branches into (U,V) and kept track of the length of each point 
string in (LS) a nd o f the number of branches in JJ. The triangular cell me­
thod sorts and plots one branch at a time. This is because a triangul ar mesh 
invariably contains many more cells, hence segments, than does a uniform 
rectangular grid composed of the same number of nodes, and storage is there­
fore more at a premium. Generally it is not possible to say how many more 
nodes or segments but if it is assumed that a given m x n uniform grid, Fig. 
l3a, is represented as an equivalent triangular mesh, Fig. l3b, the respec­
tive number of segments and cells in each grid can be seen to be 

2mn - (m + n) segments and 

mn - (m + 'n) + 1 cells for the rectangular grid and 

3mn - 2(m + n) + 1 segments and not 

2(mn - (m + n) + 1) cells but 

2(mn + (m + n) - 1) cells for the triangular mesh. 

This latter, apparently incorrect, number of triangular cells includes as 
open cells the segments which form the perimeter of the mesh. The reason for 
this becomes clear upon examining how a cell is defined and how this defini­
tion is used to construct the mesh. A cell is named by any clockwise seqllen­
cc -~ consistent counterclockwise sequence would serve ~s well- of indices 
which identify the points at the cell vertices. The randomly di s tribllt e d 
points are given in the triple vector (X,Y,Z). The cells are na med i n the 
triple vector (ITl,IT2,IT3), (IT) for short. Fig. 14 shows a 10 point mesh 
defined in this way. Note that any forward pairing, ITli - IT2i, IT2i - IT3i 
or IT3i - ITli, is unique. Also, every reverse pair, IT2i - ITli' IT3 i - IT2i 
or ITli - IT3i, appears only once as a forward pair, ITlj - IT2j, IT2j - IT3 j 
or IT3j - ITlj' elsewhere in the table. With reference to Fig. 14 the net­
work of triangles is constructed by the following steps:-
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1. Set all triplets in (IT) to 0. 
2. Pick any point, say -1-, and arbitrarily call it ITl(l). 
3. Pick the point closest to -1-, imagine it is -2-, and 

enter it as IT2(1). If there are ties, arbitrarily 
select the first equally qualified candidate in hand. 

4. Select a third point such that the vector cross-product 

f(X(2) - X(l»~) RX(3) - X(l»~J > ° liY(2) - Y(l»j x L(Y(3) - Y(l»j 

and (X(3),Y(3» is the eligible point closest to 

(X(l) + X(2) Y (1) + Y (2)\ \: 2 ' 2-; 
5. If no such point is available leave IT3 blank. 
6. Scan (IT) over the range of discovered triplets for 

the first forward pair sequence which does not yet 
appear as a reverse pair and enter it as the next 
ITl, IT2. 

7. Continue the sequence of steps 4.-5.-6. until no more 
triplets, open or closed, can be found. 

The cascade of arrows on the table in Fig. 14 shows the order in which tri­
plets were generated. Note that only the first full triplet can have 3 off­
spring, one built upon each segment. No progeny proceed from open triplets 
except for a sole descendant when an IT3(1) cannot be found. A maximum of 
2 but not less than 1 triplets issue from all other triindicial sequences. 

Points at the current level, ZC, are found and assembled into strings 
by using (X,Y,Z) and (ITl,IT2,IT3). The segments and nodes of every cell are 
searched, cell by cell in (IT), until a cell which contains at least one 
point at level ZC is found. A closed cell might have 0, 1, 2 or 3 such points. 
There are 27 possible combinations of nodal values of the 3 states: Z ~ ZC, 
Z > ze and Z = ZC. An open cell might have 0, 1 or 2 such points in 9 possible 
configurations. These are enumerated in Fig. 15 with the nodal states repre­
sented by +, - and 0 respectively. Whether the search of a given cell is 
successful or not, that cell is interchanged with the lowest members in the 
set (IT) still within the search range. Then the length of the upper region 
in (IT) is decremented. When the first cell containing any points at level 
ZC is found, the coordinates of 1 or 2 such points are placed as the first 
entries in (U,V). The node indices of the segments upon which level points 
were found are recorded in a 4 element table, (IR). If a contour level 
occurred at a node, only one number is placed in one or the other element 
pair of (IR). Links to points in (U,V) are usually made by examining the cell 
containing the node pair IR(1)-IR(2) in reverse order and then overwriting 
the numbers in IR(l) and IR(2) with the node sequence of the segment in the 
new cell which contains a linking point. If no link is found, IR(l) and IR(2) 
are zeroed out. The linking point corresponding to the segment indicated by 
the new IR(l) and IR(2) is added to the end of the list in (U,V). When no 
more points are found using IR(l) and IR(2), the other end of the contour 
line, terminating on segment IR(3)-IR(4) or on node IR(4) if IR(3) = 0, is 
built in a similar manner until it too terminates. Additions to (U,V) found 
using IR(3) and IR(4) are added to the beginning of the list after pushing 
all previous elements in (U,V) down 1 step. J1 contains the current length 
of (U,V). When (IR) is blanked out and JI ~ 0, the contour branch in (U,V) 
is plotted. As long as level points are discovered only upon segments between 



nodes there is never an alternative link; if it exists it is unique. Such 
cells are entered on one segment and, if possible, left via another. Alte r­
nate links occur only when a cell is entered on a node at level ZC. When 
a link to a node is made, all remaining cells containing that node are 
searched and the closest-level-point-in-hand criterion is used to sel e ct the 
path and to break ties. All these searched cells which radiate from the 
nodal hub at level ZC are discarded. Any nonselected points in thes e 
discarded cells have been or will be picked up in other branches or eve n 
further along in the current branch. No eligible point at level ZC can ever 
be overlooked. It sooner or later appears in an appropriate contour string 
in (U,V). Another attractive feature of the triangular mesh structure is 
that strings which define closed contours are built easily and naturally. 
There is no need to establish whether the remaining mesh is potentially 
closed and to store the coordinates of the starting point. The cell which 
shares the segment, containing the starting point, with the first cell will 
eventually be entered . Then the starting point is rediscovered and appended 
to (U,V) thus closing the ring. This is shown in the simple example of 
Fig. 16. Say the string is b e gun with cell 1-3-2 and points B and A are 
placed in (U,V) first. (I,R) receives the pairs 1-3 and 3-2. Building onto 
1-3 with the reverse order 3-1 reveals the cell 3-1-4 which adds C after A 
in (U,V). 1-3-2 is eliminated by placing it at the bottom of (IT). The 
sequence 4-3 replaces 1-3 in IR(l) and IR(2). Continuing in this way, cells 
3-4-5, 3-5-6 then 3-6-2 are examined and IR(l) and IR(2) successively become 
5-3, 6-3 then 2-3, adding D, E and finally B again to (U,V). This end of the 
contour sequence in (U,V) now terminates and IR(l) and IR(2) are blanked out. 
Turning to IR(3) and IR(4) which still contain 3-2, the attempt to build onto 
the top of the list in (U,V) above B fails immediately since the cell con­
taining 2-3 has already surrendered B to the other end of the list and has 
submerged beneath the limit of the search range at the end of (IT). Once 
(IR) has been blanked out, the string in (U,V), if it exists, is plotted 
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using the same routine as that used for the uniform grid. The triplets 
remaining in (IT) are all external segments. Each will produce a separate 
null set in (U,V) and each, in turn, will sink beneath the rising search rang e 
level. In the end (IT) will be in a different order than when the building 
process began. However this is immaterial with respect to the formation of 
subsequent contours, i.e. those at higher levels. A typical contour search of 
a somewhat larger, 10 node mesh is summarized in Fig. 17. 
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Y ( 1) iJ ( 1) 
Y(2) U ( 2) 

Y(IQLAST) 

t 

J 
t 

FIG. lOa 

o - 6 points XL 
could exist 

o - 6 po ints XL 
could ex i s t 

FIG. lOb 

LS lJ 

LS (1) = 2 
JJ 

2 LS ( 2) = 5 
3 LS ( 3) = 7 
4 LS ( 4) = 6 ---

'r~~' 
Y

B
2 1 

somewhere on perimeter { XB2 :!i XL :!i XB2 + XJ 
1-2-3-4-5-6 YB2 - YI :!i YL :!i YB2 + YI 

XB3--------' 

XJ~ 

o - 8 points XL 
c ould ex is t 

FIG. 10c 

PL(XL , YL) somewhere on perimeter~XB3 - XJ :!i XL~ XB3 + XJ 
1-2-3-4-5-6-7-8 \'YB 3 - YI :!i YL ~ YB3 + YI 

35 .13 

20 
= t, 
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POIt\'l' SORT 

Initiil 11 ize : -
nu mbe r of unsorted points remaining 
state 3 . fl ilg 
number of completed s trings 
numb e r of so rt ed po int s 

lQLAST = LC\")UNT - 1 
lCL = 0 
JJ 0 
Jl = 0 

es 

Gener ate arbitr arily l ar ge 
coordina te link displacement 
vector comparator 

XS0 M'~XJ 

YS\,,) = N*YI 

Stat e search ind e x 

IQ = 1 

Number of po int s, XL' found 

FIG. 11-1 

LINK = 0 
(

LINK \~INDOH TYPE 
DISCRUlI r-:ATOR: - 1. H. T . D. '----IS------, 

I l~IQ), Y(IQ) of'type lOc 1 

1 cb 'i~'d' ~ 11 

I JQ = 1 JQ = 1 JQ = 1 

J 
\. ~ I 

@ V {I L JQ ~ I Q] AST B How many points in (X( JQ),Y(JQ» Q.L Q ~ I A J ,.. I 
r , " 

XB(IQ) -XJ~X(JQ) ~XB (iQ)+XJ XfI (IQ) ~X(JQ) ~ Xl\ (TQ)+XJ I XR (IQ) -XJ~X(JQ) ~XI\ (IQ) + X 
YJ3(lQ) "'Y(JQ) ""YB (IQ)+Yl I YII(JQ) -Yl"'Y(JQ) "'YIl(TQ) +YI YII(IQ) - YI"'Y(JQ) "'YIl(IQ)+YI 

L _____ _ __ J 
no 

link-point s 
fo und 

D 

• 



• 

yes 

Set closed l oop flag 
and save entry point 
as poten tial closing 
point 

ICL = 1 
X~P = X(IQ) 
Y\1p = Y(IQ) 

Keep track of current 
point in string 

XCP = X(IQ) 
YCP = Y(IQ) 
XBCP = XR(IQ) 
YBCf' = YB (IQ) 

POINT TRANSFER ROUTINE:- P.T.R . 

JI = J1 + 1 
JJ = JJ + 1 
LS(JJ) = 1 or LS(JJ) + 1 

..... _-" U(JI) = X(IQ) 
V(JI) = Y(IQ) 
X(IQ) = X(JQLAST) 
Y(IQ) = Y(IQLAST) 
XB(IQ) = XB(IQLAST ) 
YB (IQ) = YR(IQLAST) 
lQLASr = IQLAST - 1 

FIG. 11-2 

E}-------I 
.---~-----------Nost cl i g ible lillk poi nt 
index and closest link 
displacement 

3 :5. 1 5 



Closl~~ l lillk point 
search i nd ex 

I XY == 0 

L. H.T.D . (lXY) __ 

? ,/ 
yes 

,XS == X( lXY) 
YS == Y(IXY ) 
lXYS :.: lXY 

P .T.~ 
XCP == X(lXYS) 
YCP = Y(lXYS) 
XllCP = XB(lXY S) 
Y13CP = YB (lXYS ) 

L.W.T.D., ® 
( X0P, yytlP,XCP J YCp)--- A 

?/ 
yes 

J1 == Jl + 1 
U(Jl) = xytlp 
V(Jl) = yytlp 
I.S(JJ) = LS(JJ) + 1 
l CL = 0 

FIG. 11-3 



• 

Line 1 

Line 2 

+-

-I-

Li ne 
Line 2 

Y 0 

0 0 0 0 0 

Pi (xi,Yi) 
0 0 0 

0 

0 0 
0 

x 

FI G. 12 a 

P y+ ,------e, 
• 0 00' i ~ P~ 
• 0 0 I 
I 0 oj , . 
~ __ e---?--1 

Py -

FIG. I2b 

FIG. I2c 

1 

0 
0 0 

0 
0 :0 I I ~ , , , 

FIG. I2d 

'0 I .-----( ... , - --~-Ii 

FI G. 12e 

y=a1 x+bl' a"x2.:.YL and b1=YI-(Z~~1=Y1-alxl 
1 x2- xI x2 - xI 

yca2x+b2, a2=Yg.:,YL and b2=Y)- a2 x3 Xg-X) 

1lI'''n 
l-+-t···H . : . . . 

W
· . : tj: . ... . 

... 
FIG. 13a 

~"gJ, . . . ... t/bt .. : ... : .. ·tzJ .. ' 
.. . 

FIG. 13b 

Intersection, I and 2 (a2- a 1) xi +(b2- bI ) =0, xi c~dL and Y i =3 1 (~L22)+b1 
a2 - a1 (aral) 

2 2 
and Zg=Z)+( zi-Z) (~~)l:±iY~3) 

(Xi~X3)2+(Y2-Y1)2 

3 5 .1 '/ 
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1 

ITl IT2 I T] 

~l 
2 3 
1 
2 

f~ 
1 ] 

~ 
2 
8 

7 ] 

4 
2 
9 

:~ 8 
4 6 

10 9 

~6 
10 

l _ 5 6 
FIG. 14 . 4 5 

7 10 
5 7 

/\ /:\ I\. /~ 
+-0-- +-+ 1-0 +-0-- l~ +_0 

/~ f\ 
+-+ +--0 

A f\ fto f\ f\ I\. /;\ 
o-=t- 0-0 0-\ 0-+ 0-0 0-- 0-\ 

L~\ f\ 
- 0 0--

/\ 
--0 

/~ A f\ 
--0-+ ----0 -----

I:~ A A -_0-+ --0 ---

+-+ +-0 +-0-- 0_+ 
0 1 1 1 
1 1. 1 0 

0-- --0-+ --0 ---
o Indicates a point, on segment or node, <I t level le 6 ... Indicates number of points on cell bound <l ry a t level ze 

+ Indicates a node, l l e 

o Indicates a node, l = le, if app licabl e 

Indicates a node , l le 

FIG. 15 

0_0 
2 

• 
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ITl IT2 IT 3 t J1 IR( 1) IR(2) IR( 3) IR( 4) 

1 3 2 0 0 0 0 0 
-5 2 3 6 • 1 2. - 2 STEP 0 3 1 4 

4 1 
3 4 5 
5 4 3 5 6~ 6 5 - find 

interch a nge ~""'-~~~ sea rch range 

... 
IR( 4) IT1 1'£2 IT3 U V JI IR( 1) IR(2) IR( 3) 

2 6 xB YB 2 1 3 3 2 
2 3 6 xA YA 
1 2 

1 2 3 1 

~~ 
STEP 

Lf 1 
3 4 
5 Lf 

3 5 
6 5 -Jlfind 

interchange ""l '""' - 3 --~ search range 
~ " .. 
IT1 IT2 IT3 U V JI IR(l) IR(2) IR( 3) IR(4) 

2 6 xB YB 3 4 3 3 2 

5 
2 3 6 xA YA 
1 2 Xc Ye 2 

2 6 5 STEP 

4 1 ];3 Lf 

~Ji1 5 Lf 

3 5 
'3- ~~ . 4, f~nd 

interchang ;'1 2, search range .. 
ITl IT2 IT3 U V JI IR( 1) IR( 4) 

2 6 xB YB 4 5 3 3 2 
2 3 6 xA YA 5 1 2 xe Ye STEP 3 

2 6 5 xD Yn 
4 1 

~3 5 :,~ 5 Lf --- FIG. 16-1 6 , 3 4 
, 3 1 4, find 

interchange ~ 3 2, se.1rc h range 
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• 
IT1 IT2 IT ] U V JI IR( 1) J R( 2) lR( 4) 

2 6 x}\ Yn 5 6 ] 2 

5 
] 6 )(,/\ YA 

Xc Ye STEP 4 
2 l\D YD 

x E YE 

PLm:- (U,V) 

FIG. 16-2 



3 5 . 2 1 

Contour Step Rv jected Cell( s) Poi nt s Added 

11'1 IT2 IT] (lI,V) J1 1R( 1) 1R( 2) lR( 3) 1 R( 4) 

• 1 1 1 2 J A 2 3 
Bt 2 3 1 

2 1 3 4 cl 3 3 4 2 3 
3 4 3 6 D4 4 6 4 2 3 
4 4 6 5 E. 5 5 4 2 3 
5 4 5 - - 5 0 0 2 3 
6 3 2 8 F+ 6 0 0 0 8 
7 3 8 6 0 0 

6 8 10 
8 2 9 * Gt 7 2 9 
8 9 10 

8 9 2 - - 7 0 0 0 0 

I JI =. 7, PL~T A- B- C-D-E-F-G** 

2 1 2 1 - - 0 0 0 0 0 

J JI = 0, . N~ PL~T 

3 1 1 4 - - 0 0 0 0 0 

I J I = 0, N(6 PL~T 

4 1 10 9 - - 0 0 . 0 .0 0 

I .11 = 0, Nq) PL~T 

5 1 6 10 7 H 10 7 
H 2 7 6 

2 5 6 7 Jf 3 7 5 10 7 
3 5 7 - - 3 0 0 10 7 
4 7 10 - - 3 0 0 0 0 

J I = 3, PLq)T H- 1-J 

( IT) EXHAUSTED, ZC = ZC + ZI and Cq)NTl NUE 

* I nd icat es selected cell *Indicates point entered at 
**Act ua l plotting sequence is G- F-A-B- C- D-E bo t tom of list (U,V), f at top 

• 

• 

FIG. 17 

... 


