
IMPLEMENTATION OF AN INTERACTIVE GRAPHICS LANGUAGE 

Bert Pieke and Gunther Schrack 
Department of Elect!ical Engineering 

University of British Columbia 
Vancouver 8, B.C. 

ABSTRACT 

The design and implementation o f the interactive 
graphi c s language IGL is described. This language not only 
allows the definition and display of line drawings but also 

7.1 

has full facilities for manipulating, naming, identifying and 
interacting with such drawings. The language has been imple­
mented as an extension to Fortran IV using the XPL compiler 
generator system. The e xperience gained so far in the use of 
the language has already proven a number of advantages over 
present-day graphics systems. The language is readily learned 
by users with previous high-level language experience. As no 
extensive testing and documentation is necessary due to the 
readability of the program, the time required for the completion 
of a project is greatiy reduced. 

,-
RESUME 

On decrit le developpement et la realisation du 
langage interact if de representation graph i que IGL. Ce langage 
permet non seulement la definition et la repr~sentation de 
dessins a l'aide de lignes mais aussi la manipulation, la 
nomination, 11 identification et la modif i ca t ion des dessins. Ce 
langage est une extension du Fortran IV utilisant le systeme 
du generateur-compilateur XPL. L'experience que lIon a acquise 
jusqula pr~sent dans l'utilisation du langage a deja demontre 
quelques avantages sur des systemes de la representation 
graphique d'aujourd'hui. L'utilisateur qui a deja de l'experience 
dans les langages eleves peut facilement l'acquerir. La pro­
gramme ne necessitant pas d'essais etendus ou de documentation 
(du fait qu'il est tres clair), le temps a consacrer pour 
faire un travail est tres reduit. 



7.2 

Introduction 

IMPLEMENTATION OF AN INTERACTIVE GRAPHICS LANGUAGE 

Bert Pieke and Gtinther Schrack 
Department of Electrical Engineering 

University of British Columbia 
Vancouver 8, B.C. 

Over the last years, an increasing need has been felt in the Department 
of the authors for an interactive graphics facility to permit computer-aided 
design. After an initial attempt by writing a program in assembler language 
to handle drawings of electronic circuits on the graphics console of a PDP-9 
computer, it became obvious that the design of graphics systems should occur 
on a more general level and take into consideration the following specifi­
cations: 

- It should be possible to write graphics programs in a high-level 
language thus speeding up the design, the implementation, and the testing 
and to allow writing programs for a wide variety of applications. 

- The system programs themselves must be well documentable and easy 
to change, particularly in a university environment where a regular turn­
over of students using and updating an existing system occurs. 

- The convenience of existing algorithmic high-level languages should 
be available. 

Programs for interactive computer graphics have traditionally been 
expensive ventures tieing up large computers to service the display and 
requiring a great amount of systems knowledge of the applications programmer, 
partly due to the fact that the languages available for the implementation 
were originally designed for other purposes. Practical systems were written 
in assembler and experimental systems in algorithmic languages. A number 
of special purpose languages have recently appeared in the literature, but 
none seem to have found wide acceptance. 

This paper describes the design and implementation of such a language 
and the experience gained with it. 



The Language IGL 

The acronym IGL stands for Interactive Graphics Language, a computer 
language for handling line drawings. This language not only allows the 
definition and display of line drawings but also has full facilities for 
manipulating, naming, identifying and interacting with such drawings. 
Through the use of windowing techniques, parts of the drawing can be magni­
fied for closer inspection or scaled down for greater display density. 
Commands are further provided for saving and restoring drawings on secondary 
storage. 

The IGL Compiler 

Creating a complete, versatile computer language may seem to be an even 
greater task than to implement a graphics system without the help of such 
a language. This does not have to be so, however. A number of algorithmic 
languages exist that include most features needed. Such features are, e.g., 
branching, conditional and arithmetical statements and a complete I/O handling 
facility. Languages as for example Fortran and Algol that are widely known 
and used lend themselves excellently to act as host languages for special 
purpose languages. The special purpose language c.an then be wri ,tten as an 
extension of the host language and need only include those constants, op­
erators, functions and commands that are not already available. 

These ideas are incorporated in the language IGL. Thus an applications 
program written in IGL appears to be a mixture of statements for graphical 
manipulations and host-language statements. The distinction between the two 
is made on a card-by-card basis, the graphical statements having a special 
character (*) in the first column of each card. The compilation is executed 
in two stages: first a compilation from IGL into host-language, secondly 
a compilation of the host-language into machine language. 

Because of its widespread use and support, Fortran IV was chosen both 
as host language for IGL and as programming language for the semantic rou­
tines. This one-language approach provides almost complete portability 
from one computer installation to another. 

The IGL compiler was written using the XPL compiler generator system 
[5]. This is a well documented and easy to use program package written in 
the XPL dialect of PL/I. To build a compiler using the XPL system, the lan­
guage syntax in B.ackus Naur notation (BNF) and the corresponding semantics 
in XPL must be supplied. These two user components are processed as follows. 
The syntax is read in, printed, analyzed and a parser is punched out by 
the XPL program ANALYZER. ANALYZER will check that the grammar is unambiguous 
and will attempt to modify the grammar if that is not the case. The pro­
duced parser is in a format that allows it to be directly inserted into a 
compiler framework called SKELETON. SKELETON itself is written in XPL and 
has two open slots, one for accepting the parser from ANALYZER and one for 
accepting the semantics. When these two components have been added, SKELETON 
can be compiled by the XPL compiler producing for the input grammar a com­
piler as an object program. 

The semantics are written as an XPL procedure named SYNTHESIZE. This 

7.3 



7.4 

procedure is called in SKELETON each time a grammar rule is applied by the 
parser for reducing the input string. The number of the particular rule 
applied is passed along as an argument. In SYNTHESIZE the output language 
is generated. If the output :f.s in a high level language, the output state­
ments will usually consist of calls to semantic routines. If the output 
is in assembly language, the actions can be generated directly. For passing 
names from the input to the output language, SYNTHESIZE has access to the 
contents of the parsing stacks. Pointers are kept by SKELETON to show the 
current state of these stacks. 

This automation of the compiler-writing process allows changes to the 
language to be carried out easily when needed. The syntax and the corres­
ponding semantics can be updated independently of one another. Compilers 
generated by the XPL system provide good error checking facilities and have 
proven to be quite efficient. 

Syntax 

The graphical aspects of the syntax of IGL are based on the work of 
F. Nake [6]. In addition to existing types of constants and variables in 
the host language (e.g. integer, real, etc.), the new type IMAGE is intro­
duced. Image constants are either elements from the set {BLANK, DOT, LINE, 
SQUARE, TRIANGLE, CIRCLE, HALFCIRCLE} or strings of literals (keyboard charac­
ters). Image variables are defined with the aid of the image assignment 
operation (:=) by image expressions which are strings of image constants 
and/or variables joined by diadic image operators. Image constants and 
variables are initially defined on the unit square. To each image variable 
a set of attributes is attached defining coordinates, scale, and angle of 
rotation of the picture which the variable represents. These attributes 
can be redefined with the use of unary image operators, hence affine trans­
formations such as translation, scaling, rotation and mirroring can be 
applied. 

For illustration, the following image assignment statements define an 
image variable to represent the symbol "resistor". 

* HR:= LINE FROM 0,.5 TO .4,.5 + LINE FROM .4,.5 TO .425,1 
* + LINE FROM .425,1 to .5,0; 
* R:= HR + HR VSYM .5; 

The right hand sides of both statements employ the diadic image operator 
+(superposition). The first statement defines a temporary image variable 
HR by superimposing the image constant LINE three times, each time modified 
with the image operator FROM •.• TO •.. in the desired manner. The second 
statement defines the variable R as a superposition of HR and the reflection 
of HR on the vertical at x = .5, thus completing the symbol "resistor". 

The numeric operands of image operators may be not only numeric con-
s tants ·but can be numeric variables of the hos t language as well. Therefore, 
complicated pictures can be defined with image assignment statements im­
bedded in statements of the host language, e.g. in loops. For e xample, the 
following program portion: 



S = .25*SQRT(2.) 
SC = 2. *S 
ALPHA = PI/4. 

* BRIDGE:=BLANK; 
DO 100 I = 1, 4 
Xl = .5 + S * SIN (ALPHA) 
Yl = .5 - S * COS (ALPHA) 

* BRIDGE:= BRIDGE + R AT Xl, Yl SCALE SC,.l ANGLE ALPHA; 
100 ALPHA = ALPHA + PI/2. 
* DISPLAY BRIDGE; 

would display a resistor bridge: 

R 

.. -----l\jL-
RBRIDGE 

The facilities described above allow the creation and naming of items 
called image variables. For most applications, however, an additional 
facility is needed to group into logical groupings, items that do not ne­
cessarily look alike. As an example consider an electronic circuit diagram. 
At first glance it may seem to be composed of a limited set of identical 
symbols. Apart from being in different places in a circuit, two resistors, 
e.g., may seem to be duplicates of each other. A closer examination, how­
ever, shows that the leads of the first have different lengths than the 
leads of the second and that the labels differ from one another. Such de­
tails as the length of the leads and the label are properties of the pictures 
representing the individual resistors and must be taken into account. A 
second category of variables, subscrip.ted image variables, is therefore 
defined in the syntax. Subscripted variables names are names of items that 
are not affine transformations of one another, but that are logically 
members of the same set. All network elements in a circuit can thus be 
named, e.g., ELEMENT(I) regardless of whether they are resistors, capacitors 
etc. Alternatively, if this distinction is important, all resistors in a 
circuit can be named RESISTOR(I) regardless of the length of their leads 
or the letters in their label. 

7.5 



7.6 

Example: 

* RESISTOR(3): = R AT X,Y SCALE SI + LEAD FROM Xl, Yl TO X2, Y2 + LEAD 
FROM X3, Y3 TO X4, Y4 + 'R' AT XS, Y5 + VALUE(3) AT X6, Y6; 

* CIRCUIT:= CIRCUIT + RESISTOR(3); 

Interaction 

Describing the interactive process means defining the response of the 
system to each input. The response is not only dependent on the type of 
input, but also on the state of the system at the time the input occurred. 
W.H. Newman [7] has proposed to treat the system as a finite-state automaton 
where the response is determined by the state of the program as well as by 
the action. The actions are inputs to the automaton, which cause it to 
change its state; reactions are the outputs. 

The interaction is then best described in the from of a state diagram, 
which is used as a guide when writing the program. To facilitate this process, 
the syntax of IGL allows a close correspondence bett'veen the state diagram 
notation and the formulation in the program. This aspect of the IGL-system 
is based on the work of P. Boullier et al. [1]. The program is divided 
into states which correspond to the states in the diagram. For each input 
(e .g. a hit on a menu symbol on the screen) a decision is made within the 
current state of the program as to which state is to be executed next. For 
an illustration, see Figure 1. 

The division into states also provides a physical segmentation of the 
progr am which can be used for paging or overlaying at computer installations 
with insufficient core storage for the entire program. Control statements 
are defined in the language to allow variables to be displayed on the screen, 
to turn on the cursor or cross-hairs (which can be positioned by the user 
with the help of some graphical input device such as a joy-stick, tracker 
baIlor lightpen) and to detect an interrupt from the user, signalling that 
he has chosen an item on the screen. A special variable: IHIT is used 
in the program to indicate the subscript of the item last identified on 
the screen. This subscript allows the programmer to refer to items that 
are pointed at by the user when he is interacting with the program. For 
example the sequence: 

* DISPLAY 'IDENTIFY RESISTOR TO BE DELETED' AT .2,.9; 
* CURSOR ON; WAIT FOR INTERRUPT; 
* FOR HIT ON RESISTOR: CIRCUIT:=CIRCUIT-RESISTOR(IHIT) 

would prompt the user to select the resistor to be deleted and would execute 
the deletion. 

Semantics and Data Structure 

The semantic routines are the routines that execute at run-time and 
perform the actions specified by the statements written in the program. 
The control and interaction routines affect the sequence of the execution 
and the commtmication wi th the graphics terminal, whereas the assignment 
routines operate on a data structure that represents the current state of 
the pictorial information. The display is derived algorithmically from 
this structure and no separate display file is needed. The correspondance 



between the variable names used in the program and the locations in the 
data structure is kept through a hash-coded directory where all names are 
stored toge ther with pointers to the structure. (For a description of hash­
coding see [4]). The data structure is implemented as a linked list [3] 
with "brother"-pointers linking items that are connected by the (+) operator 
and "son"-pointers linking downwards through the structure to sub items and 
primitives that are used in the definition of items. No "father"-pointers 
are kept linking upwards throueh the structure, so it would not be possible 
to say e.g. in which items the primitive LINE is referenced. This means 
that the cursor identification on the screen does not follow the usual 
pattern of determining which line is closest to the location of the cursor 
and then determining to which item this line belongs. Instead, the syntax 
of the identification statement: FOR HIT ON <variab1ename > : <statement1ist> 
END; allows a scan of all items with the name <variab1ename>, which are 
linked by additional "buddy"-pointers, to determine whether any of those 
items were within a tolerance region (specified by the x and y-sca1e of the 
item) around the cursor location. 

Using I GL 

The flexibility and ease of use make the language IGL ideal for experi­
menting with new graphics techniques and ideas. To gain experience with 
the system, several applications were programmed by different users. Fi,rs t 
projects were a program for drawing electronic circuits and a load flow 
program for the analysis of power systems [2]. In two 12 week systems lab 
projects, groups of fourth year students in this department implemented 
complete interactive systems; one for interactive project scheduling using 
CPM methods and one for interactive non1inear circuit analysis, [8]. Both 
systems run on a minicomputer in this department and interface to analysis 
programs on the IBM 360 installation in the Computer Centre. A voice grade 
data link is used for transmitting data from one computer to another. 
The experience gained so far in the use of the language has already proven a 
number of advantages over present-day graphics systems. 

Due to the definition of the syntax and the semantics,changes of these 
are easily incorporated as experience is gained in the use of the language. 
The system has been found far easier to use than the graphical subroutine 
package found on most computer installations. The language is readily 
learned by users with previous high-level language experience. As no ex­
tensive testing and documentation is necessary due to the readability of 
the program, the time required for the completion of a project is greatly 
reduced. Furthermore, the availability of a new powerful tool stimulates 
the imagination of the user to tackle problems previously considered out 
of reach. 

System configuration 

Two implementations are used at this university. One runs unde r the 
MTS timesharing system on an IBM 360/67 with Ca1comp and line-printer plo t ­
ters. This system is used mainly for debugging new programs. The inter­
active system runs under DOS on a Data General 20k Supernova with a Tek­
tronix 4010 graphics terminal. Graphics programs can be run on either sys­
tem without modification. 

7.7 



7 .8 

Figure 1 
;;, S T /\ T E l: 
C 
C --- DEFINE EU : i'·1H JTS / '. I\JI) r.'i E NlJSY~HH1LS 

C 
· .. · . . 

C --- CA P/\C ITOR 
,;, HI\LFC=LEAD + LINE FRW1 ./~,O TU .'~,1; 

* C=HALFC + HALFC VSYM .5 + MARKER; 

• • • · .. 
C --- MENlJCOMMANDS 
,;< D FL ET E = , DEL ET£:': S A V E = , S A V E'; rUJ TAT f> ' R lJ TAT E' ; 

· .. · .. 
,;< Grn [) S TAT E 2; 
,;, E /\/0 S TAT El; 

,;c STATE 3: 
C 
C --- STATE 3: PICKING FIWt'l THE HL:f\)U 

C 
::~ f) I S P LAY 1 C H r)'J S r: F R () t'l f~11: NUl J\ T • 1 , • 9 ; 
::: ,C URS UR ()t~; 

,;< (rJ/\ IT FOR HHr: RRUPT; 
,;, F nR HIT (Jf\I !'1E NlJ: 
,;< Fn R H IT UN DEL ET E : GUT U Sf ATf: L~; END; 
,;< FO R HIT ON ROTATE: GOTO ST flT E ') ; ENI); 
,;, FfJ R HIT ON SAVE: GOTD STATf.:: 6; END; 

• •• · .. 
':< END; · . . 

• •• 
1,< EN U S TAT E 3; 

,;< STATE 5: 
C 
C --- STATE 5 : ROTATING AN ELEMENT 
C 
;;, DI S PLAY 'PICK ELH1ENT TO BE REVERSED' AT .1,.2; 
;;, CtJl<SOR ON: ~~AIT FOR INTERRUPT; 
* FOR HIT ON '-1ENLJ: GOlU STATE 3; END; 
;;, rn R HIT 0 N EL EM ENT: 
* AN = ANGLEIELEHENT I IHIT»; 

PI=3.141593 
AN=AN+PI 

;;, AN GL E I EL E '·1 ENT I I HIT » :: AN; 
::' ERASE SCREEN; DISPLAY CIRCUIT; 
* END; GOTO STATE 3; 
::C E NI) S TAT E 5; 



References 

[lJ. P. Bou11ier et aI., "METAVISU, A general purpose graphic system", 
in F. Nake, A. Rosenfe1d, Eds., Graphic Languages. Amsterdam: North­
Holland Pub1. Co., 1972. 

[2]. B.A. Dixon, "Interactive Graphical Load Flow", submitted to: Inter­
national Electrical, Electronics Conference and Exposition, Toronto, 
Oct. i973. 

[3]. D.E. Knuth, The Art of Computer Programming, Vol. 1, Addison-Wes1ey, 
1969. 

[4J. W.D. Maurer, "An Improved Hash Code for Scatter Storage", Comm. ACM 
11 (Jan. 1968). 

[5]. W.M. McKeeman et al., A Compiler Generator. Prentice-Ha11, 1970. 

[6]. F. Nake, "A proposed language for the definition of arbitrary two­
dimensional signs", in 0.1. Grusser, R. K1inke Eds., Zeichenerkennung 
in bio1ogischen and technischen Systemen. Berlin: Springer, 1971. 

[7]. W.M. Newman, "A system for interactive graphical programming", AFIPS 
Conf. Proc. SJCC 32, 1968. 

[8]. B. PiekE~ and G.F. Schrack, "Interactive Circuit Analysis Using a High­
Level Graphics Language", 16th Midwest Symposium on Circuit Theory, 
Waterloo, 1973. 

7.9 


