
IMPLEMENTATION OF THE 'ICPL ' GRAPHICS LANGUAGE ON THE POP-15 COMPUTER 

C. D. O'Brien 
Facu l t y of Engineer ing 

Car l eton Univers ity 
Ottawa, Ontar io 

Abstract 

The 'ICPL ' (Interactive Control Program Language) is a high level 
graphics language developed at the Communications Research Centre to 
facilitate the writing of interactive graphics software. This paper brief­
ly discusses the 'ICPL ' language and describes in detail its implementation 
on the POP-15, VT-15 graphics system at Carleton University. Problems 
encountered in transferring graphics software from one machine to another 
are also discussed. 

Abrege 

Le langage ICPL (Interactive Control Programming Language) est un 
langage graphique motive qui a ete con~u et r~alise au Centre de Recherches 
sur les Communications pour faciliter le development de programmerie 
graphique interactive. Ce document definit brievement ICPL et decrit en 
detail sa realisation sur le systeme graphique POP-15, VT-15 de l'Universite 
Carleton. Les divers problemes associes au transport de programmerie 
graphique d'une machine & une autre sdnt aussi presentes. 

Introduction 

The Interactive Control Program Languagel is a high level graphics 
language developed at the Communlcations-Research Centre to facilitate the 
writing of interactive graphic software. It completely removes the graphics 
programmer from interrupt level programming and forces him to think of dis­
playable objects and actions resulting from identifier strikes upon these 
objects. This concept is common to most forms of graphics and makes 'ICPL ' 
generally machine independent. The original implementation of the language 
was on a drum based graphics system on the POP-9 which is very different 
from the core based graphics system on the POP-15, VT-15 system. 

The control program is written in the form of object - action pairs, 
with each action associated with an object. The program is parallel in 
nature and the object action pairs require no special ordering . A menu of 
light-buttons can easily be defined as a series of object statements and 
the associated action statements identify the code to be executed when an 
interrupt driven command such as a light-pen strike occurs. A si mple 'ICPL ' 
program is shown below. 

9.1 



9.2 

CONTROL PROGRAM TEST 
STRING(6) BUFF 
* THIS SECTION OF CODE IS EXECUTED ON ENTRY 
ENTRY 
1 DISPLAY 

SEEK 
* THIS OBJECT STATEMENT DEFINES THE LIGHT­
* BUTTON 'APPEND AI AND APPENDS IT TO THE 
* DISPLAY FILE. 
OBJECT 

TEXT 500,500/ 'APPEND AI 
ACTION 

APPEND TO BUFF/'A ' 
GOTO 1 

OBJECT 
TEXT 500,400/ 'APPEND B' 

ACTION 
APPEND TO BUFF/'B ' 
GOTO 1 

OBJECT 
TEXT 500,300/ ' CLEAR ' 

ACTION 
CLEAR BUFF 
GOTO 1 

* THIS OBJECT DISPLAYS THE CONTENTS OF THE 
* THE BUFFER AND UNDERLINES IT. 
OBJECT 

LIST 600,450/ BU FF 
TRACE 600,438/60,0 

END 

This program allows up to 6 characters, A or B, to be appended to a buffer, 
BUFF, in any order . A light-button ' CLEAR ' is provided for emptying the 
buffer. 

PDP~15 Implementation 

The routines which generate the light-button menus and those tllat 
interpret the light-pen strikes and control the execution of the specialized 
functions are peculiar to each application and contain code that is highly 
dependent on the structure of the display and light-pen system. The object­
action structure of 'ICPL ' lends to portability because this structure is 
independent of the particular graphic hardware of a machine. The run-time 
environment of an 'ICPL ' program provides the interface between standard­
ized function calls and the particula r machine hardware. 

The task of implementing this language on a computer consists of : 

i) transporting the translator for the language to the new 
machine. 

ii) providing the run-time environment to allow 'ICPL ' to 
interact with the graphics hardware. 



The translator fo r the 'ICPL' language was written using the machine inde­
pendent macro processor 'STAGE2' of the 'Mobile Programming System' of 
Prof. W.M. Waite ~ of the University of Colorado. 'STAGE2 ' is th ~ second 
level of a macro processor bootstrap sequence which is easily implemented 
on any computer. It is a flexible powerful macro processor def i ned in 
itself . It is implemented on a pseudo machine called FLUB which is an 
idealized 24 bit machine defined as a series of macros translatable by 
'STAGE2' and by 'SIMCMP' a much simpler macro processor written in less 
than 100 lines of Fortran. 'SIMPCMP' bootstraps 'STAGE2'. 

Because of the high portability of 'STAGE2' it can be installed on 
a machine in about a weeks' work. Since 'ICPL' is defined as a set of 
mac ros for 'STAGE2' only the code emitting parts of 'ICPL' must be changed 
in order to install it on a machine. The PDP-15 and the PDP-9 have 
essentially identical processors so the 'ICPL' translator ran di rectly 
without modification. 

The run-time environment of 'ICPL' consists of provid i ng the 
routines to draw vectors and text on the screen and providing controls on 
intensity, relative or absolute coordinates, a tracking cross and a tagging 
mechanism. Providing the display dependent routines was the major task in 
implementing 'ICPL' on the PDP-15. 

The overall software structu re is described in Figure 1. The two 
routines ICPSR and BHA provide the mechanism whereby light-pen stri kes are 
identified with the object and items described by the OBJECT statements in 
an 'ICPL' program. They are also concerned with the implementation of the 
character string variables. No changes were required in these routines 
because the assembly languages on both machines are almost identical. 

The PDP-15, VT-15 graphic system is structured as a dual processor 
system sharing common core. Both the CPU and DPU (display processor unit) 
execute simultaneously and the DPU las its own set of special graphics 
instructions. A display file consists of an area of core containing graphics 
processor instructions which are stored there by the main CPU. The graphics 
system on the PDP-9 computer used at CRC is very different. The machine 
has a single processor and its display controller is like an I/O device. 
Incremental graphics codes consisting of short vectors are put on a drum 
by the CPU. On every drum rotation this display code is continually re­
freshing the screen. The drum has an enormous display space while core 
on the PDP-15 restricts display files. 

The run-time environment on the PDP-15 was configured as an inter­
rupt handler along with a group of subroutines to build and maintain display 
files. The object identification scheme requires that every entity is to 
be considered logically unique and separated by an identifier, a tag code. 
The system counts these tag codes from the beginning of the disp l ay file 
on every refresh. If a light-pen interrupt occurs the tag counter is 
stopped and the number it contains is the entity number of the object that 
caused the light-pen interrupt. This was largely done by hardware on the 
PDP-9 and had to be established on the PDP-15 by complicated interrupt 
processing. The graphics stop code is used as a tag and upon a stop code 
interrupt the CPU increments a counter if the light-pen hasn't interrupted, 

9.3 



9.4 

and then resumes the display. The tag mechanism is turned on and off by 
dynamic patching of stop codes. 

A tracking cross is a graphical object designed to follow a light­
pen. The tracking cross implemented on the PDP-15 consists of a hexagon 
of vectors surrounding an inactive marker. It was programmed so that the 
tracking cross captures the display and is multiply displayed while track­
ing so as to improve its tracking performance. 

The display package is a modular package of system routines consist­
ing of a specialized I/O handler for the display controller and a package 
of basic display generation routines. 

The display generation package provides facilities for creating 
character and vector strings and is callable from FORTRAN or assembly­
language programs. A description of the most important ones are as 
follows: 

Character Strings 
1) create a character string entity 

TEXT (IX,IY,STRING(l),N) 

where IX, IY are starting coordinates; 
STRING is an array containing the string 
as Hollerith constant; N(integer) is the 
number of characters in the string. 

2) initialize a character string entity 

CSTG (Ix, IY) 

to be followed by calls of type (3). 

3) add a character to a string entity 

CHAR(ICHAR) 

where ICHAR is an integer representing the 
character code. 

Vector Strings 
4) create a vector string entity 

VECT(IX,IY,IDX,IDY) 

where IX, IV are starting coordinates; 
IDX,IDY are the projected lengths of a 
single vector. 



5} initialize a vector string entity 

VSTG(IX,IY} 

to be followed by calls of type l6). 

6} add a vector to a string entity 

DRAW(IDX, IDY) 

where IDX, IDY are the projected lengths 
of the vector. 

Mode Switching 
set absolute or relative mode for the origin 
of character or vector strings 

7) MODE (M) 
where M is the numerical code for the desired 
setting mode, absolute or relative. 

8) intensity setting 

INTY(M) 

where M is a numerical code for desired intensity. 

9) tracking cross mode 

TCMODE(M) 

where M is a numerical code for the desired 
tracking cross restraint. (free,free in x, 
free in y,fixed, off) 

10) set tracking cross position 

TCSET(IX,IY) 

where IX,IY are the tracking cross co­
ordinates. 

11) read tracking cross position 

TCLOC(IX,IV) 

where IX,IY are the tracking cross coordinates. 

Display File Administration 
12) tag 

9.5 



9.6 

TAG 

writes a tag in the current position of 
the display file. 

13) start a new display file 

DFST 

14) close a display file 

CLEAR 

15) append new material to display file 

APND 

16) determine whether the light-pen is 
pointing at a display entity and set 
the entity number 

%L PS 

This routine is part of the interrupt handler 
and callable only by the ICPL service routines. 

The display package routines are all written in assembly language 
and occupy 1540 words of core. 

Conclusion 

Since the 'ICPL' translator is written in the macro processor 
language 'STAGE2' and since it makes standardized requests upon a machine 
dependent run-time package , 'ICPL' is fairly portable graphics language. 
Some basic machine dependencies which can't be eliminated, such as the 
size of the display file and the refresh rate still exist. The PDP-9 and 
the PDP-15 are similar enough on these points to make the transfer of 
several applications programs from one machine to the other possible. One 
major incompatibility in transferring graphics software from one machine 
to another is that the screen coordinates are dependent on the particular 
hardware of the system. A simple scaling can't be done because the ratio 
of character size to screen increment size is not constant between systems. 
This is the problem encountered in transporting eRC's software to the 
PDP-15 and this type of problem will remain until the industry adopts 
standards. 

This work was initiated while the author was employed at the Com­
munications Research Centre and continued at Carleton University. I wish 
to thank Mr. H.G. Bown for his assistance in this work. 



References 

1. M.A. Maclean, Designing a Language for Interactive Control Programs. 
2nd NRC Man-Computer Communications Seminar on Interactive Graphics. 
31 May - 1 June 1971, pp. 30-39. 

2. W.M. Waite, The Mobile Programming System:STAGE2 1
• ACM 13, No. 7, 

July 1970, pp. 415-421. 

9.7 



Fortran or 
assembl I b Y anguage 
su programs 

I/O calls 
to monitor 

Display calls 

user wri tten routines 

Figure 1 

ICPL 

~~A~G-----------I' 

-+1 I NTY DSP. I 

--..J ·'.ODS functions \ 

---1 ~' Sl'G 
-...; ·::\lAR 

~ l EXT I' 

- -I ·: STG 
----+' j : :~RA~,' 

--t_ '·: ECl' 

---+-4 rc SET 

---1 I'CLOC ---:j rCHODE 
I FULL 

--t A P~D 

_J CLEAR 
DFST 

7.LPS 
L. 

I -. 

ICPSR 

ICPL service ,----

routines 

BHA . 

core to 
core I/O 
handler 
for doing 
regular 
mo nitor 
controlled 

I/O t~" the . I 
diSPl~ 

Overall Soft ware Structure 

I 
Display 
File 

J 

LJ 

I/O calls 
from monitor 

Display 
dependent 
routines 

Machine 
dependent 
routines 


