System Independence for Interactive Computer Graphics Application Programs

H.G.Bown, C.D.O'Brien, R.E.Warburton and G.W.Thorgeirson Communications Research Centre Department of Communications Ottawa, Ontario

ABSTRACT

This paper discusses the design of a general purpose interactive graphics system. The system is intended for use by application programmers, and its purpose is to simplify the writing of interactive graphic programs. The major system design goal is to achieve a high degree of environment independence through software portability and the concept of a virtual display terminal. The paper presents the requirements of such a terminal and develops a set of commands for addressing it. These commands are to as Graphical Task refered Instructions (GTI). Α conceptualization of a general purpose graphics system is presented where the intent is to separate the application dependent and system dependent functions. The paper outlines advantages and disadvantages of a dual processor the graphics system where one processor is dedicated to the provision of the virtual display terminal and the other processor is responsible for the application program execution.

ABRÉGÉ

Le présent document traite d'un système graphique interactif universel conçu à l'intention des programmeurs d'applications en vue de simplifier la rédaction des programmes graphiques interactifs. Le but principal de ce système est de réaliser un haut niveau d'indépendance grâce d'utilisation vis-à-vis des conditions à 1a logiciel et au concept d'un terminal du portabilité d'affichage virtuel. Le document présente les exigences d'un tel terminal et expose un ensemble de commandes permettant d'y accéder. Ces commandes sont appelées "Instructions graphiques". On relatives aux tâches présente une conceptualisation d'un système graphique universel qui vise à séparer les fonctions qui dépendent des applications et celles qui dépendent du système. Le document expose les avantages et les inconvénients d'un système graphique à deux processeurs dont l'un sert au terminel d'affichage virtuel et l'autre à l'exécution du programme d'applications.

INTRODUCTION

This paper discusses methods to achieve a high degree of environment independence in the design of a general purpose interactive computer graphics system. A graphic system exhibits environment independence when the hardware and software implementation details are made invisible to the application programmer. Environment independence also implies that new advances in the evolving computer graphics technology can be accommodated with a minimum of programming effort.

Most currently available graphics programming systems (particularly manufacturer supplied graphics software packages) utilize the hardware of an interactive graphics systems in an environment dependent manner [1,2,3,4]. These systems differ considerably in design and performance and can be classified either as stand-alone systems or terminals of varied intelligence on a timesharing port. These systems reference their particular hardware in a machine dependent manner and as such, application programs cannot be transported from one machine to another without considerable re-writing of software. Recently [5,6], attempts have been made to develop systems which are easily programmable and incorporate software which is both portable and exhibits a high degree of graphical device independence.

A VIRTUAL DISPLAY TERMINAL APPROACH

A requirement of graphic system environment independence is software portability. This can be achieved by utilizing either a standardized base language such as FORTRAN or by developing a specialized portable graphics language by utilizing a translator writing system. The latter approach is recommended because it presents an opportunity to develop a language syntax that is particularly well suited to handle the interactive environment associated with an interactive computer graphic system. An interactive computer graphics language called 'IMAGE' [6] that meets the above requirements at the is currently under development Communications Research Centre.

An additional requirement for environment independence is independence of the system from the display terminal hardware being utilized. The dividing line between user application software and system software as presented in Figures 1 and 2 suggests a solution to this problem. It is proposed that this hardware independence can be achieved by defining a virtual display terminal with specific capabilities. All communications with this virtual display terminal are made in such a manner as to be independent of any particular realization of the virtual display terminal. For example, an application program is unaware of the technique being employed in the virtual display terminal when it requests that a line, character or symbol be

generated. In fact, the application program is unaware of whether a random access refresh, a raster refresh or a storage display is being utilized. One virtual display terminal may perform the function of vector and character generation by hardware, whereas another may perform the same functions entirely by software. In addition, a set of instructions must be provided to enable the terminal to be referenced in a hardware device independent manner [6]. A proposed set of commands for addressing such a virtual terminal is presented in Table 1. These commands are referred to as Graphical Task Instructions (GTI) and are subdivided into seven different catagories as shown below.

Ι.	Display Generation
II.	Co-ordinate Specification
III.	Graphical Modifiers
IV.	Status Mode Setting
ν.	Subpicture Definition
VI.	Display File Modifiers
VII.	Interactive Device Control

The GTI instructions have been defined in such a manner as to be independent of any particular coding scheme. Different coding schemes would simply require modifications to the GTI code generator and decoding routines as indicated in Figure 2. The GTI instructions form an extensible set allowing for future expansion to accommodate new hardware and software innovations.

GRAPHIC SYSTEMS CONCEPTUALIZATION

A conceptualization of a general purpose graphics system is presented in Figure 1 where the intent is to separate the and system dependent functions. application dependent Current graphics systems are readily represented by this conceptualization. The application programs are usually written in some high level language like FORTRAN, EULER/G [5]. The complexity of the various systems [7], or GINO software modules indicated in the boxes does not depend upon whether the system is stand alone or an intelligent terminal to some larger computer. These software modules are written only once for a particular class of hardware and vary in complexity depending to a large extent on the sophistication of the graphics hardware available (e.g. vector generator, character generator, and transformation hardware). The the of a virtual display terminal permits definition separation of these functions into independent processes. A particular realization of a virtual display terminal may be implemented in a single processor system, but the separation of functions suggests a dual processor system design (Figure This is achieved by dedicating one processor to the 2). task of providing the virtual display terminal capability while the other processor is responsible for the application program execution. The class of the communications link between the two processors and the relative sizes of the

processors define whether the system is stand alone or a satellite graphics system.

The advantage of a single processor system for the realization of a virtual display system is its lower cost hardware, software and communications. The in dual processor system provides advantage of the faster performance due to the display housekeeping and I/O device handling being performed by the second processor. Also the graphics terminal is now a complete system utilizing the second processor and can be driven by any computer which outputs GTI, thus providing a high degree of flexibility and standardization.

CONCLUSION

implementation of a dual processor system as The presented in Figure 2 is nearing completion at the Communications Research Centre. The terminal dependent software is being written in MACRO 11 assembler for a PDP 11/10 computer with 8K core memory. The terminal independent software is being written in IMAGE [6] and/or FORTRAN for the PDP 9 and PDP 11/40 computers. For both the PDP 9 and PDP 11/40 implementations, the communications link between the host computer and the PDP 11/10 virtual graphics terminal is a 16 bit parallel interface. The GTI commands transmitted over this link use a particular choice of opcode and parameter data structure well suited for decoding and storage on a 16 bit computer (e.g. PDP 11/10).

This approach to achieving environment independence suggests that the translator for application programs emit GTI code, thus providing a standard code for addresing graphics terminals, not dissimilar to the use of ASCII code for addressing most alphanumeric terminals. Thus, graphical system independence can be achieved through:

1) application program portability made possible through a portable translator writing system or a standardized base language,

2) and, the use of a virtual terminal concept utilizing the graphical task instructions as presented in Table 1.

Application programs could then be moved from machine to machine and could take advantage of future GTI graphic terminals of more speed and power without requiring reprogramming.

१ र

1-6

.

.

.

ARROWS INDICATE INFORMATION FLOW

.

8.

Figure 2 A Dual Processor Graphics System

TABLE 1

GRAPHICAL TASK INSTRUCTIONS (GTI)

MN	IEM	ION	IIC	:			F	OF	MA	LΤ						Ľ	DE	SC	RI	Pl	II C) N							
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

I. Display Generation Instructions

- LINES opcode draw a sequence of concatenated n lines each having displacements rel xl xi and yi respectively. Lines are rel yl defined on a conceptual page, : transformed and then drawn on the rel xn screen. rel yn
- LINES THRU opcode draw a sequence of concatenated n lines through specified points abs x1 on the conceptual drawing page; abs x2 then move the origin of the con-: ceptual page to either the curabs xn rent beam position or else to a abs yn point specified by SET.
- LINE TO opcode draw a line from the current abs x set beam position to the point abs y (x,y) on the page.
- SPECIFY COORD. opcode (SET) abs x point (x,y) in the current page abs y co-ordinate system.
- CHARACTERS opcode draw a sequence of characters n beginning at the current beam char 1,2 position. ROT & REFL modifiers : have a limited effect on char. char n strings.
- ARC opcode draw an arc using the given m parameters. 'm' specifies the parm 1 mode. (An arc is defined by 3 x,y : points, or 2 points and a slope, parm n etc.).

POINT opcode - draw a point at the current beam position.

SYMBOLS opcode - draw a symbol from the library sym # of symbols.

II. Co-ordinate Specification

PAGE opcode - defines the user co-ordinate xmin system & specifies values for xmax unit x & y displacements on the ymin screen. ymax

III. Graphical Modifier Instructions

- rotate a graphical item by the ROTATE opcode angle stated angle. opcode - reflect graphical items about REFLECT the line y=a*x where a=tan(parm) parm - scale graphical items by SCALE opcode a factor factor. TRANSLATE opcode - translate graphical items by an amount dx in the x-direction & dy dx dy in the y-direction. - specifies a region for the WINDOW opcode display of graphical items with xmin clipping being performed on xmax a11 fully in ymin graphical entities not the region specified. ymax - specifies a region of the page WITHIN opcode xmin which graphical items are to be mapped onto, with the graphical xmax items being specified in terms of ymin conceptual page co-ordinates. ymax

END MODIFIER opcode - remove the last specified graphical modifier from the stack of current graphical modifiers.

IV. Status Mode Setting Instructions

INTENSITY	opcode level	- specifies the intensity level for graphical items $(0 - 1)$.
COLOUR	opcode value	- specifies the colour of a graphical item.
LINE TEXTURE	opcode type #	- specifies line texture (solid, dash, dot-dash, etc.)

FLASH ON	opcode	- specifies that graphical items to follow are to flash repeatedly when being displayed.
FLASH OFF	opcode	- disable FLASH.
CHARACTER SE SPECIFICATIO	ET opcode DN set #	-specifies the character set to be used.
SYMBOL SET SPECIFICATIO	opcode)N set #	- specifies the symbol set to be used.
V. Subpictur	re Definition	Instructions
BEGIN SUBPICTURE	opcode subp #	- delimits the beginning of a new subpicture.
END SUBPICTURE	opcode	- delimit the end of a subpicture definition.
USE SUBPICTURE	opcode subp #	- cause a subpicture to be re-used.
VI. Display I	File Modifier	Instructions
a) delimitir	n g	
INVIS	opcode	- specify the beginning of an entity pending later display.
VIS	opcode	- add INVIS entity to the display.
TAG	opcode	- delimit a picture for ident-
b) control		iiication.
ERASE	opcode begin tag # end tag #	- delete specified tagged objects from the display file.
CLEAR	opcode	- clears the display file.
ON	opcode	- initiates the display.
OFF	opcode	-suspends the display.
WINK	opcode	- cause an ON/OFF/ON sequence for interaction acknowledgement.

VII. Interactive Device Control Commands

.

-

.

.

DEVICE ON	opcode device #	- enable the specified virtua device.	11
DEVICE OFF	opcode device #	- disable a specified device	
ASSIGN DEVICE	opcode device # funct #	- define the device to be used t perform the specified function.	:0
SET MARKER POSITION	opcode x pos y pos	- specifies the position at whice a marker will appear on the current page.	:h ie
MARKER MODE	opcode code	 specify the marker constraints 0 marker on 3 horizontal 1 marker off 4 vertical 2 fixed 5 free 	; L
	opcode angle	- constrained to a tilted lin	ıe
SKETCH RESOLUTION	opcode factor	- set the minimum significan sketcher position change.	ıt
KEYBOARD ACTIVATION CHAR	opcode n char 1,2 : char n	- enable specified characters for use as activation characters of entry.	or on
X & Y IDENTIFIER POS. REQ.	opcode	- request the return of the co ordinates of the last identified interrupt.)- ;r
MARKER POS. REQ	opcode	- request the return of the marker position.	ıe
			•
The followin terminal.	ig GTI cod	les are returned from the graphic	:5
IDENTIFIER RETURN TAG	opcode tag #	- return the tag number for the object interactively selected.	ıe
IDENTIFIER RETURN POS	opcode x pos y pos	- return the x & y co-ordinate indicated by the identifier.	es

MARKER POS. REQ.	opcode x pos y pos	- return the current x & y marker position.
SKETCH POS. RET.	opcode xpos ypos	- return an x,y point visited by the stylus from the queue of such points.
CHARACTER STRING RETURN	opcode n char 1,2 : char n	- return the input character string terminated by the the activation character.
PUSHBUTTON RETURN	opcode pb #	- upon a pushbutton interrupt return the pushbutton code.
VALUATOR SETTING RETURN	opcode valu # value	- upon a significant change in valuator setting return the value.
ERROR REPORT 1	opcode error #	- error report from the terminal software.
ERROR REPORT 2	opcode error #	- error report to the terminal software.

REFERENCES

- 1) "GRAPHIC-15 Programming Manual", DEC-15-ZFSA-D, Digital Equipment Co., Maynard, Mass.
- "BASIC/GT Language Reference Manual", Digital Equipment Co., Maynard, Mass.
- 3) Bown, H.G., Hartman, W.A. and Warburton, R.E., "Applications of the Interactive Computer Graphics Language, ICPL", NRC 3rd Man-Computer Communications Seminar, May, 1973.
- 4) "GRAPPLE Language Reference Manual", Bell Nothern Research, Edition 4.0 Sept. 1973.
- 5) Woodsford, P.A., "GINO: Graphical Input/Output", University of Cambridge Computer Aided Design Group, June, 1969.
- 6) O'Brien, C.D., "IMAGE a language for the Interactive Manipulation of a Graphics Environment", M.Eng. Thesis, Carleton University, Ottawa, Canada, 1975.
- 7) Newman, W.M., Gouraud, H. and Oestreichr, D.R., "A Programmer's Guide to PDP/10 EULER". Univ. of Utah, Report No. UTEC-CSc-70-105, June 1970.