24-1

A High Order Graphics Console

M.W.Blake~-Knox

C.H.M.Griffiths
G.C.Morris
L.G.Woolsey

Bell-Northern Research
Ottawa, Canada

Abstract

The GRAPPLE Console 1is a single user interactive g¢raphics
system that executes the GRAPPLE language. It appears to
the user to be a high order computer that is programmable
in GRAPPLE. The Console consists of a mini-computer, a
storage tube praphics display and a floppy disk. It is
suitable for any work involving 1line drawings and
computation. Several uses of the Console are examined from
the point of view of their practicality and their economy.

Une Console Graphique de Rang Elevé

M.W.Blake-Knox

C.H.M.Griffiths
G.C.Morris
L.G.Woolsey

Recherches Bell-Northern
Ottawa, Canada

Abregée
La console GRAPPLT est un svsteéme sraphique a action
réciproque pour un usager et qui exbcute le langage
GRAPPLE. Pour 1'usager elle se présente sous la forme d'un
ordinateur d'ordre supérieur qui est programmable en

GRAPPLE. La console se compose d'un mini-ordinateur, d'un
P ~ e . ~ 1 .
ecran a presentation visuelle a4 memoire et d'un disque
flexible. Elle est faite pour tout travail impliquant des
dessins a lignes et des calculs. Plusieurs utilisations de
la console sont envisagées du point de vue de leur aspect
practique et Economique.

* The authors wish to thank X.N.Dam for his assistance in
coding the system and G.Scott for originating GRAPPLE.

Introduction.

By ignoring the myth that computer graphics must be by its
very nature both expensive and cryptic, the authors at
Bell-Northern Research, have designed and implemented a
versatile low-cost computer graphics system that is easy to
use. This system, the GRAPPLE Console, is a single user
interactive graphics system that executes the GRAPPLE
languape. In this sense, it is considered to be a '"high
order machine”. Tt consists of a 16 bit word mini-computer
that drives a storage tube graphics display and uses a
floppy disk [1] for auxiliary storage (fig. 1). The user
enters GRAPPLE 1language statements through the display's
keyboard. Through these statements, the user has complete
control over the functions of the GRAPPLE Console. It is
suitable for any work involving 1line drawings and
computation. This might be the storage, retrieval and
updating of drawings, or the simulation of processes with
graphical output.

Floppy
Disk
Digitizer for
System
and
Swapping
CRT o
Display Mini Computer
Keyboard

Fig. 1

This paper describes the philosophyv behind GRAPPLE and the
GRAPPLE Console. It describes and comments on our
implementation techniques, before talking about the results
obtained.

24-4

The GRAPPLE language.

The GRAPPLE language itself is a high order function
oriented programming language, developed at Bell-Northern
Research to permit the easy development of graphics
applications [2,3,4,5]. It is now wused in many design aids
activities and has gained wide acceptance in our user
communitv. GRAPPLE is available on our large host computer,
an IBM System 370/168, which we operate in a time-sharing
mode. Tt provides users with an excellent tool for pgraphic
manipulation at storage tube terminals, at which they can
readily interact in their editing processes.

GRAPPLE is a compiler-interpreter system. Source statements
are compiled into an internal representation known as GRIT,
or GRAPPLE interpreter text. GRIT 1is then interpreted to
produce the desired graphic results. No distinction is made
in GRAPPLE between data and program. A GRAPPLE program is
both the program and the data on which the program
operates. Functions defining data elements are handled
identically to computational functions. GRAPPLE is a stack
oriented language, a feature that enables function call
nesting and recursion to an arbitrary depth. Stacks are
used for parameter passing, execution sequencing and
graphic environment control. GRAPPLE has developed from a
simple picture description language to be a sophisticated
graphic manipulation tool, in fact, a system for graphic
work.

In the following brief example, code is shown to display an
isosceles triangle in the middle of the display screen
(fig. 2). The units are arbitrary, based though on a
display screen size of 3800 units by 2900 wunits, with the
origin in the bottom left hand corner.

TRIANGLE: V(800,0,-400,500,-400,-500);
S(1000,1000) ,*(2)TRIANGLE;

The statement defining TRIANGLE does so in terms of a
relative vector with three segments. Each segment 1is
specified in terms of the relative displacement of its end
point from the current beam or pen position. The second
statement is an imperative, asking for the primitive
function S (Set to an absolute 1location on the screen) and

the user defired function TRTIANGLE to be executed. When
TRTANGLE is invoked, the six coordinates are passed as
parameters in the main stack to the relative vector
processor V. This processor removes pairs of coordinates
from the stack as it builds each vector. The second

statement moves the drawing beam to the centre of the
screen, and invokes TRTIANGLE at twice its specified size.
The '*' is a shorthand modifier, implying change of scale.
The scale is changed by a factor of two, producing a
triangle whose base is therefore 1600 units long.

24-5

TRIANGLE: V(800,0,-400,500,-400,-500);
$ (1000,1000),*(2) TRIANGLE

Fig. 2

This example shows two basic features of GRAPPLE: function
calling and parameter passing. GRAPPLE statements may
include graphic data, textual data and both logical and
arithmetic expressions. As well as operations at a display
screen (picture drawing and coordinate digitizing), GRAPPLE
can access disk files to retrieve and create data. These
features combine to make it a successful programming
language.

The GRAPPLE language evolved to meet specific computer
graphics requirements in our laboratories. The GRAPPLE
Console evolved as a research project based on the
language. The nature of GRAPPLE allows the following
analogy. The intermediate code, GRIT, produced by the

compiler, can be considered the machine language for a
GRAPPLE machine [6]. The interpreter then embodies the CPU
functions of that machine. The research project was

conceived to examine the implications of a stand-alone
GRAPPLE machine, since known as the GRAPPLE Console.

24-6

There were naturally other motivations. Ever since work was
begun on GRAPPLE we had been concerned with
transportability of GRAPPLE files between the several
design aid tools then available to our designers. By making
the software tools available across the board, the designer
was free to use the most applicable (or available) tool.
The GRAPPLE Console is a natural extension of these
efforts, an attempt to provide a single wuser graphics
system free of transportability problems.

Other reasons relate strongly to experience of our
time-sharing system. Graphics traditionallv demands faster
response than the average use of computer facilities, and
GRAPPLE 1is no exception. We recognized that a stand-alone
system would be able to give exceptional response to
graphic digitizing, and additionally provide a continuous
digitizing mode not possible on the time shared system.
Display output would also be several times faster, without
the long breaks in tranmission due to system contention
frequently experienced under time-sharing. There were also
potential economies to be realised compared to a time
sharing approach, as well as 1improved reliability and
availability.

There were two main reasons for the development of the
Console. Research into high-order machines interested us,
as did continuing our exploration of GRAPPLIV. The marriage
of the two made a good research project. Also, the
implications of distributed computing were being much

discussed. The cost effectiveness of a time sharing
approach to all computing was being seriously questioned,
and this project would provide further fuel to the

argument.

‘ucture.

The GRAPPLE Console operates in much the same way as the
GRAPPLE processor on our host computer (fig. 3). GRAPPLE
language statements entered at the keyboard are compiled by
the compiler, producing the internal code GRIT. If the
statement is an execcution imperative, then the interpreter

is invoked to operate on the compiled GRIT. Nuring
compilation, access may be made to libraries of pre-defined
GRAPPLE functions held on disk. During execution, other
floppy disk files containing data may be referenced. In

order to accomodate reasonable GRIT sizes, it is necessary
to pape the GRIT code in and out of main memorv. Again the
floppy disk is used to hold the paged data. As display
functions are executed the results appear on the display
screen.

[)
IS
I

&
L o e .
Keyboard g graplhw
Input £ isplay
. A
©
\/ £
; -
= _—
=3
— %
Compiler %f R Interpreter
8 s
@D
A £ A
Y £ Y
°
il 5 Plot
Search 2 Files
1 g
> B o= Y
=
Grapple i Trace
Files £ File
9
K -
% v
‘6, ’
Library s User’s
Files z Program
<

Fig. 3

There is a close association between the GRAPPLE source
code and the internal GRIT code. GRAPPLE is basically a
"direct language''; its compilation is a translation and
reordering of one set of tokens for another. This feature
makes compilation simple, vet it also allows decompilation
(fig. 4). Thus it is possible to work backward from the
internal GRIT format to produce a GRAPPLE source string.
This is a very useful feature for graphic editors.

7

24-8

TRI: Vv (100 ,100,0 ,-100,-100 0) ;

1u b 49 4 A “T“

B %
0 -
-100
-100 -
0
100 -
100
Vv -
RETURN

A

A

TRI ;

TRI
RETURN Fig. 4

Since the GRAPPLLE language is very powerful and concise,
and since it is also a direct language, the primitive
operators are also very powerful. This implies that they
operate for a '"long time'". Hence the access speed of the
memory that holds these opcodes can be quite slow. For
example, it requires three GRIT words to generate a vector.
That vector would be described by a string of 11 characters
sent to the display screen. Since those characters are sent
at 9600 baud, the access time for each GRIT word in memory
need only be 3.8 milliseconds. This is easily within the
capabilities of a good paging scheme using a floppy disk,
and a 1 microsecond processor.

The system 1is highly dependent on floating point, to the
extent that the GRIT storage addressing is done in floating
point. This at first seems cumbersome, but in a system
where all numbers are real, it adds great generality.

Implementation.

Code for the GRAPPLE Console has been produced exclusively
in assembly language. Speed of execution was of paramount
importance, so that there was no question of the wuse of a
high-level language 1like FORTRAN. In the early stages of
the design work, we had hopes of using microcode. We found
though, that the state of the art was not such that we
could take advantage of it. Potentially we could have made
the code more efficient, but it would not have been as
intelligible as assembly code.

The system was constructed as a series of overlays with a
resident section containing the basic service routines for
1/0 handling and overlay management. Overlays were required

24-9

since we had chosen to work with a 24K machine. Similarly
in order to accomodate reasonable sized GRAPPLE programs,
it was necessary to page the GRIT code to and from the
floppy disk.

The compiler was based on a version written in XPL [7]
using a BNF description of the syntax. This was prepared to
provide a standard description of the GRAPPLE language for
both the GRAPPLE Console, the host and any future
implementations of GRAPPLE that may be done. The BNF syntax
was reduced to SLR(1) form, using a syntax analvzer
developed by DeRemer [8], modified to produce reduced
matrix parser tables [9]. These tables in turn are the
basis for the XPL GRAPPLE compiler and the compiler for the
GRAPPLE Console.

The rest of the code was produced from 'pseudo-code’ .
"Pseudo-code” is a design technique whereby the program
lopic is designed in a semi-formal way [10,117. oOur

pseudo-code was structured, and intended to be closely
followed by the code when finally written. The lanpuage
uscd to build the pseudo-code however is reasonably free
English, allowing as clear as possible expression of the
functions to be performed. By thinking through the program
logic in a programming form, but before the code is
actually cut, we ensured relatively bug-free code. Our
experience of using this technique bears this out, for the
system was running two days after we started integration of
the code.

Both the interpreter overlay and the resident section were
written from pseudo-code. The interpreter consists of a
number of well-defined subroutines. The resident section
consists of service routines and manufacturer's code. One
aspect of the design was the reliance on floating point
arithmetic. Tn order to give the greatest significance to
the GRIT order codes, a special 32-bit floating point
format was adopted. The floating point arithmetic routines
were included in the resident section.

A second key aspect of the design was the algorithm to be
used for CGRIT page swapping. Analysis conducted of the way
in which GRAPPLE operated on our host computer, gave us an
idea of the optimum pape size for several possible page
replacement algorithms [12]. We experimented with several
algorithms before adopting a 64 GRIT word page size and a
simple lLeast Recently Used (LRU) replacement algorithm.
This has worked out very well in practice.

The experience of implementing the GRAPPLE Console from our
pseudo-code showed that we had minimized our debugging
problems. Large parts of the code worked the first time
because of the thorough work done in designing the
pseudo-code. Two key problems we ran into were the level

24-10

of detail of the pseudo code, and real-time problems. The
amount of detail required in pseudo-code turned out to be
dependant on the difficulty of the module. As a result,
some pseudo-code had to be reworked at coding time. llowever
this did not represent a serious delay at the coding starge.
The real time problems were more serious and produced most
of the bugs during system integration. There was tremendous
satisfaction though, in being able to bring the system up
on schedule, November lst 1974,

The first demonstration of the GRAPPLE Console's
capabilities was to run a GRAPPLE noprogram originally
written for the host computer. Having done this once, we
have since been able to show compatibility and
transportability for a number of other host GRAPPLE
applications. The following applications have been
demonstrated on the prototype: Computer Aided Instruction,

automatic programming, graphic editing, schematic displavs
and animation.

Valuable experience in the use of floppy disks has been
pgained. These have turned out to be a reliable media for
data storage, albeit slow. We have been concerned with
improving their performance. An indicator was placed on the
shaft of the stepping motor, which rotates as the head
seeks. Movement of this indicator exposed some very
interestiny consequences of our file structure. As a result
some redesign took place.

The response of the system has more than met our design
objectives. The storage tube display we have used has been
interfaced at 9600 baud directly to the teletype interface
of the mini-computer. This produces excellent interactive
response at the display.

Finally the reliability of the system combines with the
other features to produce a highly cost-effective system.
Designers can operate at this kind of work station,
unhindered by the vagaries of a central time-sharing
system, with therefore enhanced effectiveness.

Conclusion.

Computer graphics has long been a field thought to be

expensive and complex. The development of GRAPPLE and now
the GRAPPLE Console at Bell-Northern Research, has shown
that this need not always be the case. Graphic work
involving dynamic three-dimensional rotation is very

elegant and attractive, but rarely 1is it applicable to
problems in our laboratories.

24-11

Refeggncgg;

is

10.

11.

13.

L4,

S.Davis, Disk Storage for Minicomputer Applications,
Computer Design, vol. 12, no. 6, June 1973, pp 55-56.

GRAPPLE Language Reference “Manual, Version 4.0, Manual
13500, Bell-Northern Research, Ottawa, Canada.

D.L.Williams, GRAPPLE-Graphics Application Programming,
Language, Proc. 3rd Man-Computer Communications Seminar
National Research Council, Ottawa, Canada, 1973.

R.B.Duncan, GRAPPLE Applications, Proc. 3rd
Man-Computer Communications Seminar, 1973, pp 6.1-6.9.

G.Scott, C.H.M.Griffiths, R.B.Duncan and D.L.Williams,
GRAPPLE - An Interactive Computer Graphics Language,
TELESIS, vol. 3, no. 2, Summer 1973, pp 47-54,

L.G.Woolsey, Design for a High Level Graphics Languace
Machine, Bell-Northern Research, Ottawa, Canada, (To be
published in TNFOR, vol. 13, no. 3, October 1975).

W.M.Mckeeman, J.J.lorning and D.B.Wortman, A Compiler
Generator, Prentice Hall Tnc. 1970.

F.L.DeRemer, Simple LR(k) Grammars, CACM, vol. 14,
no. 7, Julv 1971, pp 453-460.

"M.L.Joliat, Translator Vriting Svstems at Bell-Northern
Research, 8th 'lawaii International Conference on Svstem
Science, January 7-9, 1975.

P.Bridges, S.Iscovici and B.Mitchell, Towards Nuality
Software, TELESIS, vol. 3, no. 8, Julv/Aupust 1974,
pp 232-238.

H.D.Mills, Chief Prosrammer Teams - Principles and
Procedures, IBM, FSC 71-5108.

Y.".Chu and H.0pderbeck, Performance of Replacement
Alporithms with Different Page Sizes, Computer, (IEEE),
vol. 7, no. 11, November 1974, pp 14-21.

A.Van Dam and G.M.Stabler, Intellicent Satellites for
Interactive Graphics, Proc. NCC 1973, Pp 229-238.

T.ll.Myer and T.F.Sutherland, On the Design of Displav
Processors, CACM, vol. 11, no. 6, June 1968, pp 410-414,

A.Hassitt, J.YW.Lageshultz and L.E.Lyon, Implementation
of a High Level Graphics Machine, CACM, vol. 16, no. 4,
April 1973, pp 199-212,

