
"

H.W.Blake-Knox
C.H.H.Griffiths

G.C.l\.forris
L.G. Hoolsey

Bell- Northern Research
OttaHa, Canada

Abstract

24-1

The GRAPPLE Console is a single user interactive ~ raphics

system that executes the GRAPPLE language. It appears to
the user to be a high order computer that is pro g ramn a ble
in GRAPPLE. The Console consists of a mini-comput e r, a
storage tube r,raphics displ a y and a f l o pp y dis k . I t is
suitabl e for any wor k in volvin g line dr awi n g s and
cOMputation. Several uses o f t he Console a r e examin e d from
the point of view of their practicalit y and their e con o MY.

'1. W. Bla k e- Knox
C .H. H .Griffiths

G.C. Horris
L.G. \>J oolsev

Recherches ReIl-Northern
Ottawa, Canada

La console GRAPPLE e st un sy stem e r, r a phique a .'1 ction
re ci proqu e pour un u srtr,e r e t qui e xecute le l a n r, ap, e
G ~APPL E. Pour l'usar, e r eIle s e pr~sente sous la forme d'un
ordinat e llr d 'ordr e sup e r ie ur qui est prop,rammabl e e n
r; RAPPLE. La console se compose d 'un nini-orciinateur, d 'un
~cran a pr~sentation visuell e ~ memoire e t d'un disaue
flexible. Elle est faite pour tout travail impliquant des
dessins i lignes et des calculs. Plusieurs utilisations de
la console sont envisa g ~es du point de vue de leur aspect

i
". . pract que et econom1que.

* TIl e authors wi s h to than k X . N .Dam for his assistance in
codin g th e system and G.Scott for originating GRAPPLE.

Introduction.

By ignoring the myth that computer graphics mus t he by its
very nature both expensive and c r yp t ic, the au thor s At
Bell- Northern Research, have desi g n ed and im p lement ed a
v e rsat il e low-cost computer graphics system t ha t is e as y to
u se . This system, the GRAPPLE Console, is a si n g le u se r
interactiv e graphics system that executes the GRAPPLE
lanf,uar,e. In this sense, it is cons idered to be a " hi gh
order machine" . It consists of a 16 hit word mini-computer
that drives a storage tuhe graphics display a nd uses a
floppy disk [1] for auxiliary storage (fi g . 1). The user
enters GRAPPLE language statements through the display's
keyboard. Through these statements, the user has complete
control over the functions of the GRAPPLE r.onsole. It is
suitable for any work involving line drawings a n d
computation. This might be the stora g e, retrieval and
updatin g of drawings, or the simulation of processes with
g raphical output.

Digitizer

Keyboard

}---+------1 Mini Computer

Fig. 1

for
System

and

This p:lp er descrihes th e philosophy behin d GRAPPLE and th e
(;HAPPT,E Console. It describ e s and comments on our
implement a tion techniques, before talkin ~ a bout the results
ohtrtin ed .

24-4

The GRAPPLE language itself is a high order function
oriented programming language, developed at Bell-Northern
Research to permit the easy development of ~raphics

applications [2,3,4,5]. It is now used in many design airls
activities and has gained wide acceptance in our user
community. G~APPLE is available on our large host computer,
an In~ System 370/168, which we operate in a time-sharin~
mode. Tt provides users with an excellent tool for ~rap~ic

manipulation at storage tube terminals, at which they can
readily interact in their editing processes.

GRAPPLE is a compiler-interpreter system. Source statements
are compiled into an internal representation known as GRIT,
or GRAPPLE interpreter text. GRIT is then interpreted to
produce the desired graphic results. No distinction is ~ade
in GRAPPLE between data and program. A GRAPPLE program is
both the program and the data on which the program
operates. Functions defining data elements are handled
id e ntically to computational functions . GRAPPLE is a stack
oriented language, a feature that enables function call
nesting and recursion to an arbitrary depth. Stacks are
used for parameter passing, execution sequencinr, and
g raphic environment control. GRAPPLE has developed from a
simple picture description lan~uaRe to he a sophisticated
graphic manipulation tool, in fact, a system for r raphic
work.

In the followin~ brief example, code is shown to display an
isosceles trianp]e in the middle of the disolay screen
(fig. 2). The units are arbitrary, based though on a
display screen size of 3800 units by 2900 units, with the
origin in the bottom left hand corner.

TRIANGLE: V(800,O,-400,500,-40n,-SOO);
S(lOOO,10nO),*(2)TRIANGLE;

The statement defininf TRIANGLE does so in terms of a
relative vector with three segments. Each segment is
specified in terms of the relative displacement of its end
roint from the Cllrrent beam or pen position. The second
statem~nt is an imperative, askinr for the p rimitive
fUllction S (S c t to an absolute location on the screen) and
t h c U~; er cl ~ fIr . c cl f II n c t ion T R T i\ N r: LEt 0 bee x e cut e d . \<7 hen
'I' I{ T i\ N er, I': i sin v 0 k e cl , the six coo r din ate s are pas sed a s
parameters in the main stack to th e relative vector
processor V . Tllis rrocessor removes pairs of coordinates
from tl1p st<1ck <18 it huilds each v e ctor. The second
statem~nt moves the c1rawinp. heaPl to the centre of the
scrcen, <1ncl invokes TR1ANr:LE <1t twice its specified size.
The '*' is a shorth<1ncl modifier, implying chan~e of scale.
Th~ scale is chan~ed by a factor of two, producin~ a
trian~le "Those base is therefore 1000 units long.

TR IANG LE: V(SOO,O,-400,500,-400,-500);
S (1000,1000),*(2) TRIANGLE

Fig. 2

24-S

T his e x a m p 1 e s how s t 'iT 0 has i c f eat 11 res 0 f r; R J\ P P L F.: fun c t ion
calling and parameter passinp,. GRAPPLE statements may
include graphic data, textual data and both logical and
arithmetic expressions. As well as operations at a display
screen (picture drawin g and coordinate digitizing), GRAPPLE
can access disk files to retrieve and create data. These
features combine to make it a successful programming
language.

The GRAPPLE language evolved to meet specific computer
graphics requirements in our laboratories. The GRAPPLE
Console evolved as a research project based on the
language. The nature of GRAPPLE allows the following
analogy. The intermediate code, GRIT, produced by the
compiler, can be considered the machine language for a
GRAPPLE machine [6]. The interpreter then emb odies the CPU
functions of that machine. The research project was
conceived to examine the implications of a stand-alone
GRAPPLE machine, since known as the GRAPPLE Console.

24-6

There were naturally other motivations. Ever since work was
begun on GRAPPLE we had been concerned with
transportability of GRAPPLE files between the several
design aid tools then available to our designers. By making
the software tools available across the board, the designer
was free to use the most applicable (or available) tool.
The GRAPPLE Console is a natural extension of these
efforts, an attempt to provide a single user graphics
system free of transportability problems.

Other reasons relate strongly to experience of our
time-sharing system. Graphics traditionally demands faster
response than the average use of computer facilities, and
GRAPPLE is no exception. We recognized that a stand-alone
system would be able to give exceptional response to
graphic digitizing, and additionally provide a continuous
digitizinp, mode not possible on the time shared system.
Display output would also be several times faster, without
the long breaks in tranmission due to system contention
fre<1uently experienced under time-sharing. There were also
potential economies to be realised compared to a time
sharin~ approach, as well as improved reliability and
availability.

There were two main reasons for the development of the
Console. Research into high-order machines interested us,
as did continuinr our exploration of GRAPPL1~. The marriage
of the two made a good research project. Also, the
implications of distrihuted computinr were hein~ much
discussed. The cost effectiveness of a time sharinf
approacll to all computing was being seriously questioned.
and this proj ect would provide further fuel to the
argument.

The r,RAPPLE Console operates in much the same way as the
GRAPPLE processor on our host computer (fig. 3). GRAPPLE
language statements entered at the keyboard are compiled by
the compiler, producing the internal code GRIT. If the
statement is an execution imperative, then the interpreter
.is "Invo ked to operate on the compiled GRIT. During
compilation, access may be made to libraries of pre-defineJ
(;PAPPLE functions held on disk. During execution, other
florpv dlsk fLIes containin~ data may be referenced. In
ord£'r to accomodate reasonabl e G~IT sizes, it is necessary
to pare the r.RIT code in and out of main memory. Again the
floppy di.sk is used to hold the paged data. As display
functions are executed the results appear on the display
screen.

•

Keyboard
Input

Compiler

File
Search

t
Grapple
Files

I Library
Files

Fig. 3

~
o
E
111

E
,S:

"' E

111
..r:. ...
c:
~

111 ..
~
'" '" c:
o
'il
:::l
'" c:

'" ,~
..r:.
Co

"' ..
g)

'0
>
"'
et

Plot
Files

Graphic
Display

Interpreter

Trace
File

User's
Program

24 - 7

There is a close association between the GRAPPLE source
code and the internal GRIT code. GRAPPLE is basically a
" direct language "; its compilation is a translation and
reordering of one set of tokens for another. This feature
makes compilation simple, yet it also allows decompilation
(fig. 4). T hus it is po ssib le to work backward from the
intern a l GRIT format to produce a GRAPPLE source st rin g.
This 18 It very us ef ul feature fo r graphic edito rs.

24-8

TRI V (100,100,0 , -100 ,-100 0)

B

o
-100

-100

o
100

100

V

RETURN

,t
""-

•

Fig. 4

Since the GRAPPLE language is very powerful and concise,
and since it is also a direct lan g uage, the primitive
operators are also very powerful. This i~plies that they
operate for a "long time". Hence the access speed of the
memory that holds these opcodes can be quite slow. For
example, it requires three GRIT words to genera te a vector.
That vector would be described by a string of 11 characters
sent to the display screen. Since those characters are sent
at 9600 baud, the access time for each GRIT word in memory
need only be 3.8 milliseconds. This is easily within the
capabilities of a good paging scheme using a floppy disk,
and a 1 microsecond processor.

The system is highly dependent on floatin~ point, to the
extent that the GRIT storage addressing is do ne in floating
point. This at first seems cumbersome, but in a system
where all numbers are real, it adds great generality.

Code for the GRAPPLE r.onsole has been produced exclusively
in assemhly lanRuage. Speed of execution was of paramount
importance, so that there was no question of the use of a
hi~h-Ievel language like FORTRAN. In the early stages of
the design work, we had hopes of using microcode. He found
though, that the state of the art was not such that we
could take advantage of it . Potentially we could have made
th e code more efficient, but it ~.,ould not have been as
intelli~ible as assembly code.

The system was constructed as a series of overlays \"ith a
resident section containing the hasic service routines for
I ll) handling and overlay management. Overlays were required

since we had chosen to work with a 24K machine.
in order to accomodate reasonable sized GRAPPLE
it was necessary to page the GRIT code to and
floppy disk.

24 -9

Similarly
programs,

from the

The comp i ler wa s based on a version writte n in XPL [7]
using a BN F description of the syntax. This was prepared to
provide a standard description of the GRAPPLE l an g ua ge for
both the GRAPPLE Console, the host a nd any future
implementations of GRAPPLE that may be done. The BNF syntax
was reduced to SLR(l) form, using a syntax a nalyzer
developed by DeRemer [8], mod ified to rroduce reduced
matrix parser tables [9]. These tables in turn are the
basis for the XPL GRAPPLE compiler and the compiler for the
GRAPPLE Console.

T he rest of the code W I1S p roduc ed f ro m " pseudo-code ;' .
" Pseudo-code " is a design t echnique wherehy the pro g ram
I 0 r, i c i s rl e s i ~ n e din a s e m i - for m aI,,, a y [1 0 , 1 1] . 0 u r
pse udo-code was st ructur ed, and intended to be closely
followed hy tI, e c o de when fi nall y written . The lan gua~e

use d to bui ld t he pseudo-code however is reas on ahly free
En g lish, allowi n g as cl ea r as p ossible exp re ss ion of the
functions to be performed. By thinkin~ throu gh the pro g ra m
logic in a programming form, but before the code is
actuall y cut, we e ns u red r elatively bug-free code. Our
experience of usin r, t h is tec hni ~ue bears this out, for th e
syst em was runnin R two days after we started integ r a tio n of
the co ri e .

Both the interpreter overlay and t he resident section were
written from pseudo -cod e. The in terpreter consists o f a
number of well-defined subroutin es . The res ident section
consists of s er vice routines and manufacturer's code. On e
aspect o f th e desi g n was th e re l iance on floating point
arithmetic. I n order to p,i v e t he g reatest sip,nificance to
the GRIT ord er cod es, a spec i al 32-bit floatin g point
format was adopted. The floatin ~ poin t arith met ic rout in es
were inclurled in t he resident spction.

A sec ond key aspect of the de sig n was the a lgorithm to b e
used fo r ~RIT page swappin g . Analys i s co nducted of th e way
in which ~RAPPLE operated on ou r hos t computer. ga y e u s an
idea of the optimum page size for several possihle p ;1!:.~e

replacem e nt al g or i thm s [12]. We experimenterl with seve ral
algorithms h e fo r e adopting a 64 ~RIT word pa ge size and a
simple Least Recently Used (LRU) replacement algorithm.
This has wor ked out very wel l in p ractice.

The ex perience of implementin g the G~APP L E Co nsole f rom our
pseudo-code showed th at we had minimized our debugging
probl e ms. Large pa rt s of the code wor ked the first time
h e cau se of th e thorou gh wor k done in designing the
pseudo-cod e . Two key p robl e ms we ran into were the level

24-10

of detail of the pseudo code, and real-time problems. The
amount of detail required in pseudo-code turned out to be
dependant on the difficulty of the modllle. As a result,
some pseudo-code had to be reworked at codinp, time. However
t!lis did not represent a serious delay at the coding sta~e.

The real time problems were more serious and produced most
of the bugs during system inte~ration. Th~re was tremendous
satisfaction thour,h, in heing able to bring the system lip
on schedule, November 1st 1974.

Results.

The first demonstration of the GRAPPLE Console's
capabilities was to run a
written for the host computer.
have since been able to

GRAPPLE program originally
Having done this once, we
show compatibility and

of other host GRAPPLE transportability for a number
applications. The following applications have been
demonstrated on the prototype:
automatic programming, graphic
and animation.

Computer Aided Instruction,
editing, schematic displays

Valuable experience in the use of floppy disks has been
gained. These have turned out to be a reliable media for
data storage, albeit slow. He have been concerned wit!1
imp r 0 v i n g the i r !l e r for m a n c e. Ani n cl i cat 0 r \" rt sri <1 c e don t 11 e
shaft of the stepping motor, which rotates as the head
seeks. Hovement of this indicator exposed some very
interestin g consequences of our file structure. As a result
some redesign took place.

The response of the system has more
objectives. The storage tube display
interfaced at 9000 baud directly to
of the mini-computer. This produces
response at the display.

than met our design
we have used has been

the teletype interface
excellent interactive

Finally the reliability of the system combines with the
other features to produce a highly cost-effective system.
Designers can operate at this kind of work station,
unhindered !'y the vagaries of a central time-sharing
system, wit!1 therefore enhanced effectiveness.

Conclusion.

Computer r,rapJdcs h:1S lon~, heen a field thought to be
ex n ens i v P :1 n d c 0 m pIe x . The d eve lop men t 0 f (; RAP P LEa n d now
the GRAPPLE Console at Bell-Northern Research, has shown
that this need not always he the case. Graphic work
involving dynamic three-dimensional rotation is very
elegant and attractive, bllt rarely is it applicable to
problems in our laboratories.

..

24-11

References.

1. S.Davis, Disk Storar,e for :iinicomput e r Applica t io ns,
Computer Design, vol. 12, no. 6, June 1973, pp 55-56.

2 . r. ~ A P P L E 1. an g u age n e fer en c e '1 a n u aI, V e r s ion 11. 0, tf a n u a 1
13500, Bell- Northern ~esearch, Ottawa, Canada .

3. 1) .r.. ~.J illiams, GRi\PPLE -G rnphics i\pplication Programmin r,
Language, Proc. 3rd :ian-Computer CommunicatIon s Semi nar
~ ational Research Council, 0ttawa, Canada, 1973.

4. R .B.Duncan, GRAPPLE Applications, Proc. 3rd
~an-C omputer Communications Sem inar, 1973, pp 6.1-6.9.

5. G.Scott, C.Tl. ~l.Griffiths, R. . B .Duncan and D .L. Hillians,
GRAPPLE - An Interactive Computer Graphics Language,
TELESIS, vol. 3, no. 2, SUMmer 1973, pp 47-54.

6. L.G.Woolsey, Design for a High Level Graphics Langu a~e
Machine, Hell- Northern Research, Ottawa, Ca nada, (T o he
puhlished in INFOn., vol. 13, no. 3, October 197 5).

7 .

8 .

H . 1<f . Hckeeman, J. J . Horn ing and
Generator, Prcntice Hall Inc.

D.B.Hortman,
1970.

r.L.Dellcmer,
no. 7, July

Si mpl e L~(k) Grammars,
1971, pp 453-~6n.

CA C'1,

A Compiler

vol. 14 ,

9. t1.L . .Joliat, Translator Friting Systems at TIell - North e rn
Research, 8th ~fa '..raii International Conference on ~ vstem

Science, Januar y 7-9, 1975.

10. P.Bridges, S .I scovici and B.~itchell. T owards 0 ual ity
Software, TELESIS, vol. 3, no. 8, July/Au r ust 1974,
pp 232-238.

1 1. 11. D . lit! 11 s, Chi e f Pro g r a m mer T ea m s - Pr in c i pIe san d
Procedures, IB'I, FSC 71-S10 R .

12. hI .' ,'.Chu and 1l .Opderh e ck , Performance of Repla cement
1\1~orjthms with Differe nt P a~e Size s, Co mputer, (I EEE),
v 0 1. 7, no. 1 1, 'J 0 v e m b e r 1 q 7 4, p p 1 4 - 2 1 .

13. i\.Van I)a m and r..N.Stahler, Tntelli ~c nt S<ltellites for
Tnt e r<lctive Graphi.cs. Proc. NCC 1973, pp 229-2 3 8 .

1 4. T . I f. ~ f v c r Cl n d T. E . S u the r 1 a n cl , 0 nth e ne s i g n 0 f n I s p 1. il V

Pro c e s s 0 r s, C 1\ r. ' 1, v 0 1. 1 1, no . (), J u n e 1 9 G 8, p p 4 1 0 - L, 1 4 .

15. A.H<lssitt, J.W.La g eshultz and L.E.Lyon,
o fall i g h Le vel G rap hie s :-1 Cl chi ne, C. A C ' I ,
April 1973, op 199-212.

I mplementation
vo l . 16, no. 4,

