
A MINIMUM CONFIGURATION MICROPROCESSOR BASED DATA
ACQUISITION, POSTPROCESSING AND REPORTING SYSTEM

P.J. Zsombor-Murray
DATAC Computer Laboratory, Department or Mechanical Engineering,

McGill University, Montreal

Abstract

In order that engineers may effectively exploit microprocessor technology, the
teaching of fundamental informatique should assume a number of new dimensions,
beyond high level language programming, so as to include or anticipate the following:

125

(I) Familiarization of all engineering students with the macrologic of microcomputers.
(2) Hardware design as regards interfacing and system integration. (3) Low level
programming. (4) Laboratory exercises making use of microprocessor based
instrumentation and control and, (5) Design projects involving machinery or industrial
processes which include microprocessor systems.

This proposition is developed in the context of a simple application (from the point
of view of informatique). It is emphasized that the low cost and high availability and
performance of microcomputer components tend to shift the onus of system design from
informatique to the particular application discipline.

UN SYSTEME MINIMUM DE MICROPROCESSEUR POUR L'ACQUISITION,
LE TRAITEMENT ET LE RAPPORTAGE DES DONNEES EXPERIMENTALES

Resume

De sorte lJue les ingcnieurs peuvent exploiter effectivement des microprocesseurs on
sllggere que le cadre de caurs en informatilJue fondamentalc acqucrira lJuellJues
dimensions nouvelles. Au dela de la programmation en langages d 'un haut nivcau, on
doit considerer ou hien faire preparation aux sujets suivants: (I) Que tous les etudiants
en genie devriont apprendre la macrologique des microprocesseurs. (2) La conception
de « hardware » lJu 'appartient aux entrefaces et a I 'integration des systemes. (3) La
programmation de bas niveau. (4) Les experiences de laboratoire dans toutes les
disciplines de science appliquee qui s'interessent aux appareils de la mesure et du
controlc automatises par microprocesseur et, (5) Les projets de conception des machines
et des processus industriels qui comprennent les microordinateurs.

On developpe cette proposition par un exemple, tres simple au point de vue
d'informatilJue. On fait ressortir que les composants des microordinateurs ne coiltent pas
chers, sont en disponibilite immediate et sont presque aussi puissants que les
miniordinateurs, mais sans le meme complexite . Pour ces raisons ci, la competance en
conception des systemes de microordinateur souvant n 'echoit pas cl I'informatique mais
<lUX disciplines des applications specifiques.

A MINIMUM CONFIGURATION MICROPROCESSOR BASED
DATA ACQUISITION, POSTPROCESSING AND REPORTING SYSTEM

INTRODUCTION

by

P.J . Zsombo~-Mu~~ay
DATAC Compute~ Laborator y

Department of Mechanical Engin eering
McGill University

Montreal, CANADA
H3A 2K6

127

Microprocessor applications hold the solution to many
engineering problems. Attention will be given to simple
techniques and problems of some industrial relevance.
These will include topics suited to a general course on
microprocessors . It is felt that all engineers must
include some digital logic, software and microprocess or
applications in their design training . This is not to
produce computer designers but to provide for intelligent
spec ifi c ation and selection of computer systems, within all
branches of engineering.

Presently, few engineers in industry choose to desi g n
and construct entire computer systems, however simple. The
prevailing attitude relegates this activity to specialists
in informatique . It is hoped that suitable education might
impart the same objectivity , with regard to how best to
automate some phase of industrial activity, as is used to
decide whether or not to design and build a piece of
specialised production machinery in-house.

Three arguments are put forth in support of a general
compulsory course requirement in microprocessor
applicat ions:-

1. It has been pointed out[12] that traditional
courses , meant to impart skill and professional
identity, have been eliminated in favour of
engineering science content. Balance should be
restored with some modern, skill imparting
courses .

2 . Informatique curricula , described by Mulder[8] and
Sloan[lO], a re sequences in depth . Application s
t o pics are not concentrated in any s ingle c o urse .

3 . Ro ny and Larsen [9] state , from their e xperience
with non-computer science/non - electri c al
engineering students, that " ... Within only two
quarters, our students -many of whom had no prior
exposure to electronics and none of whom have

128

substantial undergraduate or graduate course time
available for studying electronics- can learn
sufficient digital electronics and microcomputer
interfacing to undertake projects of modest
complexity. Student response to the course has
been enthusiastic."

A TYPICAL PROBLEM

The following is to illustrate what might reasonably
be required of an engineer in industry as regards micro
processor applications. It was desired to automate the

1. Measurement,
2 . Postprocessing and
3. Tabulation

of some statistics pertinent to a periodically varying
- i.e . on and off - but largely random flow of gas thr o ugh a
porous medium. An experiment would normally comprise 10-20
periods , during which the flow i s on, separated by inter
vals, during which there is no flow. The periods of flow
last about 0.5-3.5 sec. while the intervals of no-flow
invariably exceed 8 sec. An apparatus schematic is shown
in Fig. 1. Sample flow velocity and vacuum signals, A and
A , are described in the graphs, Fig. la. v

e Intermittent flow is produced by controlling the
applied vacuum with a servo driven flow control valve. The
open loop control ling signal to the valve servo is furnish
ed by an analogue tape recording of the aspiration vacuum,
P " generated during tests with a human subject. The
a~tomatic slave aspirator mimics the actions of the human
for two reasons:-

1. Flow velocities and volumes associated with this
phenomenon are important. It is, however, not
practical to include a flow meter in experiments
involving human subjects because of the ass ociated
pressure drop and

2 . Furthermore , various porous samples are t o be
tested under identical, realistic conditions. It
i s not possible for the subject to duplicate
exactly his performance in any given test nor, for
that matter, to repeat it indefatigably.

ALTERNATE SOLUTIONS

Before deciding to invoke a microprocessor based
solution , alternatives were investigated:-

1. Data were reduced manually, from strip chart
recordings of the signals A and A -proportional
to applied vacuum and flow ~elocit~, respectively
using scale and planimeter,

2. A simple , commercial data acquisition system was
bought so as to record raw data on an ASR/digital

---- - - --

129

cassette terminal which could be used, with a time
sharing service, for postprocessing and

3. A proposal and quotation for a commercial mini-
computer based system was sought.

Manual data reduction was too tedious. The simple system
failed to operate and no satisfactory support could be
obtained from its manufacturer. The minicomputer system
was quoted at a minimum of $50k. The microcomputer system
was developed, including software, and commissioned for a
cost of $2k.

INDUSTRIAL AND EDUCATIONAL PERSPECTIVES

This project was carried out by the author with
-eventually- enthusiastic collaboration of the client's
engineering staff. None of us had had any microcomputer
experience . At the outset , microcomputers were regarded
with suspicion; the project was undertaken with misgiving.
Belief that simple, custom built microprocessors have
immediate and far-reaching relevance in general engineering
education sprang from this and subsequent encouraging
experiences. In order to dispel doubts that undergraduate
students can undertake significant application exercises
of this nature, the reader is refered to the work of two
students[3] in the School of Computer Science at Simon
Frazer University~ This constitutes an excellent example
of what can be accomplished, given proper stimulation and
direction.

The intermittent flow project will be discussed in
the following contexts so as describe some of the activi
ti es which the novice microprocessor user might expect to
assume:-

1. Operating the system; specifications
a) The report format
b) The measurements and their relation to

logged parameters
c) Operating sequence

2 . Hardware
a) System nucleus
b) Analogue to digital convertor interface
c) External memory and interface
d) Power supplies

3 . Software
a) General features of the processor
b) Detailed flow chart
c) Timing
d) Special subroutine requirements
e) Adaptability to other applicati o ns
f) The cross assembler
g) Co mputational alternatives f o r

microprocessors

130

OPERATION OF THE MICROPROCESSOR SYSTEM

Fig. 2 is a table of results from an experiment con
ducted with the apparatus of Fig. 3. Acquisition of data
from 2-track analogue tape recordings of the signals A a nd e
A of Fig. 1 was specified. Provision was made for the
operator to type in eight items for record identificati on.

After headings have been printed the ADC channels
are sampled continuously at 100 Hz. in anticipation of a
flow onset. When flow is detected, time integration of
signals A and A begins. Measurements are accumulated
until flo~ cease¥. The flow event is then logged.

ENERGY EFFORT

VOLUME

DURATION

INTERVAL

Where

t
n

= K LA (t) e e
t

0

t n
= K L A (t) v v

t
0

t n
= O.OlL t

t
0

t ,
0

= O.OlL t

A (t)
e

t
o

t
n

t
o

A (t)
v

t n

Vacuum signal at time = t

Time of flow onset

Time of no-flow detection

Time of next flow onset

Differential pressure signal
across flow measuring
capillary at time = t

K • K Scaling constants
e v

T ime int e rval, (t.+ l - t.) = 0. 01 sec., over the ran ge of
summati o n is constant ana

VELOCITY = VOLUME/DURATI ON

VOLUME and ENERGY EFFOR T are scaled time integr a l s of
A and A , respectively, while VELOCITY is a volume r a t e.
TIme fro~ flow onset until no-flow detecti o n is logge d a s
DURATION. After the first flow event has stopped, time is
als o measured from no-flow detection until the next fl o w
onset. This is logged as INTERVAL. The test is terminat e d
on demand when the stop button is pressed. Totals of all

131

columns, except VELOCITY, and all column averages are then
printed

The entire procedure can be repeated by typing G after the system prompt character, ~, which appears when the test ends . This is called a warm start. The entire operating program , except for utility functions packaged by the manufacturer in read- only-memory (ROM) is in volatile read-write memory (RAM). The program is loaded from an object file on digital magnetic tape via the cassette unit of the ASR terminal . As in the case of warm start, the newly loaded program is initialized so that the test procedure will cold start when ~ is typed.

MINIMUM CONFIGURATION HARDWARE; GETTING STARTED

The intermittent flow processor evolved from a Motorola Design Evaluation Kit , MEK6800Dl[1]. Mod ifications to the kit itself consisted, mostly, of removal rather than addition of components; Fig. 4.:-
1 . The multicomponent clock oscillator circuit was

replaced by a 1 MHz ., single package clock chip , 2 . The serial interface chip, Mc6850 ACIA , was
eliminated; terminal communications were handled by a 16 - bit parallel interface chip, Mc6820 PIA, using manufacturer's firmware[ll], MIKBUG:
MCM6830L7 ROM, and

3 . The onboard MCM6810 RAM , except for scratch used by MIKBUG , was eliminated in favour of a more
convenient 4k-byte RAM kit with full address
decoding and data and address buffering.

The evaluation kit was pr ovide d with both an RS232C and a 20 ma. current loop interface at both 110 and 300 baud . Before proceeding with system development, we used the kit , together with an ASR - 33 teletype and a CRT termi nal , as a trainer . Thus we became familiar with the functions of MIKBUG and with hand assembled programming . This educational bootstpapping was necessary to cold start green personnel .

ANALOGUE TO DIGITAL CONVERSION

Since two analogue data were t o be measured, A and A , and since the kit contained anot her PIA with a p~ir of iXdependent input - or output, since these are dynamically reconfigurable under program control - regi sters , these were interfaced to a pair of 6 - bit analogue to digital conver tors (ADC), Fig. 5 . Control functions were implemented in some of the four left - over PIA data lines. Aside from the twelve obvious data lines and the s upplying of logic and analogue reference power to the ADC 's, the following additional connections were re quired, Fig . 6 .:-

132

1. A stop button, SB, normally grounds the line to
PA7. This holds a sign bit at 0 = + in one of the
PIA registers. So long as a non-negative reading
on this channel persists, the program continues.
Pressing the stop button changes the sign bit by
connecting PA7 to +5v. thus stopping the program.

2. The command to actuate the ADC's is produced by
toggling the output of PB7 low-high-low. This
signal must be put through a TTL gate sinc~ the
output of the PIA is not sufficient to initiate
the simultaneous conversion of both ADC's; the
intervening gate supplies the necessary current.

3. The range swiches, SRI and SR2, and the trimming
resist ors , PRl and PR2, scale the measurements,
A and A , respectively. This analogue implemen
t~tion 01 the scaling constants, K and K ,
mentioned previously, is preferabl~ to su1fering
the truncation by division of small integer read
ings or the overflow risked through the multipli
cation ef large ones.

ADDITIONAL MEMORY

A 4k-byte (4096x8) semiconductor RAM memory kit,
Fig . 7, composed of 32 (1024xl)-bit 2102 chips, was built
t o provide sufficient memory for the flow processor. This
memory is plug-compatible with a number of popular micro
computers but required modification for the MEK6800. This
includes:-

1. Tying the eight separate data input and output
lines, DI~-DI7 and DO~-D07, respectively, together
so as to connect to the eight line M6800 data bus,

2. Inverting the READ/WRITE signal input, R/W, so as
to comply with the polarity of this signal on the
M6800 control bus and

3. ANDing together the VALID MEMORY ADDRESS (VMA),
Phase II clock (dat a tpansfep cycle in ppogpess)
~2 and the R/W signals:-

SM EMR = (VMA)· (~2) . (R / W)

to enable the SET MEMORY READY OUT , SMEMR , signal
during a read operation.

Modifications , implemented with spare gate capacity,
entailed onl y four small wiring additions. No new compo
nents wer e required.

POWER SUPPLIES

Although the M6800 require s only +5 v . logic power ,
this application required other voltages a s well:-

1. ±12v. to supply th e terminal interfaces; RS 2 32C and
20 ma. current loop,

2. ±15v. for analogue reference volt age in the ADC's

133

3. And a crude +8v. supply to augment logic power for
external RAM memory. The RAM kit was equipped
with voltage regulators and the original +5v.
regulated power supply had capacity only for the
evaluation kit and the ADC's.

Clear ly, a multi-voltage, single power supply would have
been neater. Unit proliferation is typical of prototype
systems.

SYSTEM INTEGRATION

The units of Fig. 8 were mounted on stand-offs on a
70x50 cm. base and added in the sequence shown. These were
interconnected by a cable harness to which odd plugs and
connectors were added as required. A panelled card cage
with a properly designed back plane is more attractive but
a base mounted assembly provides better access to all com
ponents; a useful feature for trouble shooting, of which a
considerable amount is required during the learning
process.

The two types of terminal interface were brought to a
solid mounting, Fig. 9, and terminated in standard plugs.
Two switches provide 10 or 30 character/sec. transmission
selection.

OPERATING SOFT WARE

The major procedural blocks are illustrated in Fig 10.
The procedure is fully described in Fig. 11. Relevant
parameters are defined as follows:-

Parameter Description

PIP = 0
= 1

PUFFN~
SPFDUR

SPFINT

SUMV

SUMVEL
SUMP

PFINT
PFDUR
VPUF
PPUF
VACC

PACC

No-flow condition exists; flag
Flow condition exists
Event number; column 1 on Fig. 2
Sum of all event durations; total in
column 2
Sum of all inter-event intervals;
total in column 3
Sum of all volume measurement values ;
total in column 4; integral of VACC
Sum of all volume rate calculations
Sum o f all vacuum measurement values;
total in column 5; integral of PACC
Inter-event interval; column 3
Event duration; column 2
Event volume; column 4
Event vacuum; column 6
Volume measurement; thresh o ld
accumulation
Vacuum measurement; threshold
accumulation

134

Paramet er

measure

PA

PB

FILCNT
FILMAX
PTHRSH

update

VPFAC
PPFAC
SMVFAC =
SMPFAC =
APFDUR
APFINT
AUMV
AUMVEL
AUMP

TOTALT,
AVRGT
PFVEL
~PTIME

VPFAC
PPFAC

Description (cont'd.)

A function which returns measurements,
PA and PB, from the ADC's
Vacuum transducer measurement in
PIA-A-register; signal A
Velocity transducer measijrements in
PIA-B-register; signal A
Accumulation counter v
Limit of FILCNT
If PACC exceeds PTHRSH, flow is in
progress
A function which updates PUFDUR, VPUF
and PPUF
Volume units scaling factor; K
Vacuum units scaling factor; KV

e

Average event duration
Average inter-event interval
Average volume aspirated per event
Average volume rate of aspiration
Average integral of aspiration vacuum
per event

TOTAL and AVERAGE labels of last rows
Event volume rate; column 5
Line output time of terminal; used to
initialize an inter-event interval
after processor prints an event log

The triangle symbols, WAITn, are programmed idle
loops. These synchronize program execution by making all
procedural paths equal. Delays were tailored by adding
up individual instruction times. An exception occurs
during printing. Although instruction count is lost, timing
is maintained by initializing the subsequent inter-event
interval; PUFINT = ~PTIME, the time taken to print . The
idle, WAIT4, compensates for the non-existent inter-event
interval preceding the first event.

SUB FI 0 orCIN ES

Two of the processor subr o utines bear brief menti o n.
These are examples of software, which, though general
enough to be commercially available, the user may neverthe
less choose to write himself.

The analogue measurement routine:-
1. Writes three bytes in sequence to a PIA to which

the ADC's are connected. The three write opera
tions toggle the encode signal, PB7, so as to
command measurements to be made,

2. Waits until the maximum conversion time of the
ADC's has elapsed and

135

3. Reads the two PIA registers, which now hold the
6 -bit readings, right justified as binary in tegers .

Note that this routine must also configure PB 1 as output
prior to toggling the encode signal, then reconfigure both
registers, PA and PB, as input prior to reading the ADC's.

Another subroutine, the decimal formatter, facili
tates the printing of tabulated numerical data. It prints
a l6-bit 2's complement integer with minus sign, leading
and trailing O's and decimal point inserted as required.
Two bytes of format information are used to print each
number:-

Byte 1:- If negative, a decimal point will appear
- If positive, none is required
- Magnit ude is the field width into which

the number will be right justified
Byte 2 :- If negative, decimal point is moved left;

leading , most significant O's inserted, as
required

- If positive, decimal point is moved right;
trailing, least significant O's inserted,
as required

- Magnitude is the number of places that the
decimal point is to be moved; left or right

- Trailing, but no leading O's may be inser
ted if Byte 1 is positive

ADAPTABILITY TO OTHER APPLICATIONS

The following is included to show how the hardware,
and to some extent the software, developed for the inter
mittent flow processor can serve in other applications.

Response characteristics of oscillatory systems are
commonly determined by experiment, Fig. 12. The system to
be analysed is excited at a number of discrete, simple
harmonic frequencies over the desired test range. A Bode
Diagram is constructed, wherein amplitude ratio, A, and
phase shift, ~, of the output signal with respect to the
excitation signal are plotted -vs- excitation frequency, w.
Respo ns e properties of the test system may be discerned by
identifying the break point frequencies via the amplitude
ratio characteristic. Although tedious, such experiments
are often performed manually. It was therefore decided to
investigate the feasibility of a microprocessor based
analyser. Specifications were tentatively defined:-

1. Pure harmonic excitation,
2 . Excitation frequency range: 1 Hz. to 1000 Hz.
3 . Frequency increments: ~10 Hz.,
4. System o utput signal sample of 128 measurements,
5 . Use of Fast Fourier Transformation (FFT) to

compute amplitude and phase of fundamental
r e sp o nse harmonic and

~ . Tabulation of Bode Plot coordinates; an interfaced
plotter wo uld be preferable , its accompanying
complexity , for the present, would not.

136

Hardware for this analyser is summarized in Fig. 12. Two
existing ADC's are sufficient. These, capable of 20 kHz.
simultaneous sampling rate, resolve 20 points/wavelength
of a 1000 Hz. signal. The primitive line toggling ADC
triggering procedure is too slow however. A new measure
ment subroutine, which exploits the PIA input and output
strobe signals, CA1, CA2, CB1, CB2, must be written.

Excitation signal generation hardware, which
includes:-

1. An additional PIA to communicate with a
2. Digital to analogue convertor (DAC) which selects

the output frequency of a
3. Voltage controlled oscillator (VCO),

must be added. Tests on vibrating mechanical or structural
systems would also require:-

4. Power amplification of excitation signal,
5. An applied force generator or shaker and
6 . An accelerometer.

But the analyser could probably test simple passive,
electrical circuits with only the first three additions .
The PIA, DAC and VCO are all single package integrated
circuits and require only a few discrete components to
complete their interface to the microprocessor.

A version of the well-known Cooley-Tukey FFT routine,
written in FORTRAN 11, Fig. 13, was used as a model for an
integer version written for the M6800 . By using suitable
1, 2 and 3-byte arithmetic and by developing an integer
Sine/Cosine subroutine, the FFT was implemented in less
than 1500 bytes of memory, including 512 bytes for the 128
data samples and their subsequent transformations; i.e. tw o
bytes for both real and imaginary components . A transfor
mation is performed in about 1.5 seconds .

The FFT will not be elaborated further. However, the
Sine /Co sine routine and the Arctangent and Square Root
functions, performed by pseudo division , will be discussed
in some detail . Consider that the two latter functions
are required to compute amplitude and phase from the
transformed data :-

A = (1 2 + R2)! and

~ = tan-1(I/R) where

I and R are the imaginary and real parts, respectively.

SCIENTIFIC FUNCTIONS FOR MICROCOMPUTERS

Some complicated calculations and scaling of data
are inevitable in all but the simplest applications .
There are a number of ways to perform calculations. Those
deemed most appropriate for small systems will be empha
si zed. Algorithms, developed for hand calculat o rs, can be
efficiently used with microcomputers.

137

HARDWARE FLOATING POINT PROCESSOR

Floating point processors, implemented in extensive
parallel, high speed logic and with scientific function
capability, are fast and effective but very expensive.
They can usually be justified only at the top end of the
minicomputer range. It is unl ikely that a small microcom
puter system would require such an accessory.

INTERPRETER

BASIC interpreters for microprocessors come in vary
ing degrees of capacity. 32-bit floating point arithmetic
and scientific subroutines are available. This software is
aimed at a rapidly expanding personal computer market and
is suitable to many business applications. Lest it be
concluded , however, that a powerful BASIC interpreter is
indispensible, certain undesireable byproducts should be
noted:-

1. Substantial increase in memory, hence power,
required,

2 . The interpreter may not communicate conveniently
with the utility routines in ROM, e.g. MIKBUG,

3. The memory size increase may prohibit skeleton, or
partially decoded, addressing; a particularly
attractive feature which reduces both the wiring
and loading of address lines in minimum configu
ration systems,

4. A procedure, whose timing is based on instruction
cycle accounting, cannot execute interpretively;
imposition of a real time clock and interrupt
routines have to be accepted,

5. Interpretive decisions, i.e. IF, THEN, ELSE, may
be unacceptably slow and

6 . User written routines would suffer data inter-
communication constraints.

The foregoing criticism was voiced with the confidence that
the many excellent features of high level interpreters are
common knowledge.

CALCULATOR CHIP INTERFACE

A scientific calculator chip can enhance a micr o pro
cessor[4] where high precision and low speed are a desire
able compromise. Such a peripheral was built and tested
and has operated successfully as a calculat o r simulator ,
Fig . 14. Considerable software is required, howe ver, to
provide general programmed acce s s; this has not yet been
attempted. The attractive features of this device include:-

1. Calculator chips, even with 12 digit mantissae,
are cheap; some cost as little as $5.,

2 . The interface is not expensive and is easy t o
build,

138

3. Operation is conceptually simple; a PIA simulates
keystrokes for input and

4. Accepts the serial bit stream which would normal-
ly drive the display; decoding is straightforward.

The microprocessor and the interfaced calculator chip are
not entirely compatible partners. When keystroke input
encode and display signal output decode involve conversion
to and from binary numbers, the programming task becomes
significantly more formidable. On the hardware side, the
need for another power supply, 7.5v. this time, arises.

There might be considerable application, however, for
a calculator chip designed to operate in conjunction with
a microprocessor, either as an addressed peripheral on the
data bus or at least more compatible with a PIA. This
adaptation might accept and pre se nt data in a number of
successive bytes. User specified input and output format,
in various floating point and integer configurations, might
be permitted. Consider a hypothetical 14-pin bug with
eight bi-directional data lines and four control lines;
Fig. 15. Possibly a chip select (CS) and a clock input
(~2) might be added to the pin count if it were desireable
to put DO-D7 directly on the data bus. The proposed 14-pin
layout may well suffice, interfaced to a PIA. An operating
sequence to multiply two numbers, as illustrated in Fig.
15, might be as follows:-

1. Configure DO-D7 as output from PIAA
2. Set M = 3; i.e. MO = 1 and Ml = 1
3 . Place CLEAR function code on DO - D7 (assume that an

appropriate set of function and operation code s ,
not tabulated in Fig. 15, have been defined)

4. Toggle ACPT MOD (TAM)
5 . Pl ace l-BYTE: SCALE B8 function code on DO -D7
6. TAM : Set M = 0
7. Place A o n DO -D7
8 . TAM: Se t M = 3
9. Place 2-BYTE: SCALE BD function code on DO -D7

10. TAM : Set M = 0
11. Place Least significant half of B on DO -D7
12. TAM: Place Most significant half of B on DO-D7
13. TAM: Set M = 1
14. Place MULTIPLY functi on code on DO-D7
15. TAM: Set M = 3
16. Place 3-BYTE: Floating Point code on DO-D7
17 . TAM: Set M = 2
18. Configure DO-D7 as input to PIAA
19. TAM : C+O = sign/exponent result
2 0. TAM: C+l = most signific an t half result
21 . TAM: C+2 = least s ignificant half result

This procedure is cumbersome. However very inh omogeneous
data format examples were selected f o r operands and result .
All I / O was han dled by PAn and PBn lines. If RDY was
connected to the interrupt flag lines, CAlor CB1 , and the
toggl ing of ACPT MOD was done aut omatically, by CA2 or CB2 ,
whenever the PIA was loaded or emptied, the procedure would
be greatly simplified.

139

ALGORITHMS

Calculations, including scientific routines, can be
implemented in software. This is often acquired n'th hand
and has usually reaped some benefits of natural selection.
Software can also be tailored by the user to serve speci
fic application needs. This often compensates somewhat
for the programming effort and extra memory requirement.

Algorithms may be classified as table lookup (TLU) ,
recursive or a mixture of both . The Sine/Cosine routine
described later is an example of a table lookup . The
Division and Square Root part of the pseudo division exam
ples are essentially recursive. The pseudo division Log

A . e
and rctangent examples use both lookup and recurSlon.
Generally TLU's are fast and present the user with a size
vs - precision trade-off while iterative procedures con
stitute a speed-vs - precision compromise .

MICROPROCESSOR SINE AND COSINE SUBROUTINE

A S ine/Cosine subroutine was written for an 8 - bit
microcomputer in order to implement a Fast Fourier Trans
formation algorithm. Raw data to be transf ormed is
acquired via 6-bit analogue to digital convertors. This
amplitude resolution, of better than 2% of full scale, was
deemed sufficient for parameter identification in many
electromechanical systems . Considering the relatively low
precision of the raw data, a TLU, wherein angle and func
tion are scaled over one quadrant at a precision similar
to that of the full scale magnitude of the measured signal
amplitude, seems to present a good design comprom ise among
simplicity, size and execution speed.

The table contains a sequence o f sixty five 8 - bit
integers which represent Sine values at sixty four equal
ang ular intervals, spanning the range 0 to n/ 2 , i.e. the
first quadrant . This sequence also repres e nts Cos in e
values in the fourth quadrant. Therefore Cosines are
handled by adding a count of 64 = n/2 to a n gle arg um ents
and treating them as S ines. Multiple rotations a re handled
by successive subtractions of 256 . Using abso lute argu
ments f or lookup, the function va lues are simply post
negated if the arguments were negative . The quadrant into
which the angle falls is determined by successive subtrac
tions of 64 from the angle. The function is negated if tw o
or three subtractions are required to establish a first
quadrant residue; i . e. if the angle is in the third or
fourth quadrant. If an odd number of subtractions was
required, i.e. 1 or 3 for angles in the second or fourth
quadrants, the angle is complemented, before lookup, by
subtracting the first quadrant residue from 64 . This Sine/
Cosi ne algorithm is illustrated in the fl ow chart , Fig. 16 .

Th e routine operates on a 16-b it , 2 ' s complement
representation of the angle . A f ull revolution co rr esponds

140

to an integer count of 256. The function value is return
ed as an 8-bit, 2 's complement integer . The following
illustrates an example of the evaluation of cos(7700): -

ANGLE

degrees

-770
+ 90

=-b8O
680
-~

320

~
50

0.643
-0.643

0.643

integer units

-548
+ 64
=484

484
- 256
228

192
~

64
36
~

41
- 41

41

add 7T/2
take absolute value of angle and
set first negative flag and
subtract 21T

s ubtr act 3 (1T/ 2)
since 3 > 1, set second negative
flag; since 3 is odd , complement
angle

evaluate sin: 41/64 = 0.641
negate for first flag
negate for second flag; returned
value

MODIFIED DIVISION (PSEUDO DIVISION)

A division algorithm , which is adaptable to calcula
tion with operands of any precision, can be modified so as
to compute:-

1. Y/X

2 . (Y/X)'

3. log (l+Y/X) e
4 . tan-1(y/X)

This method was developed, in d e cimal arithmetic , by
Meggitt[5] who also extended it, using a modified mul
tiplication algorithm (pseud o multiplication), to cal
culate X(eP - l) , sin(p), cos(p), tan(p) and Xq2 . This s ort
of procedure, implemented in ROM , is used in electronic
calculators. Milgram 's[6] binary pseudo division was used
in a short, fast subroutine for microcomputers using
2 4-bit, 3-byte ope rands. This s ubroutine is described in
the flow chart, Fig . 17. The nomenclature is as
follows :-

y

X

j

numerator (input)

d en o minator (input)

it e ration count (place s aft e r i nt e ger
point)

n

Obviously

A =
0

B =
0

Qo =

and

Qj
=

and

Aj +1

Although

B. =
J

y

X

0

A j /Bj

141

remainder (at step j)

divisor

Quotient

binary coeffic ient contributed to Quotient

(i. e. Q
j

= ~ Q • 2 - i)
1 1

last iteration (j =n; Q conta ins n bits) max n

= 2(A
j

-Q
j

B
j

)

X

throughout, for division, B. must be modified at every
step to obtain values of th~ other functions. For (a)
log and (b) tan-I, the bits, Q., of the Quotient serve as
pOi6ters to a table of:- 1

respectively. Viz.:-

j

o
1
2
3
4
5
6
7
8

1+2- j

2.
1.5
1. 25
1.125
1. 0625
1. 03125
1.01 5625
1.00781 25
1.003906 25

(a) log (1+2- j)
-------=e-------
0.63914
0.405465
0.223144
0.117783
0 .0606247
0 .0307717
0.0155043
0 .00778 21
0 .00 38987

2 - j (b)tan- 1 (2 - j)
~~--~--~--~

1. 0.785398
0.5 0.463648
0.25 0 . 244979
0.125 0 .1 24355
0.0625 0.0624188
0 . 03125 0.0312398
0 . 015625 0.0156237
0.0078125 0 . 00781227
0.00390 625 0 . 0039062

142

E.g., to eight binary places for (a):-

y = 3
X = 4

Qs = 169
= 101010012

.405465

.117783

.030772

.003899

.557919

.003899

.561818
(+ least significant bit of Q)

n

We see that

0.557919 < (log (1.75) = 0.559616; from tables) < 0.561818
e

Similarly, an example for (b):-

y = 1
X = 3

Qs = 83
= 010100112

. 2 44979

.026419

.007812

.003906

. 319116

.00390 6

.323022
(+ least significant bit of Q)

n

We see that

0 . 319116 < (tan- 1 (1!3) = 0.321151; from tables) < 0 . 323022

Notice that these computations are precise, in the integer
sense of truncation, since Q ~ true value but if a con
stant, equivalent to that contributed by the least signifi
cant bit, is added to Q , the result exceeds true value .

A note of qualifigation, concerning the Square Root~
Log and Arctangent computations should be added. Whereas
theedivision of Y!X produces an error free result regard
less of the justification of the operands, i.e.:-

Y = (000

X = (000

both yield

001)2 or (010

011) 2 or (110

Q = (010 101)2'
n

000)2 and

000)2

This is not so with the three othe r functions . In these,
Y and X must be left justified so as to achieve maximum
precision in Q . Also , since~ in their course , both A.
and B1 have ocgasion to increase during their iteratioh,
the u~er must take precaution so as to control carry-out
from the most significant bytes of A and B, respectively.

SOFTWARE DEVELOPMENT TOOLS

Hand assembly of programs, up to about 100 instruc
tions in length, is feasible. This is quickly done by
writing down the symbolic instruction and address mnemonics
and translating these, with the aid of an instruction

143

reference card, into hexadecimal machine format. I f there
are no user discernable microcoded instruction fields o f
1, 2, 3, 5, 6 or 7-bits, hand assembly is particularly e as y
since, in this case, every symbolic instruction will c o r
respond to one or more hexadecimal digits. Not all micro
computer architectures embody this convenience.

A microcomputer cross-assembler which runs on a fair-
ly large host computer and produces:-

1. A loadable object tape,
2. An assembly listing on a high speed printer and
3 . Which accepts card input

is probably the single most useful programming aid. Cross
assemblers are often written in portable FORTRAN IV and
may be adapted to host machines of various word length.
Large programs are invariably composed of independent
modules which have to be verified and integrated in stages.
Therefore card input is particularly desireable because a
deck, with the aid of a listing, can be conveniently and
extensively edited.

CONCLU S I ON

Although some scepticism has been expressed c o ncern
ing the feasibility of in-house system building by the
user[7], serious efforts are afoot to define standard s f o r
high level microcomputer software and hardware[2]. These
efforts, together with the availability and low price of
microprocessors and other digital, linear and hybrid LS I
components, raise considerable optimism that it is p o ssible
to effectively treat the design and application of systems,
composed of these components, in the general engineering
curriculum. .

144

INTERMITTENT FLOW THRO'lJGH A POROUS MEDIUM

F; g. 1

o 10

o

,--------, AIJAL04U£ TA-Pt. ', Dl'-TA
'l=R.OI-fI I-\UN\AI.l .sUB-JECT

"'Pe

J
'Z.C\o\~>4NE. l. ANAlO <4 uE

r: 1Nl Tt!>, P E' RE.CO R DE R..

GRAPH ICAL REPRESENTAH OII OF Tvp I CAL,

RAI1 DIGITI2ED DATA FROM AIM LOGUE TRANSDUCER S

2 3 4

Time (!iN.) ~

----- -.. . -I ~~I~\W~I i -0 ET AIL 0 F 1st

- .! \l}'1d \ t 0\.\ - VE LOC IT Y PEAK
~~JJWIV (, I

fl\A,~' --- -----,-- .. - 1 --

I I

: I
. :: . . ;

I
:' I

I
I

l
l~

~l ,I)

... ~ELOC~ TY PEMK

i,f
O. t

F i g. la

,
I

2 30 40 50

j
I

I I

:' ' I,
i

I
I
I

60

, ,
I, •
: ' I

" .
i" , ,
"
!' I ' . . .
'" " .1

70

FORMATTED REPORT OF AN EXPERIMENTAL RUN

PRODUCED BY THE r'1ICROPROCESSOR SYSTEM

ANALWUE TAPE NO. """a"a",,,,, DATE
SUDJLCT ,.0· """"""""" T'01<;
STkRT • , 189 rEET z.~ r; •
TEST SPECIMu~ XXXXXXXXX TEST "E.~~ TH

EVl::NT NC,. DURATION INTERVAL VOLtJ:1E ' VELOCITY
(SEC.) (SEC·) (ML.) (MLa! SEC.)

1·6 5"·6 31·6
13·3

2 1. " 37· " 37. "
23·8

' 3 g.9 17. 1 19. "
14.5

4 1·7 57·9 3401'
2,,·g

5 1·6 32.8 2a·5
18·7

6 2· " 5a·2 25· 1
2".3

7 2·8 61.5 21·9
23·7

8 1·8 47·2 26·2
16·6

9 1·1 46·6 42.5
35·8

'" '.9 36·5 20·2
12."

11 2·7 6'" " 22·2
17.6

12 3·9 63·6 21·4
TOTAL 23;" 216',5 583'-4
AVERAGE ,.' 9 19.'8 48'-6 26.8

•

145

Fig. 2

1"/12/761
18:37:45;

25" rEET
YYYYYYYYY MN.

ENERGY ErrORT
((;1. tJATER*SEC·)

' . ,

'49.1
' .

34·1!

15·9

51. B

32·1

62·6

74.8 ..

54·9

42."

34·8

~9·2

72 9
584 1

48 6

TEST SYSTEM CONFIGURATION

~ -
~ r

C---)
Dlc;.ITAL (A~~E1T£' ~ AS /
TERN\II\JAL

PIA. ADC
'Pt.. I- Ae

..... pu
'PIli>. -ADC 1
fiB f--

Av

MIC ROPRoC.E~SO R.
~'(STE.N\

Fig. 3

6
Z CI4ANNE I.. .Io,NALO!1uE

E' R.£C()~ DE R. F TAP

146

EVALUATION KIT Fig. 4

PA PB

SRI PRl SR2. PR2 SB
ANALOGUE TO DIGITAL CONVERTORS Fig. 5

147

ANALOGUE TO DIGITAL CONVERTOR INTERFACE

PR!

SR2

SN7400

PB7

5k~

PR2

I
I I L ____________________________ J

INPUT/OUTPUT
CONNECTIONS

I'IN FUNCTION

1 f.O.C. (STATUSI

2 OFFSET CONTROL

:11 START CONVERT
4 INTERNAL CLOCK OUT

CSERIAL 0UTI'UTl
Ii liT 1 OUT CMSII

11 liT 2 OUT
7 IIT:IIOUT

• • ,T4OUT

• .,TIiOUT

10 .,T • OUT CLSII
17 +!IV !'OWER INI'UT
11 .'5V!'OWER INI'UT
11 -15V !'OWER INI'UT

20 !'OWER GROUND
21 F.s. ADJUST

2'7 ANALOG GROUND
n ANALOG INI'UT 2
24 ANALOG INI'UT 1

+5v. ! Vee
SB . \ no

/ne

Fig . 6 u
PA7 PA6-PAO

PB6-PBO

148

MEMORY MODIFICATIONS; RAM KIT

"··· .. 1 .. ~
1JI:}-~l/f·~;~1 --,

AI .r:-J. I
~!:1, /-
A' .3~~r;'.--t---,
- V1 I

AI • DJ,

: .~ - I
~ .. ~: r

7' .~~ I
- V ,
.I' ,~ J

()D V

...!'r-.. ,,~ •
~ V ...
.I' ", IJ [J[J- 'I~

V: It.·.,..

F; g. 7

AI'

[]D

....
CD

l~~o- .

l.~~
l'~~-~

II~
KII-_

~

rf=
- -- -

t'D
,J -- T-J---

17 f ~ 18 f •• 01 "-
~+ij

, .. r-trUf ~ •
- .-- .- -

r--
-"4-- -r-

-- ----.......

-- - - - - 1 -- - ~
- -- - f,i -- ~ -

~ I!J r Z/~'

~EH/:
i'" ..

-

-- -- -- - - -- --
----- ---- -.- -- - ..

----- ----- - -

149

INTERMITTENT FLOW PROCESSOR Fi g. 8

TERMINAL INTERFACE Fi g. 9

150

INTERMITTENT FLOW PROCESSOR (GENERAL)

-PRINT INITIAL IDENTIFICATION HEADINGS
-ACCEPT RECORD IDENTIFICATION INPUT
-PRINT COLUMN HEADINGS

-INITIALIZE
-CLEAR STATISTICS

VALUES

~~------------~-~~~---

yes

PRINT TOTAL AND
AVERAGE STATISTICS

NEW NO-FLOW
CONDITION

DETECTED

INCREMENT
INTERVAL
COUNTER

Fig. 10

no

ACCU~,1ULATE

EVENT
STATISTICS

A

~-------------------------------- ----

APFDUR=SPFDUR/N0PUFF
APFINT=SPFINT/N0PUFF
AUMV =SUMV/N0PUFF
AUMVEL =SUNVEL/N0PUFF
AUMP=SUMP/N0PUFF

pnnt :AVRGT,
APFDUR ,flP!'" I NT ,
AUMV ,AUfWEL,

P

INTERMITTENT FLOW PROCESSOR (DETAIL)

PIP=O
PUFFN0=O
SPFDUR=O
SPFINT=O
SUMV=O
SUMVEL =O
SUMP=O
PFltlT=O

PACC=PAC C+PA
VACC =CACC+PB
FILCNT=FILCNT+l Fig. 11

i s

FIX"AX

PACC>PTHRSH~e~s~-------------------,

~" 'PUF0FFr-J-________ ~
IpII~ ~~~--~
u date

SPFDUR=SPFDUR+PUFDUR
VPUF=VPUF/VPFAC
PFVEL=VPUF/PUFDUR
SUMVEL =SUMVEL+PFVEL
PPUF=PPUF/PPFAC
PUFFN0=PUFFN0+!

151

152

set
frequency

A = !lo
Ai

BODE ANA L YSER

>-- OSCILLATOR

~ <::T 0:::

EJ ,-l
I~~I
I <::T 0::: I
L_J

,\J\.; TEST Ao - ---
SYSTEM

- \ - nonl i-n ea r re1s-

l5tJarmoni c exci - Po":Xi'JQiJJ [
tation sig-

n a 1

Fig. 12

r-~accelerometer

et:
Cl... power

amplifier
I

r t -', l " TEST
et: I -.Jt'l SYSTEM -- 1
Cl... shaker

TERMINAL

FAST FOURIER TRANSFORM ROUTINE

SUBROUTINE FFT(NN,DATA,ISIGN)
DIMENSION DATA(N)
PI2 = 0.5*3.14159
N = NN*2
J = 1
DO 50 I = I,N,2

IF (I - J) 10,20,20
10 TEMR = DATA(J)

TEMI = DATA(J + 1)
DATA(J) = DATA(I)
DATA(J + 1) = DATA(I + 1)
DATA(I) = TEMR
DATA(I + 1) = TEMI

20 M = N/2
30 IF (J - M) 50,50,40
40 J = J - M

M = M/2
IF (M - 2) 50,30,30

50 J = J + M
MMAX = 2

60 IF (MMAX - N) 70,90,90
70 ISTE = 2*MMAX

DO 80 M = 1,MMAX,2
THET = ISIGN*(M - 1)*3.14159/MMAX
WR = SIN(THET + PI2)
WI = SIN(THET)
DO 80 I = M,N,ISTE

J = I + MMAX
TEMR = WR*DATA(J) - WI*DATA(J + 1)
TEMI = WR*DATA(J + 1) + WI*DATA(J)
DATA(J) = DATA(I) - TEMR
DATA(J + 1) = DATA(I + 1) - TEMI
DATA(I) = DATA(I) + TEMR

80 DATA(I + 1) = DATA(I + 1) + TEMI
MMAX = ISTE
GO TO 60

90 RETURN
END

Fig. 13

153

154

INTERFACED CALCULATOR CHIP

Fig. 14

MICROCOMPUTER ADAPTED CALCULATOR CHIP (MAC)

1)~ ~ND

MA.C])7
"'-PT

hil ~O ~D RD'< DC-D7

~~
"RDY 1>4-

AtPT MOD MAC D~

MO])Z,

~7 Ml Dl
t>A'?l 1>A7. 'PAl Pl>.O "'Pea- f'B7

"PIA tv\CbE>'2.0
VCc.

8-bit data or command byte; tristate lines
accept or produce:

155

(a) Sequence of operand input bytes,
(b) Format/precision selection or other control

function byte,
(c) Operator byte or
(d) Sequence of result output bytes.

RDY A (~) transition signals that a sequence of
operat i ons, defined by mode select (Mo, Ml) ' a t
time of most recent ACP T MOD strobe (~), is
complete.

ACPT MOD Read (Mo,M,); then read (0 0-07) or write (0 0 - 07)
when strobe (~) occurs.

Mo Ml_
0 0

0 1
1 0

1 1

Accept operand, 1 byte at a time/strobe, as per
currently prevailing status as defined by most
recent function byte i nput.
Accept operator byte
Transmit result, 1 byte at a time/strobe, as per
current status.
Accept function byte input to define format,
precision, etc.

Example:- C = A x B b 7 b 6 b 5 b 4 b 3 'b 2 ib 1

A: I-byte unsigned integer,
scaled BO

I . 2 - 1 2- 2 2- 3
,
2- 4 2- 5 2- 6 l2- 7

i

bo
2 - 8 I

B: 2-byte 2's complement
integer scaled B8

~2 7
- 1

26
1 ; - 2

125 124 2 3 22 ~ 21 .20
1 - 3 ' -4 1 - 5 1 - 6 1 -7 : - 8 2 2 .2

C: 3-byte floating po i nt
sign and exponent
mantissa , MS 1/2
mantissa , LS 1/2

. . 2

Fig. 15

.2

156

Fig. 16

SINE/COSINE SUBROUTINE

r--L--------

QDTFLG=O
NGFLGl=O
NGFLG2=O

<

i s
Q [) T F L G > h_y_e_s _ ___ ~

?

RETURN

PSEUDO DIVISION

ZO<J e?
f~= ~

Fig. 17

yes

no

quotlent
dividend
divisor
bits in uotient

t a n-l?
M=-(2**(-I))*A

157

158

REFERENCES

[1] Anon., "Assembly Instructions for the Motorola M6800
Design Evaluation Kit"" Mo torola Semiconductor
Products, Inc., (/'75)

[2] W. DEJKA, "Wo rkshop Report: Mi cropro c e s s or St andard
ization Concepts", Computer, (2/'77), pp. 54-56

[3] I. GANAPATHY and N. JAFFE, "Enhancing the Graphic
Capabilities of a Storage Scope Using Microprocessors",
Pr oc . CIP s /cSA Canadian Computer Conference S es sion
'76, (5116), pp. 401-431

[4] R . GUTHRIE , "Build this Mathematical Funct ion Unit",
Byte, Part I: (9/'76), pp. 26 - 33 , Part 11: (10/16),
pp. 14-80

[5] J. MEGGITT, "Pseudo Divisi on and Pseudo Multiplication
Processes", IBM Journal, (4/62), pp. 210-226

[6] M. MILGRAM, "Lecture #10; Microcomputer Software",
Course 308-165, Mc Gill School of Computer Science,
(2117), pp. 1-5 and Private Communication, (3111)

[1] R. MERRITT, "Minis and Micros ... competing for
con t r 0 1 ", Ins t rum en t at ion T e ch n 010 g y, (2117) ,
pp. 45-52

[8] M. MULDER, "Model Curricula for Four-Year Computer
Science and Engineering Programs: Bridging the Tar
Pit", Computer, (12/'75), pp. 28-33

[9] P. RONY and D . LARSEN, "Teaching Microcomputer
I nt erfacing to Non-Electrical Engineers ", Computer ,
(1/11), 53-51

[10] M. SLOAN , " Survey of Electrical Engineering and
Computer Sci ence De partments in the U.S.", Computer,
(12/15), pp. 35-42

[11] M. WILES and A. FELIX, "Engineering Note 100
MCM6830L1 MIKBUG/MINIBUG ROM", Motorola Semiconductor
Product s, Inc., (/'75)

[12] P. ZSOMBOR-MURRAY, "Computer Exercises in Engineering
Graphics", Proc. CIPS/CSA Canadian Computer Conference
Session '7 6 , (5/16), pp. 462-493

