
A PROGRAM STRUCTURE FOR EVENT-BASED SPEECH SYNTHESIS BY 
RULES WITHIN A FLEXIBLE SEGMENTAL FRAMEWORK 

David R. Hill 
University of Calgary 

Abstract 

159 

A program structure hased on reeently developed techniques for operating system 
simulation has the required flexihility for use as a speech synthesis algorithm research 
framework. Synthesis is possihle with less rigid time- and frequency-component 
structure than with simpler schemes, and it allows much of the speech knowledge 
required for synthesis to he removed from the main driving structure and emhodied as 
tables and procedures that may easily be modified or replaced. The program also meets 
real-time operation and memory-size constraints. The resulting view of speech structure, 
at the acoustic-segmental level, is that of time-ordered, perceptually relevant events, 
and is related to that used in the author's work on automatic speech pattern 
discrimination. The flexibility of the scheme for synthesis, and the excellent mutual 
independence of the many processes, with differing objectives, that must be run for 
realistic approximations to real speech variation, have proved a welcome release from 
earlier problems. The author acknowledges with gratitude the support of the National 
Research Council of Canada. 

STRUCTURE DE PROGRAMMATION POUR LA SYNTHESE 
DE LA PAROLE A PARTIR D'EVENEMENTS, 

DANS UN CADRE SEGMENTAIRE FLEXIBLE 

Resume 

U ne structure de programmation hasee sur des techniques recentes de simulation 
posscde la souplesse neccssaire pour ctre utilisee en tant que cadre de recherche sur les 
algorithmes de synthcse de la parole. La structure du temps et des composantes de 
frequence est en effet moins rigide que dans le cas de methodes plus simples, et il est 
possible de dCharrasser la structure de commande principale d 'une grande partie des 
donnees sur la parole et d 'incorporcr ces derniercs a des tahleaux et a des marches a 
suivre pouvant ctre facilement modifies ou remplaces. De plus, le programme permet 
I'utilisation en temps reel et respecte les exigences de capacite de la memoire. 11 en 
resulte une structure de la parole qui, au niveau acoustique-segmentaire, prend la forme 
d 'evenements ordonnes dans le temps et significatifs au niveau de la perception, forme 
qui est reliee cl celle qu 'utilise I 'auteur dans ses travaux sur la reconnaissance de la 
structure de la parole. Grace a la souplesse de la methode de synthese et au niveau 
elcve d'independance l11utuelle des nomhreux processus aux objectifs differents qui 
doivent ctre realises pour en arriver ,) une approximation juste des variations de la 
parole rccllc. on a pll apporter des solutions il des prohlcmes dej,l rencontres. L'auteur a 
granocl11cnt apprecie le concours de Conseil national de recherches du Canada. 





161 

A PROGRAM STRUCTURE FOR EVENT-BASED SPEECH SYNTHESIS BY RULES WITHIN A 

A FLEXIBLE SEGMENTAL FRAMEWORK 

David R. Hill 

Department of Computer Science 
The University, CALGARY, Alberta, Canada T2N IN4 

In t roduction 
The production of artificial speech, independently o f any pa rticular 
r e al utterance, has an ancient and respectable history. But only with 
the invention of the channel vocoder, and the adaption of its synthesis-
ing terminal to keyboard operation, did the synthesis of connected 
speech on demand become practical. Even then it relied upon rules that 
were unformalised and relatively inaccessible within the heads of oper­
ators whose training took a year or more. 

The invention of more easily controlled synthesisers that also modelled 
relevant aspects of human speech production, coupled with the develop­
ment of improved control means for the vocoder-related synthesisers of 
the 1950's (such as the Haskins Laboratories Pattern Playback), led to 
very important advances in our knowledge of perceptually relevant speech 
structures and to the beginnings of speech synthesis by machine based 
upon a realistic set of formalised rules. At the same time computers 
were coming into widespread use and, during the 1960's, programs were 
written at a number of laboratories that embodied, in somewhat simple 
form, the knowledge required for speech synthesis by rules, as then 
known. The programs usually provided facilities for the manual entry 
of control parameter data for those aspects of speech that had not been 
formalised into sets of required rules, notably for rhythm and intonat­
ion (pitch variation) which comprise the chief suprasegmental features 
of speech. Since then, experiments have continued, using parameter 
data copied from real utterances together with improved and extended 
sets of rules for speech synthesis, in an attempt to improve the natur­
alness and intelligibility of machine synthesised speech. Those exper­
iments with real speech data have shown decisively that the main limit­
ations do not lie in the hardware synthesisers that are used. Speech 
that is indistinguishable from the original (except perhaps by trained 
experts) has been produced using parameter data copied from real speech 
(HOLMES 1973). It seems instead that the problems lie in the crudity 
and lack of sophistication of the rules and data used for speech syn­
thesis. For a more detailed account of the context to the present work, 
the reader is referred to two review papers by the author (HILL 1971 & 
1972) . 

• Just i f ication f or, and orien tation of t he res earch 
The history of comput e rs over the last thirty years ha s shown a growing 



162 

concern for easy, natural and effective ways of communicating with these 
increasingly powerful information processing machines. The combination 
of mini- and microcomputers plus easily controlled synthesisers with 
this growing demand for better means of communications between people 
and machines (especially the possibilities offered by telephone access) 
has led to an upsurge of interest in the development of speech synthes­
ising peripherals capable of translating text, delivered at normal char­
acter transmission rates, into spoken output. The alternative, using 
part of the resources of a larger system to drive speech synthesis hard­
ware, is equally of interest. 

As part of a continuing joint project in man-computer communication 
using speech, shared by the Department of Computer Science at the Univ­
ersity of Calgary, and the Department of Electrical Engineering Science 
at the University of Essex (UK), experiments in speech synthesis have 
been carried out involving both engineering development on the basis of 
present knowledge, and basic research designed to shed light on some of 
the unsolved problems in the area. In particular, we have sought im­
provements in segmental synthesis; improvements in the specification of 
speech rhythm and pitch variation in terms of the assumed structure for 
these phenomena, as well as the assignment of specific patterns; and, 
as a result of early experiences in this work, improvements in the syn­
thesis program structures used. It is with this latter class of improve­
ments that the present paper is concerned. 

The problems 
One problem in speech synthesis by machine based on rules, assuming a 
r easonably sophisticated hardware synthesiser, is that the procedures 
that must be executed, and the parameters that must be computed, vary 
for diffe rent segments, whilst interactions frequently need to be allow­
ed for across several segments. Also, our knowledge is still incomple te 
and, for research on the problems, considerable flexibility must be main­
tained whilst still requiring both an efficient enough program to gener­
ate speech in real-time for purposes of evaluation and experiment, and 
an economical enough program to fit within an economically viable hard­
ware environment for marketplace development trials. There are other 
problems. Although speech is frequently treated as having independent 
segmental and suprasegmental aspects, the parameter variations arising 
from these two sources are likely to interact and/or need to be superim­
posed. Certainly cues to both segmental and suprasegmental aspects of 
speech are likely to be carried by the same parameter(s) -- for example, 
pitch variation. Some effects may apply globally, but not equally 
throughout a n utterance (for example , the rate of speech is linked with 
vowel reduc tion, but has a different effect on consonants). In a ll this, 
the pos sibly conflicting effects of a variety of different factors, rep- -· 
resente d by portions of the program, need to be reconciled. Another 
type o f problem is that involved in computing continuous changes for the 
synthesiser control parameters on the basis of a segmental input tha t is 
highly discrete. What is actua lly done is based upon wha t may be t e rmed 
the "segmental a ssumption" that lurks in many approa ches to speech syn­
thesis by computer, and makes for changes in control parameters that 
begin and end both abruptly, and in synchronism, despite the obvious 
requirement not to do this. The segmental assumption considerably sim­
plifies the computing problems, but is very likely an important cause of 
unnaturalness in machine generated speech, not necessarily just because 



163 

of the effect at the segmental level, but also because of undesirable 
interactions with suprasegmenta1 cues (for example, HILL & REID 1976). 
A third kind of problem is that involved in organising the running of a 
complex heterarchica1 system and arranging the transfer of information 
between processes in the system. Finally, a fourth kind of problem 
arises from the need to achieve economy of processing time (to allow 
good speech in real-time) and economy of memory space (since economical­
ly viable applications imply that a single computer is not devoted to a 
single speech channel, unless it happens to be a microprocessor with 
limited memory). 

Solution of synthesis problems by simplifying synthesiser controls 
Some commercial ventures have been based on accepting the limitations of 
simple control -- apart from those devices that synthesise utterances 
from assemblies of pre-recorded speech or pa~ameter tracks. The approach 
is exemplified by applications of the VOTRAX® speech synthesiser. This 
device, with the associated control programs, takes an uncompromisingly 
segmental view of speech structure; produces, with care, surprisingly 
good speech output directly from low-data-rate symbol-string input; and 
makes a virtue of necessity by matching the sophistication of the syn­
thesiser to the simple control strategies assumed, which keeps its cost 
low. However, considerable phonetic knowledge is needed to compose the 
symbol strings required for arbitrary utterances, transitional cues in 
speech are approximated by arbitrary sequences of steady-state spectral 
chunks, and it is still necessary to solve the problem of pitch and dur­
ation assignment for the intonation and rhythm of connected utterances, 
with only rather crude facilities for control of these factors. Only 
one accent and speaker are possible, due to the fixed nature of the sym­
bols, in relation to their acoustic specification, and the device is in­
capable of implementing many segmental features found in natural speech. 
In the absence of more complete rules for the whole speech synthesis 
process, however, it is an excellent practical compromise, though it is 
unsuited to fundamental research. 

The segmental assumption of speech synthesis is highly explicit in such 
a device. Acoustic changes occur all at once, at segment boundaries. 
This unreal assumption, and the associated assumption that all the cues 
relevant to the identification of a real speech segment lie between such 
arbitrary boundaries, is one that has led to many failures in speech 
recognition research. It is not unreasonable to suppose that it is one 
cause of poor intelligibility and unnaturalness in speech synthesised by 
rule. As previously noted, given the ability to vary synthesiser control 
parameters continuously and asynchronously, exceedingly good synthetic 
speecll may be produced. The ultimate goal of our synthesis research is 
to reduce the specification of such natural variations to a rea sonable 
set of rules and procedures, which requires a departure, at least for 
trials, from the segmental assumption. 

Steps to so lution based on a program s t ructure allowing arbitrarily 
complex control strategies 
The new program structure developed by the author for speech synthesis 
has three main divisions: (a) an interrupt handler (RTSO) to drive the 
synthesiser hardware; (b) a segmental synthesis part (SEGSYN) that takes 
data specifying the identity and duration of speech sounds, together with 
data specifying the variation in voicing frequency, and computes the data 



164 

for RTSO; and (c) a suprasegmental part that translates the input text­
strings, with special annotations and punctuation, into the data required 
by SEGSYN. Another paper being presented at this conference (WITTEN & 
SMITH 1977) considers some problems and solutions in the suprasegmental 
part so that only RTSO and SEGSYN are considered in this paper. 

The present scheme was designed: 

(a) to operate with less rigid a ttachment to the segmental time 
framework than simple schemes; 

(b) to remove as much as possible of the speech knowledge content 
of the program from the program structure; 

(c) to give the greatest degree of flexibility in choice of syn­
thesis methods -- especially allowing for the many varieties 
and spans of interaction effects, and providing for mutual in­
dependence of any procedures used, whilst still allowing total 
freedom for procedures operating at any level to influence or 
modify the results produced by other procedures at the same or 
different levels, or even to initiate arbitrary procedures; 

(d) to provide for easy and natural control of the various pro­
cesses; and 

(e) to meet real-time operation and memory size constraints. 

The current package represents a partial solution to these and other 
practical problems. It is, however, of considerable interest that the 
resulting view of speech, at the acoustic-segmental level, is that of 
time-ordered perceptually-relevant events -- precisely the view of speech 
structure that has had to be adopted in the author's related work on 
automatic speech recognition for equally fractical but different reasons. 
It is therefore desirable, before continuing with details of the synthes­
is program, to digress and briefly to examine the nature of the event­
based view of speech as it arises in automatic speech recognition, as an 
aid to understanding the character and implications of an event-based 
view of speech structure. 

In order to discriminate speech utterances into different classes in a 
manner that parallels some aspect of human speech recognition, an adequ­
ately general means of describing speech utterances in terms of percept­
ually relevant cues must be developed as a necessary part of the process. 
Certainly up until the late 1960's, and even continuing to some degree 
today, two major problems of generating such descriptions have been 
called "the segmentation problem" and "the time normalisation problem". 
The present author has suggested (HILL 1971) that they are really differ­
ent views of the same problem, arising from failure to handle the time 
aspect of speech str4cture adequately, and has developed an approach to 
automatic speech recognition that avoids these two problems in their 
classical form by using a description of speech based upon perceptually 
relevant e vents -- time epochs in a variety of measurements o f percept­
ua lly relevant speech cues. Such events, having no time extent, can 
meaningfully be ordered with respect to each other in time. An event 
might, for example, mark the beginning of a transiti on -- from one frequ­
ency region to another -- of a peak in the frequency spec trum, or perha ps 
the end of some characteristic combination of spectral components after 



165 

a comparatively long time. In recognlslng an utterance, the most likely 
utterance is hypothesised on the basis of fragments of evidence, each of 
which comprises some time-ordered subset of all the events detected. 
This is analogous to the way the most likely overall molecular structure 
of an organic chemical compound may be hypothesised on the basis of frag­
ments of evidence, each of which comprises the detection of some 
spatially ordered fragment of the original structure using standard 
mass-spectrometer analysis (BUCHANAN et al. 1969). The author's recog­
nition system, currently under development at the University of Calgary, 
is based upon the event-based view of speech structure. It is a long­
term project involving both hardware and software development, as well 
as fundamental speech research. However, the basic system hardwa re is 
almost complete, and an initial system is expected to be operational 
within a year, many of the ideas and subsystems having already been 
tested. 

It would seem self-evident that, if a description of speech structure is 
adequate or, better still, superior for speech recognition, it should be 
adequate or possibly superior as a basis for speech synthesis, and that 
a unified approach to both problems should represent an encouraging step 
forward, allowing progress on one to give insight into solutions to prob­
lems for the other. For some time after the approach to describing struc­
ture for recognition purposes was developed, the equivalent approach to 
describing speech structure for synthesis remained tantalisingly obscure. 
It is now felt that there were two reasons for this. One reason lies in 
the previously mentioned segmental assumption of speech synthesis and the 
other in the fact that, until recently, the necessary computer program­
ming techniques simply had not been developed or, at least, had not been 
seen to be relevant. There are certainly many other problems to solve 
before the goal of a completely unified and adequate description of 
speech for both recognition and synthesis is achieved, but the present 
coincidence of requirements for synthesis and recognition may represent 
an important step towards that goal, although the requirements arose for 
different practical reasons in each case, and were unrelated to that goal . 

In order to provide the required heterarchical basis for organising the 
calling of procedures and transfer of data between procedures, the two 
components RTSO and SEGSYN are each organised along the lines of an op­
erating system simulation (MacDOUGALL 1970). The tasks that must run 
under SEGSYN, the segmental synthesis program, are those that interact 
with the suprasegmental part, compute the data required by the interrupt 
handler RTSO, organise the process of segmental synthesis, take account 
of special directives originating from the operator but passed along with 
the text string (for example, a directive to suspend some particular 
facility), and take care of errors and exceptions. The last mentioned 
facility includes providing "firewalls" to error propagation -- an es­
sential precaution in building a complex system with the express inten­
tion of updating and modifying it. Considerable programming effort was 
taken up forseeing and providing for conditions that were "impossible" 
during correct operation, being independent of data input, and the effort 
turns up as protocols for communication, for example, rather than large 
amounts of code. The output dat a from SEGSYN comprises the real-time 
event list ~lich drives the interrupt ha ndler, RTSO, together with paramet­
er rate-af-change data, stored in circular queues. The lat ter data are 
associated with the basic acoustic-parameter events that fo rm the back-



166 

bone of the synthesis strategy. This data structure not only implements 
an economical form of run-length coding for synthesiser control-parameter 
variation and makes for very simple organisation of the driving com­
ponents, but also allows for easy superposition of effects from different 
sources and allows freedom to depart from any rigid time-structure across 
the collection of parameter changes. The interrupt handler naturally 
runs in real-time. Each tick of the real-time clock corresponds to an 
interrupt request for new parameter data from the synthesiser. Inter­
rupts occur every ten milliseconds. As a result of a given interrupt, 
the real-time clock value is incremented; a new set of parameter values 
is calculated, based on the current rate-of-change and the last value, 
and sent to the hardware; and then the real-time event-list is inspected 
to see if an event is due. If no event is due, the interrupt is dismis­
sed. If one or more events are due, the required processes are run. 
Provision is made for the detection of overdue events which, in the pre­
sent system, cause an error process to be run and the synthesis to be 
terminated at that point. For a basic acoustic parameter event and for 
each parameter specified by the event, change-of-rate-of-change infor­
mation is picked up from the appropriate data queue and used to update 
the table used by the synthesiser control-parameter driver. The queue 
handling routines are set up to detect and fail-soft on a number of 
error conditions, and also operate with a refill threshold. This latter 
feature allows the processes that supply the real-time data to be re­
started whilst there is still time to produce new data, without inter­
rupting the synthesis, after having previously been put to sleep due to 
lack of room for the data they produce in the receiving queues. The 
principal benefit from this is that the queue sizes may be kept very 
small regardless of the utterance(s) to be synthesised. The explicit 
error handling means that bugs in the original program, as well as those 
arising from changes and additions later, are caught explicitly and con­
tained. 

The segmental synthesis program, SEGSYN, runs in pseudo-time -- current­
ly ten times faster than real-time, being limited only by the time taken 
to run the required processes. Events are taken from the pseudo-time 
event-list, in time order, and the pseudo-clock is advanced to each event 
time in turn. This clock, together with computed time delays, determines 
the times at which future events will be scheduled, both for the pseudo­
time event list and for the real-time event list. Events in the pseudo­
list have to do with the synthesis process and are quite distinct from 
the mainly acoustic-parameter events in the real-time list. Any pseudo­
event may arbitrarily schedule events for both pseudo-time and real-time 
lists, and may also run other arbitrary processes. Thus each pseudo­
event, in turn, becomes the controlling factor for synthesis, potentially 
determining the course of future events according to its own recipe. In 
this way tile synthesis program comes close to writing itself, according 
to the changing requirements of the ongoing synthesis. 

The processes that are run by each of the pseudo-events may be associat­
ed with individual acoustic segments, or may be chosen on the basis of 
dynamically varying control data, or may represent global conditions and 
effects, or may be chosen according to basic synthesis strategies. Add­
ing new events and processes concerned either with synthesis or with 
real-time operations merely requires the writing of an appropriate new 
procedure and the patching of a jump table, but does not increase the 



167 

organisational complexity, since control always resides with the current 
event, interactions between processes are achieved on the basis of super­
position of effects, and all processes have read and write capabilities 
for both control data and output data. Similar changes to the old program 
were not only much less straightforward and much more complexity-creating, 
but also involved interaction with the large data buffers that were need­
ed in that program -- a fruitful source of bugs, involving pointers and 
dynamic storage. 

Events may be used for a variety of purposes. These include the gen­
eration of parameter control data, direct parameter control, communi­
cation, error handling, computation, and data retrieval or transmission. 
External control data may be passed along with the input text string on 
which the synthesis is based. Also, certain synthesis options may 
alternatively be selected using the computer console handswitches to 
facilitate interaction during development and experimentation. Provision 
is made for the pseudo-time process to "go to sleep", either when it runs 
out of input data, or when it fills any of its output buffers (the real­
time list and queues used by RTSO). It is woken again when new input is 
available or when the real-time queue processor detects a refill level, as 
noted above. As a result of this strategy, other processes (including, 
for example, programs to handle the suprasegmental aspects of the syn­
thesis, or programs to carry out text-to-phoneme conversion) may run con­
currently, leading to a further level of operation for the heterarchy of 
processes concerned with synthesis as well as permitting the entire syn­
thesis package to act peripherally to some main process that requires 
speech output but which need know nothing of the means used to achieve 
it. 

DiscussionJ including some details of implementation and use 
The current version of the new synthesis program has few of the possible 
extensions so that the output produced apparently differs little from 
that produced by the earlier program. However, despite its facility for 
more complex control strategies, it occupies only one half the amount of 
core (approximately 1500 words) occupied by that program, both being 
coded for the same 12-bit word-length minicomputer, and the data space 
for output is negligible by comparison. One important departure concerns 
the separation of pitch specification from segment specification, which 
has considerably eased the problem of specifying the pitch pattern for an 
utterance as well as the problem of computing the parameter data for the 
pitch channel. At the same time, the specification of segment duration 
has been rationalised on linguistic criteria that suppose a given segment 
of speech relates to a posture of the articulators, and begins with the 
release from the previous posture, and ends with the release to the next 
posture. Thus each segment comprises the transition to, and holding of, 
some notional target posture defined, at the lowest level, in terms of 
table values. As a result, the input to SEGSYN comprises two queues: 
one queue (INT) holds posture codes and durations, the other (PIT) holds 
pitch targets and target times. The data for these queues are supplied 
by the suprasegmental part of the program. When the data are available. 
SEGSYN is woken and, as part of the initialisation, an NPOS event is 
scheduled which obtains the first posture code with its associated dur­
ation, schedules a further NPOS event for an appropriate time, sets up 
the table data for the posture just obtained, and schedules an RTIC event 
which "articulates" to produce real-time parameter data. Other events 



168 

that NPOS may schedule currently include the EOU (end of utterance) 
event, or the special pitch event (SPIT) which is required if, for some 
reason, the duration of the utterance has been changed from that planned 
by the suprasegmental part of the package. NPOS also runs processes as­
sociated with the control codes that may be passed along with the posture 
codes in the INT queue, and these processes may be for all sorts of pur­
poses, being called via a jump table. 

As a further part of the initialisation, a PICH event is scheduled. 
This event is concerned with the generation of the real-time data for 
basic pitch parameter events, as required to generate the basic inton­
ation of utterances. It retrieves target value and target time data 
from the input PIT array and schedules the next PICH event as well as 
setting up the data for RTSO. The earlier synthesis program associated 
pitch specification with the segmental data, which led to several prob­
lems. First, there necessarily had to be a time reference point within 
each segment to which pitch targets could be related. Deviation from 
this reference point had to be specified, along with the pitch target, 
and attached to particular segment specifiers. A second problem was that 
the density of pitch targets varied, depending on the intonation contour 
being implemented and the portion of the utterance being computed, so 
that it was not uncommon to require more pitch targets in a region of 
speech than there were segment specifications to carry them. Two sol­
utions were tried. One solution involved the use of large displacement 
factors, so that pitch target values from other segments could be dis­
placed into the region of interest while the other involved allowing 
several pitch specifications per segment. Both were unsatisfactory being 
(a) awkward to compute as they required variable amounts of back-tracking 
in the pitch parameter computations and/or extra program code to handle 
three varieties of pitch target per segment; and (b) unsuited to good 
interaction because the data for rhythm, intonation and segment specif­
ication were all confounded in one complex coding scheme that was not 
easy to interpret. The current scheme simplifies the specification, 
computation, and interpretation. In particular, as many pitch specific­
ations as are required may be placed anywhere (or as few) without any 
effect on the complexity of the computation, without any back-tracking, 
and without any loss of clarity (for the user) as to what is going on. 
Furthermore, a given utterance may have the intonation contour changed 
completely, without any editting of the utterance file, simply by calling 
a different contour from a table, or computing one by rule, and scaling 
it to the key time points of an utterance, prior to inserting it into 
the pitch data array . 

The articulation event, RTIC, is the source of all basic acoustic-para­
meter events in the real-time list, and of all the basic change-of-rate­
of-change data in the real-time queues, except for pitch data and events. 
Since the input data are discrete (the target values and posture durations 
passed by NPOS) it would appear that the segmental assumption is basic 
to its operation. It is true that an initial time framework, not unlike 
that of the earlier program, is set up on the basis of the data passed. 
Thus there are four major event times (or MET's): (a) the time at which 
the last steady state ends or the release to the current posture begins 
(ESS/BT); (b) the time at which the current steady state begins (BSS); 
(c) the time at which the current target values are most nearly achieved 
(SST); and (d) the time at which the release to the next posture will 



169 

begin (ESS/BT). Each call to RTIC computes a new set of three of these 
(the last three), according to the types and combinations of postures 
present, and then uses the first three. The parameter values to be a­
chieved at each MET are computed on the basis of knowledge about the dis­
tribution of parameter change together with the table data passed for the 
targets. At this stage the segmental assumption is dominant. However, 
before the real-time event and change-of-rate-of-change data are computed 
according to this framework and passed to the real-time data structure, 
the framework may be arbitrarily distorted by moving the nodes of the 
framework in both time and parameter value. The distortions may reflect 
the action of (a) local processes associated with the postures involved 
or with combinations of postures (for example, co-articulation); 
(b) global processes (associated, for example, with vowel reduction or 
rate of utterance); or Cc) processes using control information passed 
via the INT array or the console switches. Figure 1 illustrates the 
nature of the distortions. 

original 
parameter .-f 
track 

modified 
.-parameter 

track 

ESS/BT BSS SST ESS/BT 
time ~ 

BSS SST ESS/BT 

Figure 1: Illustration of t ime framewor k 
distorti ons f or one parameter. 

Any process, controlled by any event, is capable, if required, of writing 
or re-writing data associated with all aspects of system operation, or 
of scheduling or cancelling the running of events that have yet to run. 
Modifications to the actions of other processes may also be produced by 
adding events to the real-time list that superimpose their effects on 
the basic pattern of parameter variation. Thus, since the parameter 
changes are controlled by specifying the rate-of-change in force at any 
given time, it is possible, by increasing the rate above the basic value 
for a fixed time and then decreasing it below its basic value by the same 
amount for the same time, to produce the effect of an added amount of 
(say) high-frequency noise, independently of how the noise parameter may 
be varying, thus inserting a noise burst very simply. The old program 
structure made rather heavy weather of this kind of insertion. More than 
one effect may be superimposed in a similar fashion -- a basic advantage 
of the rate-of-change run-length coding that is used to control the par­
ameter values. Micro-intonation -- that is, small deviations from the 
basic pitch contour due to segmental interaction with voicing frequency 
-- is implemented using a similar strategy. The events that are inserted 
to the real-time list for such purposes are termed special par ameter 
events , and they use data from a table based on a table address that 
forms part of the special parameter event code. Since there is very 
often a simple relation between the various positive and negative dev­
iations required, the table needs fewer entries than might be supposed, 



170 

bits in the event code being reserved to double and/or complement the 
change-of-rate-of-change value obtained from the table. 

One rather surprising economy arose in connection with the pseudo- and 
real-time event lists themselves. Originally the program design called 
for circular queues without priority for the various ordered sets of 
data; and for priority queues for the two event lists, the latter being 
implemented as doubly linked lists, supposedly to allow fast, easy inser­
tion of new events in their correct time order, regardless of when they 
were scheduled. Because new events are not added at random places in the 
event lists (the majority being added in the last few slots) it turns out 
to be faster to use a simple queue and merely dig in to the tail of the 
queue on the basis of an insertion sort than to use the more complicated 
structure. Furthermore, the space required for the handling routines 
and for the queues themselves is then roughly halved. The biggest time 
penalty in the linked list approach lies in handling free space. 

In summary, it may be said that the new program structure allows many 
different processes to run according to a program that is, in effect, 
partly determined by the processes themselves. This is one important 
dimension of flexibility. Secondly, the organisation of the system is 
geared to allow the addition of new code with minimum effect on existing 
code. Thirdly, the interactions between the various parts of the potent­
ially complex system are strictly controlled by two major strategies: 
Ca) ensuring that any process that affects the output data produced by 
the system does so by linear superposition of its effects on the effects 
produced by other processes; and (b) arranging the processes in a 
heterarchy to increase their independence and allow that any process can, 
in principle, assume control for a time and therefore tailor its environ­
ment and manage its data without interference from other processes. The 
use of event lists to permit the organisation of logically concurrent 
processes, and the form of data coding for parameter generation, both 
play an important part in these two strategies. The principles of pro­
gram structure described are also, it should be noted, additional to the 
obvious need to adhere to the form now called "structured programming" 
but which has been inherent and essential in well written low-level pro­
grams from the beginning. 

Conclusion 
It seems unlikely that the present system represents the ultimate basis 
for speech synthesis by machine. It is quite certain that we do not yet 
have the theoretical basis needed to judge such a matt er. However, the 
f lexibility of the scheme for synthesis, and the excellent mutual in­
dependence of the many processes with differing objectives that must be 
run for realistic approximations to real speech variation, have proved 
a welcome release from earlier problems. It is felt that we have, at 
last, a system within which we may tryout a richer range of rules for 
synthesis at all levels, without so many constraining assumptions arising 
from mere programming difficulties, and which may be used to test some of 
the assumptions that led to its development. We have only just begun to 
explo re the possibilities of the system, and to collect the data needed 
to i mprove our schematisation of speech for synthesis by rules. 



171 

Ackno~ledgements 
The author wishes to acknowledge with gratitude the support of the 
National Research Council of Canada for this work, under grant number 
A5261. His debt to colleagues at Essex University is considerable, 
especially to Ian Witten. Without his enthusiasm and critical interest 
t he work would not have progressed as fast, and the joint Calgary-Essex 
project would have been stillborn. 

Ref er ences 

BUCHANAN, B., SUTHERLAND, G. & FEIGENBAUM, E.A. (1969) Heuristic 
DENDRAL: a program f or generating exploratory hypotheses in organic 
chemistry. Machine Intelli gence i (B. Meltzer & D. Michie, eds.), 
pp 209-254, Edinburgh: Edinburgh University Press. 

HILL, D.R. (1971) Man-machine interaction using speech. Advances i n 
Computers 11 (F.L. Alt & M. Rubinoff, eds., M. Yovitts, guest ed.), 
pp 165-230, New York: Academic Press. 

HILL, D.R. (1972) An abbreviated guide to planning for speech inter­
action with machines: the state of the art. Int. J. Man- Machine 
Studies i (4), pp 383-410, October. 

HILL, D.R. & REID, N.A. (1977) An experiment on the perception of 
intonational features. Int. J. Man-Machine Studi es f (3), in press. 

HOLMES, J.N. (1973) The influence of glottal waveform on the natural­
ness of speech from a parallel formant synthesiser. IEEE Tans. on 
Audio and Electr o-Acous t i cs 21 (3), pp 298-305, June. 

Ma cDOUGALL, M.H. (1970) Computer system simulation: an introduction. 
Computing Survey s I (3), pp 191-209, September. 

WITTEN, I .H. & SMITH, A. (1977) Synthesizing British English rhythm -­
a s t ruc tur ed approach. Proc . 5th . Fi f th Man- Computer Communication 
Conference , University of Calgary, Alberta, Canada, May 26-27th. 1977, 
paper numb er 16. 


