
A DATA SUB-LANGUAGE FOR CASUAL USERS

lan A. Macleod
Queen's University at Kingston

Abstract

73

To enahle users to effectively exploit a complex computer system, it is necessary to
construct a powerful yet usable interface. Conventional formal dialogues have the
disadvantage that they are virtually unusable by casual or untrained users. Free format
systems, on the other hand, tend to be either very simplistic or else require extremely
complex parsing mechanisms. Even in the latter case they can do little better than
understand a restricted subset of a natural language thereby offering little advantage
over the usual formal language systems.

In this paper we show how a formal language processor can be relatively easily used
to develop a system which permits comprehensive user interfaces to be constructed yet
at the same time, through interactive techniques, can effectively permit access to casual
users. The system is implemented on a PDP 11/45 under the UNIX operating system.

SOUS~LANGAGE INFORMATIQUE POUR UTILlSATEURS OCCASIONNELS

Resume

Afin de permettre aux utilisateurs de tirer le meilleur parti d 'un systeme
informatique complexe, il est necessaire de construire des interfaces offrant de multiples
possihilitcs, mais qui soient en me me temps utilisables. Les dialogues formels classiques
presentent I'inconvenient d 'etre a peu pres inutilisables par les usagers occasionnels ou
inexpcrimentes. D'autre part, les systemes a structure non imposee ne sont guere plus
efficaces; ou bien ils sont trop simplistes, ou encore ils necessitent des mecanismes
extremement complexes d 'analyse grammaticale. Meme dans ce dernier cas, les
systcmes ne peuvent guere s'elever au-dela de la comprehension d 'un sous-ensemble
restrcint de la langue naturelle, de sorte qu'ils offrent peu d 'avantages par rapport aux
langages formels hahituels.

La prcsente communication montre comment il est relativement facile d 'utiliser un
cOll1pilateur de langage f()rmel pour dcvelopper un systeme pcrmettant d 'une part
d'ctahlir dcs communications extensives avec I'utilisatcur et d'autre part. gr.ke a des
tcchni~ucs intcraL"livcs, de donner acces aux usagcrs occasionncls. Le systemc est mis cn
oCllvrc slIr un PDP 11/45 avec le systcme d'exploitation UNIX.

75

A Data Sub-Language for Casual Users

Ian A. Macleod

Queen's University at Kingston.

INTRODUCTION

In developing computer systems which are intended for use
by people who may have no knowledge of computers and pro
gramming languages and who cannot be expected to have any
great desire to acquire such knowledge, there is a severe
problem in designing an interface which will enable them to
make effective use of a complex computing system. The obvi
ous example is that of information retrieval systems. In
this case there typically exists a highly trained and in
telligent user population hopeful of retrieving information
but unwilling to cope with such subtleties as are normally
imposed up o n them by a programmed system. In this type o f
situation it is necess8ry to provide an interface whi ch is
sufficiently rich to enable the user to exploit fully the
resources o f the system, but which is not so computer
language oriented as to provide a serious technical barrier
to the potential user, untrained and inexperienced as he is
in the mystical ways of computers. Management information
systems, library retrieval systems and even job control
languages are examples of systems intended for the po ten
tially casual use by a broad spectrum of pe o ple. Here it is
highly desirable to fit the computer system to the user. If
this is not the case we frequently find that systems either
are used extremely ineffectively, as is often the case with
programmers and operating systems, or at worst are not used
at all by people who could benefit greatly from them.

The obvious type of interface is based on natural language.
However, even among humans, English commands and queries
ca n be v ag ue and ambiguous. Witness for example many o f
the ~omputing industry's manuals. In any case it has not
yet been found possible to implement a rec ognizer which is
ca pable of e ffectively understanding English input. An al
ternative to full English is some subset of the language.
Processors, such as REL,[f], which can anal yze such res
tricted English dialogue have existed for some time. They
have the major disadvantage that the user must either learn
to cope with the limitations of such systems or run the
serious risk of being misled into overestimating both the
degree of understanding possessed by the computer and the
extent of the information implicit in the data base itself.

76

Programming language types of interfaces are fairly common.
Typically these interfaces have a rigid syntax where the
format of the queries is oriented towards a particular da
tabase. These systems, if they are constructed with suffi
cient care, can be extremely useful. Queries can be formu
lated with precision and the language can be designed so as
to reflect the information implicit in the database. How
ever, while they are relatively easy to learn, particularly
for a person with some previous computing experience, they
do require a certain amount of training - certainly more
than the casual user would normally be prepared to endure.
Also, such systems frequently have the characteristic of
displaying unhelpful messages such as "ILLEGAL COMMAND" or,
worse still, "SYNTAX ERROR". Few thing s are more 1 ikel y to
deter a potential user than a blunt refusal by the system
to have anything to do with his attempts to communicate.

To simplify the interface, a menu approach can often be
used. In this case, at each stage in the process of build
ing a query or command the system provides the user with a
list of alternatives from which he selects one or more sim
ply by typing in a number, or, in the case of some
displays, by selecting the appropriate command by means of
a light pen. Another technique is to have the system query
the user. This type of interface may be used either as an
alternative to or in conjunction with the menu approach.
Such dialogues can be designed so as to be virtually fool
proof but for the experienced user they can be intolerably
slow, par tic u 1 a r 1 y , but not ex c 1 us i vel y, 0 n a t y p e wr i t e r
terminal. Furthermore these types of dialogue can be very
inflexible.

The technique proposed here is to combine two approaches.
A basic formal language interface is provided. When the
user responds to the system it attempts to understand the
response. If it can, that is if the command or query is
"syntactically correct", it then processes the communica
tion appropriately. If it cannot, it gleans whi1t informa
tion it ca n from the input and then attempts to complete
the request by querying the user. Thus the person with ex
pe ri e nce mi1 kes use of the system with no unnecess a ry in
teraction while the inexperienced user interacts with it
through a combination of menus a nd computer-initiated
queries . Hopefully, as the novice gains experience, the
degree o f interaction lessens. This type of approach ap
pears to be ideally suited to query languages which n ormal
ly o perat e in an interactive environment and also, typical
ly, have a relatively simple grammar.

THE MISTRAL LANGUAGE PROCESSOR

Mistr al is a language processing system designed to provide
a vehicle f o r the implementation of user interfaces. It is

77

both extendible and interactive. Dynamic syntactic and se
mantic extensions are permitted. The full capability is
described elsewhere, [Ji], but briefly it provides means of
defining new syntactic constructions, or language units, as
f or example by the following command:

Define language-unit-name;
nonterminal = syntax-specificati o n;
semantics;

Here the synt8x specification is provided by a meta
language based on an extended version of BNF and the seman
tics are written in terms of existing language constructs.
Once a new language unit has been defined, it immediately
becomes available for execution or for incorporation into
the semantics of further language units. In the context o f
this work, one of the more interesting aspects of Mistral
is that it is based upon an implementation of Earley's
par sin gal go r i t h m, r j] . On e 0 f the f eat u res 0 f t his a 1 go -
rithm is that it is built around a top-down predictive
parse where all possible parses are carried along simul
taneously. A parse is successfully completed when the en
tire input string has been processed and a single synt ax
tree has been produced. In the eventuality of a syntax er
ror occurring, a number of partially built trees exist.
These represent all the possible parses up to the point at
which the error occurred. Our approach here assumes th at
at least one of these trees represents the beginning of a
potent ially correct synt8ctic interpretation of the user
query. It is then probable that the parse can be continued
successfully by requesting information from the user. The
type of information required is determined from the partial
trees.

For example take the following simple grammar:
Z -> E;
E -> T;
E -> E+T;
T -> P;
T -> T*P;
P -> (E)
P -> I

Then for the following input string:

the foll o wing
Z

/ \,
E '

/ :\
I '

E -+- T
/

T

/
P

/
I

I (I + I);
s ynt8x trees

I
/

I

would bp
7..

/
T

I ,

/ \
E '

/ :\
T it 'P

pr od uced :

78

The dotted lines denote incomplete branches.

Obviously at this point the parse can proceed no further
until some missing information can be supplied. In this
trivial example it is apparent that either a "+" or a "*"
has been omitted. In an interactive environment we can
determine which by querying the user.

The actual error recovery algorithm is based upon one sug
gested by Irons,[4]. When a syntax error occurs there will
exist a partially processed string of the form:

uTt
where "u" is the portion so far parsed, "T" is the symbol
at which the parse failed and "t" is the remaining unpro
cessed string. The following steps are then performed:

(i) A list is constructed of all the symbols in in
complete branches of the tree, (T, P and "i" in the
example above).
(iU The first symbol of the string "Tt" is repeat
edly examined, discarding the first symbol if
necessary, until a string is found such that for
some symbol U in the list:

U =>+ T ... (if U is a non-terminal),
or

U = T (if U is a terminal)
(iii) By examining the incomplete branches before
the branch containing U, it is determined what in
formation is missing. Where the missing informa
tion represents one of several choices, the ap
propriate string to be inserted is obtained by
querying the user.
(iv) The parse then continues with any unwanted
parse trees discarded.

Note that this approach assumes that the parti all y parsed
string "u" has been correctly interpreted. In practice
this may not a lways be correct. However our main aim is
not to develop a deterministic technique, but rather an ap
pr oach which has a high probability of success. Initially
the system is being applied in the development of inter
faces f o r document retrieval systems where the possibi1ity
o f a disastrous mis-interpretation of a user query is in
an y case not high.

EXAMPLES

Take for example a small information retrieval language
whose syntax is specified as follows.

JRCOMMANO = "FIND" NUMBER "ON" SEARCHEXPR
IRCOMMANO = "LIST" NUMBER;
SE ARCHEXPR = STRING ("ANO"/"OR" STRING) ...
NUMBER = "ALL"/INTEGER

EX8mples of these commands are the following:

FIND ALL ON COMPUTER AND RETRIEVAL;
LIST 10;

Suppose a naive us er types the request:
GET ME EVERYTHING YOU HAVE ON INDUSTRIAL POLLUTION;

The following syntax trees would be generated:

I~COMMAND
...... ..,' : ,: ... - -

"" I.... - ... -_

" FIN D" NUM B ER" 0 N " SE A RC HE XP R

IRCOMMAND , , , , ,
LIST NUMBER

79

The o nly incomplete symbol whi c h matches is " ON" so a FIND
command is a ssumed and the unrecognised symbols befo re the
"ON" are discarded .

SYSTEM: Do you wish to use the FIND retrieval
command? Type Y or N.

USER: Y
A "FIND" symbol is inserted and the parse continues follow
ing the display o f the amended query as:

FIND ON INDUSTRIAL POLLUTION
The par s e tree now becomes:

I RCOMMAND
./ i '
~ I ,

"FIND" NUMBER " ON " etc.

Th e incompl ete br anc h is caused by th e non-termin al NUMBER.
SYSTEM: Do yo u want: 1 - all relevent doc um ents or

2 - some specific number? Type 1 or 2 .
US ER: 2

The modi f ied command is now displayed as :
FIND ALL ON INDUSTRIAL POLLUTION

This gives rise to the syntax tree:
IRCOMMAND

~,,-----FIND ALL ON SEARCHEXPR

Unfortunately Mistral requires all its literal strings to
be in quote s. This would give rise to the following possi
bly a nn o ying dialogue.

SYSTEM: Typ e in a sing le word whi c h describes the
type o f document in which you are interested .

USE R: industrial
SYSTEM: FIND ALL ON "INDU STRIAL" ;

USE R:
S YSTEM:
USER:
SYSTEM:

USER :
S YSTEM:

USER:

Are there any ot her wo rds wh ic h dpsc ribe the
documents you wa nt? Type Y o r N.
Y
Type in the next word.
Po 11 ut ion
Sho uld documents contain referen ces to bo th
t hese terms or just o ne? Type Y o r N.
Y
FIND ALL ON "INDUSTRIAL" AND "PO LLUTI ON "
Are there any other words wh ich desc ribe the
documents you wa nt? Type Y or N.
N

80

The parse now concludes sucessfully and is processed. In
this case the system leads the user through every possibil
ity and each time it modifies the query it displays the
partially completed query. Thus the user is able to learn,
at his own speed, the format in which the system expects
its commands. While this level of query processing is ex
tremely tedious for an experienced user this is not so in
the case of an inexperienced user. The amount of dialogue
which will ensue will depend on the amount of information
the user has correctly supplied.

For example suppose a slightly experienced user types:
GET ALL "INDUSTRIAL" AND "POLLUTION";

The system will through a similar but much shorter dialogue
modify this to read:

FIND ALL ON "INDUSTRIAL" AND "POLLUTION";

IM PLEMENTATION

The system is implemented by attaching a recovery procedure
to each language unit where this is desirable. This is
done by a command of the form:

Error recovery-routine language-unit-name;
When a syntax error occurs in the named language unit the
recovery routine is invoked. In our current implementation
recovery routines are written in the implementation
language whi ch is C, [5], a well known systems programming
language.

A number of special functions have been implemented to al
low the parse trees to be traversed and modified. These
include:

(i) reportback; Invokes the error routine of the
parent language unit in the tree, (or its parent if
no such routine exists).
(ii) next; Invokes the error routine of the
language unit in the next possible parse. If there
is no next alternative the effect is the same as a
r e po r t b a c k .
(iii) parent; Returns the name of the parent
language unit.
(iv) insert; Inserts symbols into the string being
pa rsed.
(v) atom; Gives the posit ion o f the atom within the
syntax at which the parse failed.
(vi) parse ; Continues the parse with the presumably
a mended input string.
(vii) abort; Discontinues the parse.

For example we might develop a dialogue for a part of the
language given above as shown below. First the language is
aug mented with a production of the form:

De fi ne root;

81

command = ircommand
This allows a recovery routine to be associated with the
situation in which no retrieval command is recognised. The
names o f the routines are then specified as foll o ws:

Error root rooterr;
Err o r find finderr;
Error number numberr;

Th e n the rec overy routines might be represented by the f ol
lowing C routines:

roo terr()
{

l oo p:
printf("Do yo u wa nt to 1. Retrieve, 2. List");
printf(" or 3 . Neither? Type 1, 2 or 3");
input = getchar();
swi tch(input);
{

}
}

case '1':

ca se ' 2' :

ca s e ' 3 ':

default :

insert("find", 1);
par se() ;

in se r t (" 1 i s t" , 2) ;
parseC);

printf("try again ");
abort();

goto loop;

finderr()
{
if(at om() 1)

{

l oo p:
printf("Do you want t o retrieve? Type Y o r N");
input = getchar();
if(input == 'Y')

{

}

in se r t ("fi nd" , 1) ;
p a rseC);

if(input == "N")roo terr();
goto loop ;
}

if(Cltom() == j)
{

insert(" o n" , 3) ;
parseC) ;
}

/ * no o ther possibilities */

82

numberr()
{ loop:
pr intf("Do you want 1. All the documents

or 2. a specified number? Type 1 or 2.");
input: getchar();
if(input :: '1')

{

}

insert ("all",2);
continue;

if(input :: '2')
{

/* dialogue to read in and convert the string
of digits typed by the user */

else goto l oo p;
}

SUMMARY

It is by no means obvious that the approach outlined here
is an ideal one. Nor is it obvious that an ideal approach
does in fact exist. There are still the problems caused by
the misinterpretation of a query which is syntactically
correct but which is not at all what the user intended.
This is not likely to be a severe problem in our own limit
ed applicati on to a document retrieval system but would
pr o bably be serious in a mo re general applicati on . A
further pr o blem is that the design of satisfactory dialo
gues f or mo re complex language than the one illustrated
above will certainly be non-trivial. However we feel that
this type o f approach does at least provide some potenti81
f o r improvement o f most form a l language interfaces. Its
true wort h ca n onl y be gauged in a real life applic8tion
wh ere so me meas urement of actual suc cessful I error correc
tion ca n be made.

REFERENCES

1. Th omso n P, C. et al: REL, A. Rapidly Extensible
La ng uage System, ACM 24th National Conference, 1969.

2 . Avis, J. an d Ma cl eod, LA.: An Extendible Interactive
Language Development System, Technical Report,
Queen's University, 1977.

3 . Earley, J.: An Efficient Context Free Parsing
Algorithm, Comm. ACM, Vol 13, 1974.

4. Irons, E.T.: An Error Correcting Parse Algorithm,
Co m m . A CM, Vo 1 6, 1 963 .

5. Ritchie, D.M.: C Reference Manual, Bell Laboratories,
January 1974.

