73

A DATA SUB-LANGUAGE FOR CASUAL USERS

Ian A. Macleod
Queen’s University at Kingston

Abstract

To cnable users to effectively exploit a complex computer system, it is necessary to
construct a powerful yet usable interface. Conventional formal dialogues have the
disadvantage that they are virtually unusable by casual or untrained users. Free format
systems, on the other hand, tend to be either very simplistic or else require extremely
complex parsing mechanisms. Even in the latter case they can do little better than
understand a restricted subset of a natural language thereby offering little advantage
over the usual formal language systems.

In this paper we show how a formal language processor can be relatively easily used
to develop a system which permits comprehensive user interfaces to be constructed yet
at the same time, through interactive techniques, can effectively permit access to casual
users. The system is implemented on a PDP 11/45 under the UNIX operating system.

SOUS:LANGAGE INFORMATIQUE POUR UTILISATEURS OCCASIONNELS

Résumé

Afin de permettre aux utilisateurs de tirer le meilleur parti d’un systéme
informatique complexe, il est nécessaire de construire des interfaces offrant de multiples
possibilités, mais qui soient en méme temps utilisables. Les dialogues formels classiques
présentent I'inconvénient d’étre a peu prés inutilisables par les usagers occasionnels ou
inexpérimentés. D’autre part, les systémes a structure non imposée ne sont guére plus
cfficaces; ou bien ils sont trop simplistes, ou encore ils nécessitent des mécanismes
extrémement complexes d’analyse grammaticale. Méme dans ce dernier cas, les
systémes ne peuvent guére s’élever au-dela de la compréhension d’un sous-ensemble
restreint de la langue naturelle, de sorte qu’ils offrent peu d’avantages par rapport aux
langages formels habituels.

La présente communication montre comment il est relativement facile d’utiliser un
compilateur de langage formel pour développer un systéme permettant d’une part
d’¢tablir des communications extensives avee Iutilisateur et d autre part, grice a des
techniques interactives, de donner aceds aux usagers occasionnels. Le systéme est mis en
ocuvre sur un PDP 11745 avee le systéme d’exploitation UNIX.






)

A Data Sub-Language for Casual Users
Ian A. Macleod

Queen's University at Kingston.

INTRODUCTION

In developing computer systems which are intended for wuse
by people who may have no knowledge of computers and pro-
gramming languages and who cannot be expected to have any
great desire to acquire such knowledge, there is a severe
problem in designing an interface which will enable them to
make effective use of a complex computing system. The obvi-
ous example is that of information retrieval systems. In
this case ‘there typically exists a highly trained and in-
telligent user population hopeful of retrieving information
but unwilling to cope with such subtleties as are normally
imposed upon them by a programmed system. In this type of
situation it is necessary to provide an interface which is
sufficiently rich to enable the user to exploit fully the
resources of the system, but which 1is not so computer
lariguage oriented as to provide a serious technical barrier
to the potential user, untrained and inexperienced as he is
in the mystical ways of computers. Management information
systems, 1library retrieval systems and even job control
languages are examples of systems intended for the poten-
tially casual use by a broad spectrum of people. Here it is
highly desirable to fit the computer system to the user. If
this is not the case we frequently find that systems either
are used extremely ineffectively, as is often the case with
programmers and operating systems, or at worst are not used
at all by people who could benefit greatly from them.

The obvious type of interface is based on natural larniguage.

However, even among humans, English commands and queries
can be vague and ambiguous. Witness for example many of
the computing industry's manuals. 1In any case it has not

yet been found possible to implement a recognizer which 1is
capable of effectively understanding English input. An al-
ternative to full English is some subset of the language.
Processors, such as REL,[{], which can analyze such res-
tricted English dialogue have existed for some time. They
have the major disadvantage that the user must either learn
to cope with the limitations of such systems or run the
serious risk of being misled into overestimating both the
degree of understanding possessed by the computer and the
extent of the information implicit in the data base itself.



76

Programming language types of interfaces are fairly common.
Typically these interfaces have a rigid syntax where the
format of the queries 1is oriented towards a particular da-
tabase. These systems, if they are constructed with suffi-
cient care, can be extremely useful. Queries can be formu-
lated with precision and the language can be designed so as
to reflect the information implicit in the database. How-
ever, while they are relatively easy to learn, particularly
for a person with some previous computing experience, they
do require a certain amount of training - certainly more
than the casual user would normally be prepared to endure.
Also, such systems frequently have the characteristic of
displaying unhelpful messages such as "ILLEGAL COMMAND" or,
worse still, "SYNTAX ERROR". Few things are more likely to
deter a potential user than a blunt refusal by the system
to have anything to do with his attempts to communicate.

To simplify the interface, a menu approach can often be
used. In this case, at each stage in the process of build-
ing a query or command the system provides the user with a
list of alternatives from which he selects one or more sim-
ply by typing in a number, or, 1in the case of some
displays, by selecting the appropriate command by means of
a light pen. Another technique is to have the system query
the wuser. This type of interface may be used either as an
alternative to or in conjunction with the menu approcach.
Such dialogues can be designed so as to be virtually focl-
proof but for the experienced user they can be intclerably
slow, particularly, but not exclusively, on a typewriter
terminal. Furthermore these types of dialogue can be very
inflexible.

The technique proposed here is to combine two approaches.
A basic formal 1language interface is provided. When the
user responds to the system it attempts to wunderstand the

response. If it «can, that is if the command or query is
"syntactically correct", it then processes the communica-
tion appropriately. If it cannot, it gleans what informa-

tion it can from the input and then attempts to complete
the request by querying the user. Thus the person with ex-
perience makes use of the system with no unnecessary in-
teraction while the inexperienced user interacts with it
through a combination of menus and computer-initiated
queries. Hopefully, as the novice gains experience, the
degree of interaction lessens. This type of approach ap-
pears to be ideally suited to query languages which normal-
ly operate in an interactive envircnment and also, typical-
ly, have a relatively simple grammar.

THE MISTRAL LANGUAGE PROCESSOR

Mistral is a language processing system designed to provide
a vehicle for the implementation of user interfaces. It is




77

both extendible and interactive. Dynamic syntactic and se-
mantic extensions are permitted. The full capability is
described elsewhere, [#], but briefly it provides means of
defining new syntactic constructions, or language units, as
for example by the following command:

Define language-unit-name;

nonterminal = syntax-specification;

semantics;
Here the syntax specification 1is provided by a meta-
language based on an extended version of BNF and the semarn-
tics are written in terms of existing language constructs.
Once a new language unit has been defined, it immediately
becomes available for execution or for incorporation 1into
the semantics of further language units. 1In the context of
this work, one of the more interesting aspects of Mistral
is that it 1is based upon an implementation of Earley's
parsing algorithm, (%]. One of the features of this algo-
rithm is that it is built around a top-down predictive
parse where all possible parses are carried along simul-
taneously. A parse is successfully completed when the en-
tire input string has been processed and a single syntax
tree has been produced. In the eventuality of a syntax er-
ror occurring, a number of partially built trees exist.
These represent all the possible parses up to the point at
which the error occurred. Our approach here assumes that
at least one of these trees represents the beginning of a
potentially correct syntactic interpretation of the user
query. It is then probable that the parse can be continued
successfully by requesting information from the user. The
type of information required is determined from the partial
trees.

For example take the following simple grammar:
-> E;
-> T;
-> E+T;
-> P;
-> T¥p;
-> (E)
-> I
Then for the following input string:
I (T + 1);
the following syntax trees would be produced:

WU m MmN



78

The dotted lines denote incomplete branches.

Obviously at this point the parse can proceed no further

until some missing information can be supplied. In this
trivial example it is apparent that either a "+" or a nEn
has been omitted. In an interactive environment we can

determine which by querying the user.

The actual error recovery algorithm is based upon one sug-
gested by Irons,[%]. When a syntax error occurs there will
exist a partially processed string of the form:
uTt
where "u" is the portion so far parsed, "T" is the symbol
at which the parse failed and "t" is the remaining unpro-
cessed string. The following steps are then performed:
(i) A 1ist is constructed of all the symbols in in-
complete branches of the tree, (T, P anda ";" in the
example above).
(ii) The first symbol of the string "Tt" is repeat-
edly examined, discarding the first symbol if
necessary, until a string is found such that for
some symbol U in the list:
U =>+ T... (if U is a non-terminal),
or
U=T"T (if U is a terminal)
(iii) By examining the incomplete branches before
the branch containing U, it is determined what in-
formation is missing. Where the missing informa-
tion represents one of several choices, the ap-
propriate string to be inserted 1is obtained by
querying the user.
(iv) The parse then continues with any unwanted
parse trees discarded.

Note that this approach assumes that the partially parsed
string "u" has Dbeen correctly interpreted. In practice
this may not always be correct. However our main aim 1is
not to develop a deterministic technique, but rather an ap-
proach which has a high probability of success. Initially
the system 1is being applied in the development of inter-
faces for document retrieval systems where the possibility
of a disastrous mis-interpretation of a user query is in
any case not high.

EXAMPLES

Take for example a small information retrieval 1language
whose syntax is specified as follows.

TRCOMMAND = "FIND" NUMBER "ON" SEARCHEXPR
IRCOMMAND = "LIST" NUMBER;

SEARCHEXPR = STRING ("AND"/"OR"™ STRING)...
NUMBER = "ALL"/INTEGER

Examples of these commands are the following:




79

FIND ALL ON COMPUTER AND RETRIEVAL;
LIST 10;
Suppose a naive user types the request:
GET ME EVERYTHING YOU HAVE ON INDUSTRIAL POLLUTION;
The following syntax trees would be generated:

TR COMMAND TRCOMMAND
"FIND" NUMBER "ON" SEARCHEXPR LIST NUMBER

The only incomplete symbol which matches is "ON" so a FIND
command is assumed and the unrecognised symbols before the
"ON" are discarded.

SYSTEM: Do you wish to use the FIND retrieval

command? Type Y or N.

USER: Y
A "FIND"™ symbol is inserted and the parse continues follow-
ing the display of the amended query as:

FIND ON INDUSTRIAL POLLUTION
The parse tree now beccmes:

TRCOMMAND

"FIND" NUMBER "ON" etc.

The incomplete brarch is caused by the non-terminal NUMBER.

SYSTEM: Do you want: 1 - all relevent documents or
2 - some specific number? Type 1 or 2.
USER: 2

The modified command is now displayed as:
FIND ALL ON INDUSTRIAL POLLUTION
This gives rise to the syntax tree:
TRCOMMAND

FIND ALL ON SEARCHEXPR

Unfortunately Mistral requires all its literal strings to
be in quotes. This would give rise to the following possi-
bly annoying dialogue.
SYSTEM: Type in a single word which describes the
type of document in which you are interested.
USER: industrial
SYSTEM: FIND ALL ON "INDUSTRIAL";
Are there any other words which describe the
documents you want? Type Y or N.

USER: Y
SYSTEM: Type in the next word.
USER: Pollution

SYSTEM: Should documerits contain references to both
these terms or just one? Type Y or N.

USER: Y

SYSTEM: FIND ALL ON "INDUSTRIAL" AND "POLLUTION"
Are there any other words which describe the
documents you want? Type Y or N.

USER: N



80

The parse now concludes sucessfully and 1is processed. In
this case the system leads the user through every possibil-
ity and each time it modifies the query it displays the
partially completed query. Thus the user is able to learn,
at his own speed, the format in which the system expects
its commands. While this level of query processing is ex-
tremely tedious for an experienced user this is not s¢ in
the case of an inexperienced user. The amount of dialogue
which will ensue will depend on the amount of information
the user has correctly supplied.

For example suppose a slightly experienced user types:

GET ALL "INDUSTRIAL'™ AND "POLLUTION";
The system will through a similar but much shorter dialogue
modify this to read:

FIND ALL ON "INDUSTRIAL™ AND "POLLUTION";

IMPLEMENTATION

The system is implemented by attaching a recovery procedure
to each 1language unit where this is desirable. This is
dorie by a command of the form:
Error recovery-routine language-unit-name;

When a syntax error occurs in the named language unit the
recovery routine is invcked. In our current implementation
recovery routines are written in the implementation
language which is C, [5], a well known systems programming
language.

A number of special functions have been implemented to al-
low the parse trees to be traversed and modified. These
include:
(i) reportback; Invokes the error routine of the
parent language unit in the tree, (or its parent if
no such routine exists).
(ii) next; 1Invokes the error routine of the
language unit in the next possible parse. If there
is no next alternative the effect is the same as a
reportback.
(iii) parent; Returns the name of the parent
language unit.
(iv) insert; Inserts symbols into the string being
parsed.
(v) atom; Gives the position of the atom within the
syntax at which the parse failed.
(vi) parse; Continues the parse with the presumably
amended input string.
(vii) abort; Discontinues the parse.

For example we might develop a dialogue for a part of the
language given above as shown below. First the language is
augmented with a production of the form:

Define root;




81

command = ircommand
This allows a recovery routine to be associated with the
situation in which no retrieval command is recognised. The

names of the routines are then specified as follows:
Error root rooterr;
Error find finderr;
Error number numberr;

Then the recovery routines might be represented by the fol-
lowing C rcutines:

rooterr()
{
loop:
printf("Do you want to 1. Retrieve, 2. List");
printf("or 3. Neither? Type 1, 2 or 3");
input = getchar();
switch(input);
{

case '1':
ingsertl™find™ ,1);
parse();

case '2':
insert("listy® 2}z
parse();

case '3':
printf("try again");
abort():

default:

goto loop;

}
}

finderr()
{
if(atom()
{
loop:
printf("Do you want to retrieve? Type Y or N");
input = getchar();

I

= 1)

if(input == 'Y")

{
insert("fina",1);
parse();

}

if(input == "N")rooterv():
goto loop;
}
if(atom() == 3)
{
insert(Mon"™,3);
parse();
}

} /* no other possibilities ¥/



82

rnumberr ()
{ loop:
printf("Do you want 1. All the documents
or 2. a specified number? Type 1 or 2.");

input = getchar();

if(input == ¥17Y)
{
insert ("all",?2);
continue;
}
if(input == '2")

{

/¥ dialogue to read in and convert the string
of digits typed by the user ¥/
}
else goto loop;
}

SUMMARY

It is by no means obvious that the approach outlined here
is an ideal one. Nor is it obvious that an ideal approach
does in fact exist. There are still the problems caused by

the misinterpretation of a query which is syntactically
correct but which is not at all what the wuser intended.
This is not likely to be a severe problem in our own limit-
ed application to a document retrieval system but would
probably be serious in a more general application. A
further problem is that the design of satisfactory dialoc-
gues for more complex 1language than the one illustrated

abocve will certainly be norn-trivial. However we feel that
this type of approach does at least provide some potential
for improvement of most formal language interfaces. Its

true worth can only be gauged in a real life application
where some measurement of actual successfull error correc-
tion can be made.

REFERENCES

1. Thomson P,C. et al: REL, A Rapidly Extensible
Language System, ACM 24th National Conference, 1969.

2. Avis, J. and Macleod, I.A.: An Extendible Interactive
Language Development System, Technical Report,
Queen's University, 1977.

3. Earley, J.: An Efficient Context Free Parsing
Algorithm, Comm. ACM, Vol 13, 1974.

4. Irons, E.T.: An Error Correcting Parse Algorithm,
Comm. ACM, Vol 6, 1963.

5. Ritchie, D.M.: C Reference Manual, Bell Laberatories,
January 1974,




