
A STRUCTURED APPROACH TO COMPUTER GRAPHICS

N. Thalmann* and D. Thalmannt
* Section Systemes d'information, Universite Laval
tDepartement d'Informatique et de Recherche Operationnelle,

Universite de Montreal

ABSTRACT

139

Graphical programming requires the creation of basic graphical
types and a method to construct abstract graphical data types. It is
necessary to give the user the means of defining and using specific
graphical types. That is the reason why we have designed and implemen
ted a PASCAL extension based on abstract graphical types. The goal of
this paper is to show how this extension allows the user to develop
applications with a top-down methodology. We show by means of complete
examples how it is possible to construct complex figures in the same
way as the development of large programs by stepwise refinement. This
graphical extension has been designed for computer aided instruction
and design and will be applied in various areas, for which we consider
that the man-machine communication is important.

UNE APPROCHE STRUCTUREE DU TRAITEMENT GRAPHIQUE PAR ORDINATEUR

La programmation d'applications graphiques exige la creation de
types graphiques de base et une methode de construction de types gra
phiques abstraits. 11 faut fournir a l'uti1isateur les moyens de defi
nir et d'utiliser des types graphiques specifiques. C'est la raison
pour 1aque11e nous avons con~u et implante une extension graphique de
PASCAL basee sur les types graphiques abstraits. Le but de cet article
est de montrer comment cette extension permet de developper des appli
cations avec une methodologie descendante. Nous montrons au moyen
d'exemp1es comp1ets comment il est possible de construire des figures
complexes de la me me maniere que l'on developpe de grands programmes
par raffinements gradue1s. Cette extension graphique a ete creee pour
l'enseignement et la conception assistes par ordinateur et sera uti1i
see dans des domaines varies, ou nous considerons que la communication
homme-machine est importante.

140

A STRUCTURED APPROACH TO COMPUTER GRAPHICS*

Nadia Thalmann
Section Syst~mes
d'Infonnation
Universit~ Laval
Qu~bec, Canada

Daniel Thalmann
D~partement d'Infonnatique
et de Recherche Op~rationnelle
Universit~ de Montr~al
Montr~al, Canada

1. INTRODUCTION

Since the first ideas on structured programming were esta
blished by Dijkstra [1] , they have been used time and again and
have led to the concepts of systematic programming [2] and program
proof [3,4]. We can enumerate the major ideas of disciplined program
ming when we quote three fundamental points which were respectively
developed by Dijkstra [5] , Hoare [6 1 and Wirth [7] .

1) It is proved possible to completely describe a program by means
of a decomposition into subactions, which can be sequential or
controlled by selection or repetition clauses.

2) A program manipulates data; data organization and structuring must
be carefully defined. In a high level programming language, the
concept of a data type is very important.

3) A program can be gradually developed in a sequence of refinement
steps. In each step, program instructions are decomposed into
more detailed instructions.

The actual language which seems to the most adequate to
structured progranming techniques is the PASCAL [8,9] language which
has been des i gned for thi s purpose [10] .

If the development of disciplined programming is necessary,
it is also very desirable for the human being to visualize his results;
that is the reason why he has tried to develop another aspect of
computer science: graphical processing.

With the evolution of technology, very powerful graphical
displays have appeared and some graphical languages have been designed
[11 ,12]. The default of these 1 anguages is that there are no graphi
cal types and that good graphic programming requires the creation of

*This research was supported by National Research Council of Canada,
Grants A3006 and E4262 and LRSA of Laval University.

141

basic graphical types as well as a method to construct more complica
ted graphical types. This point is very fundamental, especially when
the graphical language is used for design automation, because this
design can be made with a top~down approach [13] .

The goal of this paper is to show the use of graphical types
in a well-structured language in order to construct complicated figu
res with a top-down .methodology.

After having introduced the basic concepts of our graphical
PASCAL extension, we will present a complete example to show the cons
truction of a digital network by stepwise refinement.

2. GRAPHICAL TYPES

Why graphical types are required?

A variable of square type must be easily distinct from a
variable of circle type. When we write a function to calculate the
cubic root of a real number, we find that it is necessary to check
if the actual parameter is not a character. The same problem must be
solved in graphical processing; writing a procedure to find the inter
section point of the diagonals of a quadrilateral has no significance
if the actual parameter is a circle. It is necessary to give the user
the means of defining and using specific graphical types.

The vector type

The vector type has been introduced and can be used in the
same way as the real type. A vector can be given by its two coordina
tes:

< El,E2 ~ where El and E2 are real expressions.

A vector arithmetic has been developed using vector addition
and a scalar product. A vector can be read and written, and caQ be
the result of a function.

e.g.

The fi gure type

PROGRAM SIHPLE(INPUT,OUTPUT);
~AR Vi,V2,V3: VECTOR' R:REAL'
BEGIN Vi:= «-5.2,4.3» '
V2: = 2*Vi' READ(Vi)'
V3:= Vi+V2' R: = Vi*V2;
WR ITE (V3, R)
END.

Most objects which are familiar to us can be constructed
with the help of very Simple figures, characterized by a few parame
ters. For example, a circle is determined by its radius and its cen
ter, a segment by its two vectors, a triangle by three.

142

Because of these considerations, it was necessary to use variables of
graphical types, characterized by a few parameters. That is the reason
why we have introduced a new structured type in PASCAL. the figure
type, which is an abstract type. The syntax of such a type is shown
in Fig. 1.

type formal parameter
section

Fig. 1 Syntactic diagram of the figure type

To define a new figure type, it is necessary to take the fol
lowing steps:

10 Find the figure characterics, which give the figure para-
meters

20 Find the algorithm, which allows one to construct the
figure with the help of the parameters.

To facilitate this second step, we have introduced, in our
extension, the statement connect (Xl, X2, ... , Xn) which links the
vectors Xl, X2, ... Xn.

Let's show two examples:

a) The triangle

10 Its characteristics are its 3 vertices a,b,c
20 The figure can be build by connecting its 3 vertices.

The following program shows how to define the triangle type:

PROGRAM TRYCINPUT,OUTPUT)~

TYPE TRIANGLE = FIGURECA,B,C:VECTOR)~
BEGIN CONNECTCA,B,C)
END~

VAR T:TRIANGLE~ X,Y,Z:VECTOR'
BEGIN READ(X,Y,Z)'
CREATE T(X,Y,Z)/ DRAW T
END.

The create statement creates dynamically in memory a new figure; at
this time, the real characteristics of the figures are determined.
The draw statement permits a created figure to be drawn. The erase
statement erases the figure, while the delete statement releases it
in the memory.

143

b) The circle

10 The circle characteristics are the center c and the
radius r.

20 It is possible to construct a circle by using a
sequence of points with the coordinates
<rcos~,rsin~ > where ~ has a range between 0 and 2n.

We can give the following program:

PROGRAM CURVE(INPUT,OUTPUT);

TYPE CIRCLE = FIGURE(C:VECTOR; R:REAL);
VAR STEP,THETA:REAl; Xl,X2:VECTOR;
BEGIN THETA:=O.O; Xl:= « R,O» tC;
STEP:=O.U
WHILE THETA<2*PI DO

BEGIN THETA:=THETAtSTEP;
X2:= R* « COS(THETA),SIN(THETA» >tC;
CONNECT(Xl,X2); Xl:=X2
END;

VAR C:CIRCLE; V:VECTOR; R:REAL;
BEGIN READ(V,R); CREATE C(V,R);
DRAW C
END.

In fact, figures such as the circle or the triangle are so common that
we have decided to define them as standard types, in the same way as
the following ones:

1. The segment defined by its 2 vectors

segment = figure (Xl, X2 : vector).

2. The line defined by 2 vectors

line = figure (Xl,X2: vector)

3. The square defined by its center and one vertex s.

square = figure (c,s : vector)

We have also defined a universal fi gure type, named f.i9..

The following standard functions and procedures are available:

functions

angle (dl, d2) gives the angle of the 2 lines dl and
d2.

144

inter (dl, d2) gives the intersection point of the 2
li nes dl and d2.

center (f) gives the center of gravity of the
figure f.

dist (vl, v2) gives the distance between the 2 points
vl and v2.

projx (v), projy (v) give the coordinates of the point v.

procedures (For the first four procedures, the figure f2
is obtained by a symmetry operation on figure
fl).

symmetry (fl, 1, f2) symmetry about the l-axis

translation (fl, t, f2) translation by vector t

rotation (fl, c, alpha, rotation about c by the angle alpha
f2)

homothety (fl, c, r,
f2)

union (fl, f2, f3)

readgraph (pl, p2,
... , pn)

homothety of center c and ratio r.

construction of figure f3 through the
union of the figures fl and f2.

allows to enter figures and/or vectors
by graphical input.

In the following program, the user enters a figure f and a vector v,
the figure is reduced by a homothety of center v and ratio 0.3. Then
n copies of the figure are stored in an array after a rotation about
v by a variable angle. The n figures are then drawn.

PROGRAM IMAGE(INPUT,OUTPUT);
VAR F:ARRAY [1 •• 10) OF FIG; G:FIG;

1:1 .. 10'
V:VECTOR'

BEGIN READORAPH(O,V) ,
HOMOTHETY(O,V,0.3,O)'
FOR 1:-1 TO 10 DO ROTATIONCO,V,PI*I/10,F[I);
FOR l:a1 TO 10 DO DRAW F[I)
END.

We can see, in this example, interactive techniques and how it is
easy to use figure types as other PASCAL types.

3. A COMPLETE EXAMPLE OF A FIGURE BUILT BY STEPWISE REFINEMENT

Our intention is to draw the digital circuit corresponding to

145

the logical gate and. As we know it, such a circuit is divided into
three parts: twodTodes dl and d2 and one resistor r. The circuit has 2
inputs a and b and one output c (see Fig. 2). Moreover, an auxiliary
point d is necessary for the connection to voltage power.

CIRCUIT = FIGURE(A,B,C!VECTOR; VAR D:VECTOR);

We have made

1)

2)
3)

VAR Dl,D2!DIODE; R:RESISTOR; Wl,W2!VECTOR;
BEGIN Wl:=AtO.8*(C-A); W2!=BtWI-A;
D!=2*WI-W2;
CREATE Dl(A,Wl); CREATE D2(B,W2); CREATE R(D,Wl);
CONNECT(Wl,C); CONNECT(Wl,W2);
INCLUDE Dl,D2,R
END;

the following geometrical assumptions:

wl is at about 80% of the distance ac
a, b, wl and w2 are the 4 vertices of a rectangle.
d is the symmetrical of w2 about wl.

The create statement creates 2 diodes and one resistor between the 4
points a, b, c, d. The figure is completely created b~nclud~these
three elements (include statement) and the 2 segments wlc and wlw2 .
Now, we have to construct a diode (Fig.3) between the 2 points
a and b.

The diode type can be defined as:

DIODE= FIGURE(A,B:VECTOR);
VAR Xl,X2,Pl,P2,P!VECTOR; ALPHA:REAL; T:TRIANGLE;
BEGIN Xl!=AtO.3*(B-A); X2:=AtO.7*(B- A);
ALPHA:=ANGLEPROJ(Xl,X2);
P!=(DIST(Xl,X2)/2)*« COS(ALPHA),SIN(ALPHA» > ;
P2:=X2tP; Pl!=XltP;
CONNECT(A,Xl,Pl,2*Xl-Pl);
CREATE T(Xl,P2,2*X2-P2);
INCLUDE T; CONNECT(X2,B)
END;

The function angleproj (a,b) gives the angle between the vertical axis
and the 1 i ne ab.

At this point, the resistor (Fig.4) is constructed by stepwise refine
ment; two segments aX l and x2b are used with a length of 20% of the
distance ab and a sequence of ten zigzags which have a width of 1/3
of the distance xl x2.

:, ~ ,:~. .. ,t ~

146

a

a ,,-_-+-~ ___ IC

b b

plyl = plp2
Fi g. 2 The AND circuit axl = ~= 0.3 ao

a Fig. 3 The diode

"-
"-

"-
\.

\.
\.

\.
\.

\. b "-
\.

\
\. ,

\.

Fig. 5 A zigzag
Fig. 1 The resistor

Fi g. 6 A" zi g" Fig. 7 Hierarchy of types

RESISTOR= FIGURE(A,B:VECTOR);
VAR Xl,X2,Cl,C2:VECTOR; 1:1 •• 10; Z:ZIGZAG; D:REAL;
BEGIN Xl: =AtO.2*(B-A); X2:=AtO.B*(B-A);
D:=DIST(Xl,X2)/3J
CONNECT(A,Xl); Cl:=Xl;
FOR 1:=1 TO 10 DO BEGIN C2: =Xlt(1/10)*(X 2-Xl);

CONNECT(X2,B)
END;

CREATE Z(Cl,C2,D); I NCLUDE Z; Cl: =C2
END;

Each zigzag (Fig.5) can be divided into two distinct parts: the

147

first one is of zig type and the other one is obtained by an homothety
operator using a value of ratio of -1.

ZIGZAG = FIGURE(A,B:VECTORJ L:REAL);
VAR Z:ZIG; V:VECTOR;
BEGIN V:~(At8)/2;
CREATE Z(A,V,L/2); INCLUDE Z;
HOMOTHETY(Z,V,-1.0,Z)' INCLUDE Z
END;

The zig type can be defined very easily (Fig. 6)

ZIG=FIGURE(A,B:VECTOR; L:REAL);
VAR BETA:REAL; X:VECTOR;
BEGIN BETA:=ANGLEPROJ(A,B);
X: =(AtB)/2tL*« COS(BETA),SIN(BETA» > ;
CONNECT(A,X,B)
END;

In short, the goal of this example is to show the use of the stepwise
refinement technique to construct graphical objects with a structured
method. It is obvious that such an approach is technically not opti
mized; it is also the case with the conventional top-down approach
which can lead to a very large number of procedures that produces some
amount of inefficiency. However, with this methodology, it is very
simple to modify the characteristics of the drawing. For example, if
we want to represent resistors like:

It is only necessary to redefine the zig type and the entire hierarchy
of types, as shown in Fig.7 is invariable. A complete listing and an
execution are given in appendix.

4. CONCLUSION

This graphical extension of PASCAL has been implemented on
COC Cyber by a portable preprocessor. This preprocessor consists of
about 4,000 Pascal source lines and the output is a standard Pascal
program.

The figures are created in memory either by the create state
ment, by a symmetry or union operation or by an assignment. Storage
is done by a set of Pascal procedures based on pointers. The delete

}48

statement releases memory entirely since an efficient garbage collec
tor has been developed. The include statement corresponds to the ope
ration wherein a pointer is updated; it does not create a copy in memo
ry. The connect statement is processed as chain building.

The graphical devices used are a display HP2648A and a
VERSATEC printer. The extension has been designed for computer aided
instruction and design and will be applied in various areas, for
which we consider that the man-machine communication is important.

5. ACKNOWLEDGEMENT

The authors are grateful to C. Pellegrini who has worked
for the pr.eprocessor.

6. REFERENCES

[1] Dijkstra, E.W. "Prograrrming Considered as a Human Activity",
Proc. IFIP Congr., 1965, pp. 213-217.

[2] Wirth, N. "Systematic Programming: An Introduction", Prentice
Hall,1973.

[3] Naur, P. "Proof of Algorithms by General Snapshots", BIT, 6
(1966), pp. 310-316.

[4] Hantler, S.L. and King, J.C. "An Introduction to Proving the
Correctness of Programs ll

, Computing Surveys 8 (1976) 3.

[5] Dijkstra, E.W. IINotes on Structured Programming", N. V., Academic
Press, 1972.

[6] Hoare, C.A.R. IINotes on Data Structuring", N.V., Academic Press,
1972.

[7] Wirth, N. "Program Development by Stepwise Refinement", Comm.
ACM, 14 (1971) 4, pp. 221-227.

[8] Jensen, K. and Wirth, N. "Pascal User Manual and Report", Berlin
Springer-Verlag, 1975.

[9] Hoare, C.A.R. and Wirth, N. "An Axiomatic Definition of the
Programming Language PASCAL", Acta Informatica, 2(1973),
pp. 335-355.

[101 Thalmann, N. and Thalmann, D. liThe Use of Pascal as a Teaching
Tool in Introductory, Intermediate and Advanced Computer Scien
ce Courses ll

, Proc. SIGCSE/CSA Techn. Symp., Detroit, 1978,
SIGCSE Bulletin, 10 (1978) 1, pp. 277-281.

[11] Shapiro, L.G. "ESP3: A High-Level Graphics Language", Proc.
Siggraph ' 75, Computer Graphics, 9 (1975) 1, pp. 70-77.

149

[12] O'Brien, C.D. et Brown, H.G. "IMAGE: a Language for the Interac
tive Manipulation of a Graphics Environment", Proc. Siggraph ' 75,
Computer Graphics, 9 (1975) 1, pp. 53-60.

[13] Stevens, W.P.; Myers, G.J. and Constantine, L.L. "Structured
Design", IBM Systems Journal 13 (1974) 2, pp. 115-139.

Appendix

PROGRAM DESIGNIINPUT,OUTPUT)'

TYPE CIRCUIT- FIGUREIA,B,C:VECTOR' VAR D:VECTOR)'

TYPE
FUNCGRAPH ANGLEPROJIA,B:VECTOR) : REAL;
CONST PI=3.14159'
BEGIN IF PROJXIB)zPROJXIA) THEN ANGLEPROJ:=O

ELSE ANGLEPROJ:=PI/2-ARCTANIIPROJYIB)-PROJYIA»/IPROJXIB)-PROJXIA»)
END;

RESISTOR- FIOUREIA,B:VECTOR"

TYPE ZIOZAG = FIOUREIA,B:VECTOR; L:REAL',

DIODE

TYPE ZIO-FIOUREIA,BIVECTOR' L:REAL)I
VAR BETAIREALI X:VECTOR'
BEOIN BETA:-ANOLEPROJIA,B) ,
XI=IA+B'/2+L* « COSIBETA),SINIBETA» > 1
CONNECTlA,X,B)
END'

VAR Z:ZIG; V:VECTOR;
BEGIN V:=IA+B'/2;
CREATE ZIA,V,L / 2); INCLUDE Z;
HOMOTHETYIZ,V,-1.0,Z); INCLUDE Z
ENDI

VAR Xl,X2,Cl,C2:VECTOR; 1:1 •• 10; Z:ZIGZAG; D:REAL;
BEGIN Xl:=A+0.2*IB-A); X2:=A+0.8*IB-A);
D:=DISTIX1,X2'/3;
CONNECTIA,Xl); Cl:=Xl;
FOR 1:=1 TO 10 DO BEGIN C2:=Xl+II/10)*IX2-Xl);

CONNECTIX2,B'
END;

CREATE ZIC1,C2,D); INCLUDE Z; Cl:=C2

FIGUREIA,B:VECTOR);
VAR Xl,X2,PI,P2,P:VECTOR; ALPHA:REAL; T:TRIANGLE;
BEGIN Xll=A+0.3*IB-A); X21=A+0.7*IB-A';
ALPHA: - ANGLEPROJIX1,X 2'1
rl - IDISTIX1,X2)/2)* « COSI ALPHA),SINIALPHA») ;
P21 - X2+P' PI:-Xl+P'
CO NNECTIA,XI,Pl, 2*XI-Pl)'
CREATE TIXI,P2,2*X2-P21'
INCLUDE TI CONNECT(X2.~'

ENO'

VAR 01.02:DIOOE' RIRESIsrORI Wl,W2:VECTOR'
BEOIN WI: nA+0.8*IC-AII W21= B+WI - A'
DI·2*Wl - W2 '
rRE ATE DIIA,Wl', CREATE D2IB,W2)' CREATE RIO,WI',
CU NN ECTI W1.C', CONNECTIW1,W2"
INCLUDE 01,D2,R
EN["

VAk NI CIRCUIT. DIVECTURI

1.I· urN I:REAr E NI '· · . l,O,1.0 .~·) ' « l,O, - 3,O» , <:'{ 6.0,1.0» ,DI;

l'RAW NI
W/, I r~ I NIL')
l Nl"

150

