
ACTION - A GRAPHICS AID TO INTERACTING
WITH MODELS AND SIMULATIONS

P.P. Tanner and K.B. Evans
National Research Council Canada

ABSTRACT

49

ACTION is a programming system that adds interaction capabilities
to existing computer models and simulations. While the model is running,
a vector graphics display gives a dynamic pictorial representation of
selected simulation variables. The user, while viewing this display,
may modify model parameters using input control devices to interact
with the model.

ACTION - INTERACTION AVEC DES MODtLES ET
DES SIMULATIONS AID~E PAR L'INFOGRAPHIE

ACTION est un systeme de programmation qui permet d'ajouter des
possibilites d'interaction aux modeles d'ordinateur et aux simulations
deja existants. Pendant la calculation du programme-modele, un visuel
a balayage cavalier represente graphiquement des variables choisis de
la simulation. L'usager examine le visuel et en meme temps peut
changer des parametres du modele avec les controles interactifs.

50

1. Introduction

Computer models and simulations have long been recogn~
zed as some of the most useful applications of computers in
the research and development field. For specialized appli­
cations, interactive modes of operation using cathode ray
tubes (CRT's) to display information and interactive con­
soles to enable the user to control the model have been
used extensively. Many dramatic advances in graphics dis­
play technology have resulted from the necessity of display­
ing the results of simultions and models.

Although some models represent physical entities and
make use of graphical data bases, most models do not repre­
sent physical objects and contain no graphical data base.
Graphics are not often used with these models except to
produce graphs and histograms showing the final results.
Nevertheless, a meaningful pictorial representation of
model dynamics offers a powerful tool for interpreting or
examining various aspects of model performance. In a sim­
ple example, pictures of different sized oil wells distri­
buted on a map could represent relative quantities of oil
production in an energy model. The resulting changes in
oil production could be observed dynamically by the viewer
in response to changes in model parameters such as price,
import taxes or demands, all controlled through user inter­
action.

Adding clear, illustrative graphics to models is a
demanding task. Not only must the modeller be familiar
with the graphics routine available to him, but he must
either be skilled in the user of abstract representations
of data, or be willing to experiment to find effective re­
presentations. To modify the graphical output of a model,
the modeller must often change his model and his graphical
data base - a time consuming procedure.

One approach to the problem is to maintain complete
separation between the model and its graphical representa­
tion. Using the general purpose graphics modelling system
described below, a graphical data base and a linkage bet­
ween the data base and the model may be created and easily
modified. The graphics/model linkage allows the choice of
a wide range of pictorial representations for any given
model.

2. ACTION Programming System

The ACTION programming system (Fig.l) has been
designed to facilitate the addition of user-model inter­
action to existing models. A "master picture" is used to
provide the graphical data base, and a program in a special
purpose language, ACTION, is used to specify connections
between the model and that data base. The ACTION program
also describes links between a control console and the

A.CT taN
E d iioll

DlsplC\ci:!
F;le
4~"" /" ...

Model .

Figure 1. ACTION System Data Flow

model, The facility allows quick modification to the gra­

phical data base or the ACTION program.

51

When the user has produced the picture and the control

program he can run the model. The ACTION programming sys­

tem will show changes in the model on the CRT and allow the

user to control the model in the manner specified in the

ACTION program.

The ACTION programming system can be divided into two

groups of functions. Those in the first group are performed

during the preparation stage prior to a model run, and those

in the second, during the model run.

2.1 Preparation

Before a simulation is run, a master picture, an ACTION

program, and a model must be prepared. The master image

and the ACTION program are prepared using facilities provi­

ded by the ACTION programming system; the model is prepa­

red separately. After any run of the model the master

picture or the ACTION program may be modified in order to

investigate different properties of the model or to experi­

ment with a different pictorial representation of the same

properties. Since the ACTION language is interpreted

rather than compiled, the model may be run immediately

after a modification to the master picture or the ACTION

52

program without a time consuming compilation . .

2.1.1 DRAW program

The master picture is drawn with the aid of a graphics
tablet. This picture is composed of a number of picture
segments - a segment is the smallest portion of the picture
that may be modified during a run. Designed to produce seg­
mented pictures, the DRAW program supports both free-hand
and geometrical constructions, including tablet controlled
arcs, gussets, lines restricted to specific lengths or
angles, endpoints restricted to a reference grid, as well
as transformation facilities. Picture segments may be du­
plicated, and pre-defined geometrical shapes may be added
to the picture. This facility uses an interactive graphi­
cal dialogue technique (described below) that is common
throughout the system.

2.1. 2 ACTION program

The ACTION program, written and/or modified during the
preparation stage, becomes the controller of the running
stage. Run once for each frame update on the CRT, it acts
as a switchboard, linking simulation variables to picture
segments, connecting input devices to other variables, and
translating simulation variables into text for CRT display.

2.1. 3 Simulation or Model

The simulation or model program must be written in
FORTRAN or other language that runs under the PDP ll's
RSX llM operating system. All internal variables used to
control picture elements, or variables that the user may
wish to control during a run, must be placed in a data
common. The model must have two program entries, one called
before the model run for initialization, and a second
called for each frame.

2.2 Running Stage

When the simulation is running, several programs are
used to produce each update of the image on the screen.
Fig. 2 shows the control loop - the sequence in which these
programs are executed, and Fig. 1 shows the data flow
amongst the programs. The first program in the loop resto­
res the graphical data base to the original "master picture".
Then the ACTION program is executed by the interpreter. The
picture restoration simplifies the writing of the ACTION
program by eliminating the accumulation of the transforma­
tions from frame to frame, and eliminating the build-up of
round-off errors.

The ACTION program uses values stored in the data
common to modify the master image. It also places specified
input device readings into the data common. When the ACTION

'Re~tOo"C.

M~:.~e
P,·ct",.e

[J(~~ule.

ACTION

Gt'>"~ /~ f!u.,..,
Displ4IJ model
F;/e.

Figure 2. ACTION System Control Flow

program has been executed, the display file with the new
picture, and the model is called to provide data for the
next frame.

3. ACTION Language

53

The design of the language was based on the follow­
ing assumptions: the length of the average ACTION program
would be less than SO lines; it would rely heavily on
special purpose graphical functions; it would be mainly
linear in structure; and it would make limited use of
conditional statements or iterations. (Of course the whole
program is interactive in the sense that it is executed
once for each picture frame). This has led to a language
that has many graphical functions, but has a restricted
set of control statements.

The ACTION language is similar in many ways to DeFan­
ti's GRASS language (2), a language directed towards "per­
formance graphics" and animation. However, the divergence
in aims of the two languages has led to major differences
in both the supporting programming systems and the manner
in which the programs are executed (6).

The language is described here using an example of a
spring-mass model, a picture of a spring and a mass, and
the corresponding ACTION instructions that could be used to
animate the model. Fig. 3 gives the FORTRAN program model­
ling the motion of a spring and mass. The program has two
entries: MODINI initializes the constants and is called
automatically by the ACTION system at the start of any run;
and the entry MODEL is the actual model called once each
frame. The model uses values provided by the ACTION pro­
gram (XINPUT,YINPUT) to control the supported end of the
spring (XTOP, YTOP) and computes the position of the

54

C
C SPRING MASS MODEL
C

COMMON/GLOBAL/VELX, VELY ,ntASS, nlASS, XTOP, YTOP, XINPUT, YINPUT
1 SPRCON ,DAMP, TINE

c
C VARIABLE NAMES:
C (VELX,VELY) - VELOCITY IN X AND DIRECTIONS
C (XTOP,YTOP) - POSITION OF TOP OF SPRING
C (RELATIVE TO POSITION IN MASTER H1AGE)
C (XMASS, nIASS) - POSITION OF BOTTml OF SPRING
C (RELATIVE TO POSITION IN t-tASTER IMAGE)
C (XINPUT,YINPUT) ~ POSITION CONTROL FOR TOP OF SPRING
C (SET BY ACTION PROGRAl-1)
C SPRCON ~ SPRING CONSTANT
C DAMP,.. DAf.-IPING FACTOR
C TIME - TIt-lE BETWEEN CALLS TO ~IODEL
C
C INITIALIZE ROUTINE

C

ENTRY ~IODINI
SPRCONc.995
DAtvIP=.985
X~lASS-O.O
nlASs·o.O
VELX-O.O
VELY-O.O
TUm-.25
RETURN

C ACTUAL MODEL
C

ENTRY ~IODEL
C
C pOSITION OF TOP OF SPRING IS SET BY X,Y INPUT
C

C

XTOP=XINPUT
YTOP:YI NPUT

C CHANGE IN VELOCITY=-KX
C

C

VELX--SPRCON< (XTOP-X~IASS) + VELX
VELYc-SPRCON* (YTOp-nIASS) + VELY

C NEW POSITION OF MASS
C

XMASS= X~IASS - VE LX <T J ~IE
nIASS·nIASS-VELY *THIE
RETURN
END

Figure 3. Spring Mass Model

weighted end of the spring (XMASS,YMASS).

To illustrate the model, we draw a master picture of
the spring and mass as shown in Fig. 4. It is composed of
three picture segments: the TOP support of the spring, the
SPRING itself, and the MASS at the bottom of the spring.
A hasic ACTION program could be:

100 COMMON VELX,VELY,XMASS,YMASS,XTOP,YTOP,XINPUT,YINPUT
200 COMMON SPRCON, DAMP, TIME
300 XINPUT.TABLET_X
400 YINPUT.TABLET Y

Figure 4. Master Image.

500 POSITION XY(TOP:SPRI NG,XTOP,YTOP)
600 POSITION_XY(MASS, XMASS,YMASS)

55

This program introduces three types of ACTION state­
ments; the COMMON, the assignment statement, and the stan~
alone function. The COMMON statements establish the equi­
valences of variables used in the ACTION program to varia­
bles in the model. The two assignment statements 300 and
400 use the key words TABLET X and TABLET Y to send tablet
values to the model. Stand-alone functions, lines 500 and
600 are the most common type of ACTION statement and ordi­
narily use a real variable to control one or more picture
segments. For example, line 600 uses the model variables
XMASS and YMASS to control the X and Y positions, respecti­
vely, of the picture segment MASS.

Line 600 introduces two types of variables: picture
segments, defined when drawing the picture, and real values.
A real value can be a model variable, a local variable,
an input device value, an arithmetic function, or an arith­
metic expression of any of these.

Line 500 is similar to line 600 but instead of a seg­
ment variable, a "segment set" variable is used, indicating
that the operation is to be performed on each segment in
the set {TOP,SPRING}.

This ACTION program places tablet information in the
data common for the next iteration of the model and uses
results received from the previous iteration of the model
to control the current position of the three segments.
When the program is run the user will notice that moving
the tablet pen across the tablet will cause the TOP and

56

the SPRING to move together, the MASS will bounce around
as if connected by a spring, however, the SPRING will re­
main vertical and unconnected to the mass (Fig. 5)

Figure 5. Image during run of first ACTION program.

To make the SPRING appear connected to both the TOP
and the MASS, it must be stretched to a length equal to
the distance between the TOP and the MASS, and rotated to
the proper angle. Since the SPRING is already connected
to the TOP neither operation may move the TOP end of the
SPRING. The modified ACTION program below improves the
animation of the spring mass model and introduces addi­
tional ACTION language concepts.

100 COMMON VELX,VELY,XMASS,YMASS,XTOP,YTOP,XINPUT,YINPUT
200 COMMON SPRCON,DAMP,TIME
204 DECLARE SPRLGH,SPRSCL,SROT
208 SRPLGH=LENGTH(POINT(TOP,l),POINT(MASS,l))
300 XINPUT=TABLET X
400 YINPUT.TABLET-Y
500 POSITION XY(TOP:SPRING,XTOP,YTOP)
600 POSITION-XY(MASS,XMASS,YMASS)
700 SPRSCL+LENGTH(POINT(TOP,l),POINT(MASS,l))/SPRLGH
800 SCALE Y(SPRING,POINT(SPRING,l) ,SPRSCL)
900 SROT+H ANGLE(POINT(TOP,1),POINT(MASS,1))+1.57
1000 ROTATETSPRING,POINT(SPRING,l),SROT)

Point variables are used extensively in this program.
A point variable is an ordered pair of real values, and is
usually specified in one of two ways. The expression
(100, 150) specifies a static point on the screen at posi­
tion X=lOO, Y=150. POINT(SPRING,N) is a function that
returns an ordered pair of real values representing the
current position of the Nth point of the picture segment

SPRING. An example of point variable use is in line 100

where a point function specifies the centre of a rotation.

The real variable SROT contro~the rotation of the picture

segment SPRING about the first drawn point in SPRING - the

point where the SPRING connects with the TOP.

The ACTION language also has functions that extract

information from the picture for use by subsequent ACTION

statements. For example line 208 returns a real value

57

equal to the distance between the first point of picture

segment TOP and the first point in picture segment MASS

(where the SPRING and MASS join). In the program, this

function is used a second time in line 700. In line 204

the function determines the length of the SPRING in the

master image (which is restored just prior to the running

of the ACTION program). In line 700 the function calcula­

tes the distance between the TOP and the MASS after they

have been repositioned. This is the length to which the

SPRING will be stretched. Dividing this length by the

first gives the scale factor which, when applied to the

SPRING in statement 800 stretches it to the correct length.

The second parameter in the SCALE_Y function, line 800, is

a POINT variable that specifies the origin of the scaling

operation.

H_ANGLE is another function that takes information

from tne picture, namely the angle between a line (speci­

fied by two end points) and the horizontal. Statement 900

adds 1.S7(=PI/2) to this. The result is an angle relative

to the vertical, and in this case, the desired angle of the

SPRING. The resulting value is then used to control the

ROTATE statement.

Note that statement ordering is important in this

program since functions are additive. If ROTATE had pre­

ceeded SCALE Y, the rotated SPRING would have been scaled

vertically, producing an interesting but not the intended

result.

When the program is run, the user will find that moving

the tablet pen over the tablet still moves the unweighted

end of the spring, but now the SPRING stretches, contracts,

and rotates in a realistic way, and the weighted end of the

spring stays attached to the MASS. (Fig. 6)

To investigate the properties of the model in more

detail, more statements are added.

1100
1200
1300

DAMP+POT (1)
SPRCON POT (2)*2.0
PRINT_VALUE(400,400,SPRCON)

58

Figure 6, Image during run of second ACTION program

Statements 1100 and 1200 use potentiometers 1 and 2
(range 0.0 to 1.0) to control the model variables DAMP
(damping) and SPRCON (spring constant) respectively.
Statement 1300 is a function that adds a new picture seg­
ment to the image. This function writes the current value
of the real variables, SPRCON, at the given point of the
screen (400,400). In this case the user can see both the
effect of modifying the spring constant on the spring and
the actual value of the constant.

In addition to the types of statements described
above, the language includes graphical declaration state­
ments and control statements as illustrated in this program.

100 COMMON XPOS(~) *YPOS(6)
200 COpy CAR(6)
300 DECLARE I
400 FOR I= 1 to 6
500 POSITION XY(CAR(I),XPOS(I),YPOS(I))
600 NEXT I -

Line 200 is a graphic declaration statement that
causes five additional copies of the picture segment CAR
to be produced. Lines 400-600 define an iterative FOR
loop using the syntax of the language BASIC. Each execu­
tion of this loop uses position information from the arrays
XPOS and YPOS to position one of the copies of CAR. The
loop is of ~ourse executed 6 times and respositions the
six cars.

The ACTION language also contains a large number of
graphical functions not illustrated in the above examples.
Documentation of these can be found in (4) and (6).

59

4. Interactive Graphics Dialogue

The ACTION language is an "Intrinsically Graphical
Language", "A language in which the program text and graphi­
cal objects are treated on an equal footing." [2] It is
also a language in which the coding is done by typing text,
by drawing pictures and by engaging in an interactive gra­
phical dialogue. The dialogue resembles a question and
answer period in which the system not only asks the ques~
tions, but also indicates to the user the possible answers.

To illustrate the dialogue, let us assume we wish to
input the SCALE Y statement from the above ACTION program
(line 800). On-choosing an editor command to input code,
the user is presented with a menu of statement types inclu­
ding stand-alone functions, assignment statements, and
control statements. From this menu we choose the word
SCALE. The system then presents a menu of the SCALE func­
tions (SCALE X,SCALE Y or SCALE XY). After we select
SCALE Y, the-system asks which segments are to be scaled.
An arrow on the CRT screen indicating the position of the
tablet pen is used to point to picture segments. The set
of segments selected is brightened on the screen; segments
selected in error may be removed from the set. In our
example, the segment SPRING is selected.

The next step is to select the origin point for the
scaling operation. First we must choose between a static
screen point, or one of the point valued functions. Since
we wish the origin of scaling to be the point where the
TOP and the SPRING join, we select the function POINT. We
are then requested to select the desired point and do so
with the pen.

Finally, with the aid of a menu we specify a real value
to control the scaling operation. The menu, in addition to
including input device names and real valued functions,
allows us to type in model variable names, local variable
names, constants or arithmetic expressions.

When the specification of the statement is complete we
are prompted to generate the next statement. We may instead
return to the editor to inspect the source, run the ACTION
program, or use the DRAW program.

5. Advantages of the Interactive Dialogue Approach

The interactive graphical dialogue approach grew from
our work in computer animation and music. We have found
that it is readily learned and, equally important, a readily
accepted method of interaction with a computer. The techni­
que has several advantages:

60

a) Most action statements refer to picture segments and/or
picture points. While it is possible to remember the
names of all the segments when writing the ACTION pro­
gram, it is almost impossible to specify in writing a
specific point in a hand drawn picture. Telling the
system that one wants "this" segment or "that" point,
by pointing with the tablet pen is both easier and more
natural.

b) As the user is constantly choosing statements, functions,
or parameters from a number of visible and valid choices,
many sources of possible error are eliminated.

c) The user does not have to learn any language syntax.

Direct entry of code by typing text is always possible.
This textual method is used for the language struct~res
such as arithmetic expressions, declaration statements, and
control statements, that cannot be expressed naturally using
the interactive dialogue.

The system is designed to allow the user to quickly
switch back and forth from using the interactive graphical
technique to using the text input method.

6. Conclusion

The ACTION programming system provid~an easy to use
facility of adding illustrative graphics and user control
to models. With the system, one can use graphics to illus­
trate any stored time series data, data from previous runs
of models, or statistical data.

The system demonstrates that the separation of graphics
and models into independent tasks coordinated by the ACTION
program simplifies the graphics programming.

The ACTION system is an experiment in the use of inter­
active graphical dialogue, an attempt to allow the use of
this dialogue technique when most convenient, but allowing
the use of typed text when the dialogue becomes awkward.
The graphic technique can be expanded. For example, the
source residing in the system can currently be perused
only in textual format. However, a selected line of the
program could be illustrated by intensity highlighting of
the segments i t af f ects and by arrows pointing to referenced
points. Queries concerning the resident source such as
"which statements affect 'this' segment" should be allowed.
There will undoubtedly be much refinement to the graphic
dia logue as exper i ence with the system grows.

Acknowledgment

We wish to thank Marceli Wein and Nestor Burtnyk for
their inspirational ideas.

References

1. Evans, K.B., Tanner, P.P. and Wein, M. A fast dyna­

mic graphics package. Proc. DECUS, 4(3) :817-821;

1978.

2. DeFanti, T.A. The digital component of the circle

graphics habitat. Proc. NCC, pp. 195-203; 1976.

3. Futrelle, R. P. and Barta, G. Towards the design of

an intrinsically graphical language. SIGGRAPH-ACM

Computer Graphics 12(3): 28-32; 1978.

61

4. Tanner, P.P. Action programming system users manual.

National Research Council internal report; 1979.

5. Tanner, P.P. Dynamic display of data. Proc. 4th

Man-Computer Comm. Conf., Ottawa, Ontario. pp.22-l to

22-7; May 1975.

6. Tanner, P.P. ACTION - a graphics aid to interacting

with models and simulations. NRC-ERB 920, Ottawa, 1979.

i

