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ABSTRACT

In this paper we report some experimental
results of a practical algorithm for the
solution of digital image restoration problems.
The solution is obtained directly from the
system of linear equations which result from
the discretization of the Fredholm integral
equation of the first kind. This algorithm uses
a simple regularized least squares technique.
Also the regularization parameter for the
optimum solution is calculated by a direct
(non-iterative) method. A computer simulated
example using both space-invariant and space-
variant, spatially separable point spread
functions, 1s presented. We show that this
method compares favorably with other known
direct methods.

RESUME

La présente communication décrit certains
résultats obtenus grice 3 un algorithme
pratique de résolution des problémes de
restitution des images numériques. La solution
découle directement du systéme d'équations
lindaires quil représente sous forme discréte
1'intédgrale de la premiére espéce de Fredholm.
Cet algorithme fait intervenir une technique
des moindres carrds simple et régularisé@e. En
outre, le paramdtre de régularisation de la

'solution optimale est calcul& par une méthode

directe (non itérative). Un exemple de
simulation par ordinateur, faisant appel & des
fonctions d'étalement des points, séparables
et, soit variantes, soit invariantes dans
1l'espace, est présent&. Nous démontrons que
cette méthode se compare favorablement 3
d'autres méthodes directes connues.
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I. Introduction

In the linear model, the inmage
restoration problem is described by
the Fredholm integral equation of
the first kind. The discretization
of this equation gives a system of
linear equations of the form

&) .9 = [HIf + e,
ﬁhére g is a stacked real m-vector
representing the known or given

degraded image, f is a stacked real
n-vector representing the unknown
or undegraded image and e
stacked real m-vector representing
the noise term. ([H] is an mxn real
matrix resulting from the discreti-
zation of the point spread function

in the integral equation. If the
known image 1is represented by an
IxJ matrix, wmn=I.J. Also if the

unknown image is represented by KixL
matrix, then n=K.L. Without loss
of geperality we assume in this
paper that m2n.

A classical approach for solving
Eq. (1) is to calculate its least
squares solution. However, Eq.
(1) in general is ill-posed in the
sense that small changes in' vector
q may cause large changes in the
solution vector f. That is, ill-
posed problens are also 1ill-
conditioned. See for example
Phillipst.

A successful technique for over-

comning the ill-posedness of Eq.
(1) is to dampen or reqgularize its
least sgquares solution. The damped

least
(1) is
equation

((HT[H) +¢ [IDE = (8] g
(87

squares solution to system
obtained from the normal

(2)

where is the tranépose of

is a
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‘tion

. conclude that

matrix [A) and [I] 1is an n unit
matrix. The parameter € is a
small positive quantity known as
the regularization rarameter. See
for example Rutishauser?2, p. 481,
where he called +this the relaxed
least sgquares solution. See also a

recent paper by Varah3, p. 102.
Hence, assuming that the matrix
in the 1l.h.s. of Eq. (2) 4is
nonsingular, an approximate solu-
~tion to BEg. (1) is given by
-
(3) £ = ([ [HME€[ID-1[H] g
The = parameter & 1in ©=J. (2) is
increased or decreased, and a

solution 1is calculated each time.
This is usually done a few times
antil a physically acceptable solu-
is obtained. The cost -of
these repeated solutions, in terms
of the arithmetic operations count,
is prohibitively high, if the pro-

blem is solved from scratch each
time a repeated solution is
calculated.

In the present work, the solu-
tion is obtained directly from Eq.
(2). Hence both srpace invariant
and space variant point spread
function cases may be solved by
this method. Once more, the regqu-

larization parameter for the best
or near best solution is obtained
by an inverse interpolation method
not 1iteratively as 1in Hunt#® and
ReddiS. This results in consider-
able saving of computer time. We
the fresent nethod
compares favorably with other known
direct methods.

IT. Description of the present
algorithnm -
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Consider the matrix ([H] [HJ*+
€ELIN in Eq. (2). Let & =(g+¢)
>0, where £>0 and }|¢,}<g . Llet
also matrix [C] be

(4a) fC] = ((HY[HI+&[I])-

Then -+
(8b) (HITHI €[IN=((Cl+te,[ID.

We assume that ¢ is _large enough
such that matrix ([H]) [(E)+E[I)) is
nonsingular and reasonably vwell
conditioned, and also €, is 1large

enough such that matrix [C] is
nonsingular and reasonably well
conditioned. Thus from (ub),

(CHT [HI+e[IND-21=[C T [ I]+g[CI-1 I
Hence provided that
(5) fed-11LCT | <1,

wvhere ] |.|| denotes any subordinate
matrix norm, we may approximate the

last equality and rewrite it as
follows. See for example Stewarté-
¢ Pe 192.

(CHY (HJ+E€ [T =1=[CI-1([I]-£,[C]-1)

Substituting in Eq. (3), the
approximate solution f is given by

f=rcrialq - ,[CI-2(H] g,
orl N N ~
(6) £ =£ -~-¢ v,
vhere ’f:, =[C]-1[H]‘_'g and v=[C]—lf,.

Therefore, once the parameters
¢, and ¢, are correctly calculated,
an approximate solytion to the pro-
blem is given by (6). Also from
(6), repeated solutions, i.e. for
different values of ¢, are easily
calculated.

ITT. The regularization parameter
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In this section we argue in
favour of choosing a reasonable
value for the parameter & « Then
we describe a method for calculat-

ing the parameter g, .
A. The choice of ¢,
It is known that the eigenvalues

of matrix [C] in (4a) are thenm-
selves the eigenvalues of matrix

((HY'[uY with_an €, added to each
one. Also ([H} [H]) is a symmetric
positive semi-definite matrix.

That 1is its
non-negative.

eigenvalues are real

For low _and moderate blur,
matrix ([HY[H]) is fairly well
conditioned. That is its smallest
eigenvalue is not very small. Thus

adding a small positive parameter
€, to each of its diagonal elements
would cause a small change to its
smallest eigenvalues. LYet for
severe blur, matrix ([H][H] is
nearly singular. That is its
smallest eigenvalues are Learly
Zeros. Therefore by adding €, to
each+of the diagonal elements of
(THY [HE]), the smallest eigervalue
of matrix [C] would ke approximate-
ly ¢, . Therefore, in ygeneral, we
may state that the smallest eigen-
valué of mpmatrix [C]=«¢%, , where
X =1 for severe blur and =x is
greater than 1 for low and moderate
blur.

From this arguament, for further
use, we Lere state the following.
Matrix [C] 1is symmetric positive
definite, its eigenvalues are then-
selves 1its singular values. Hence
by considering the spectrzl norm,
in (5,

(7 HICTtH,= 1/ («e).
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Now, because
error accumulating in the calcula-
tion, a calculated parameter x say,

is considered zero 1if |x|<EPS,.
where FPS is a specified tolerance.
For the 1IBM - 370 computer, the

round-off level in single precision
calculation 1is about 10-6. For
this computer, usually, we take
EPS=10-¢. - A reasonable choice of
the parameter €, would be of the
order of Y'EFS=0.01.. In this paper,
ve experimented with ¢€,=0.01 and
£,=0.02 . It is found that this
choice "of ¢,
blems solvable by other methods
using the present form of point
spread function matrix [H] of Gaus-

sian distribution type. See part C
in this section.

Matrix [C]-! im Eq. (4) is
calculated by applying m Gauss-

Jordan elimination steps with par-
tial pivoting to matrix [C) and its
updates. Since matrix {C] is sym-
metric positive definite, we pivot
only over the diagonal elements of
{C} and its updates. PFor the above
choice of §,, for severe blur, the
smallest pivot in the Gauss-Jordan
steps is found to be, as expec-
ted?, 8, about 0.01 and 0.02 respec-
tively for ¢, =0.01 and 0.02 .

B. Calculating ¢,

To start, the paramefer £
should satisfy the inequality (5).
From (7), the inequality (5) is
satisfied if
(8a) fel <<kt ,
where o« is defined in section 32
above.

However, since it is only known
that « >1 for 1low and moderate
blur, then for 1low and moderate

of the round-off

is adequate for pro- .
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blur, we may safely replace (8a) by
the following inequality which does
not include o« , namely

(8b) 1 g1 <& .

Tke method of calculating & is

analogous to the method of calcu-
lating the parameter ¥ for a rele-
vant problem by Hunt4. This method
is based on the knowledge of the
urbiased estimate of the variance
denoted by S2(e) and of the mean
denoted by pM-(e) of the noise vec-
tor e in Eq. (1. It 1is assumed-
that S2(e) and pMm2{e) are known and
thus e2? is estimated.

From Eq. (1), the residual vecs
tor for the calculated solution £
is given by ‘

¢ = [{Hlf-q.
or by using (6),

P=P°—Ll.ul

~
where §,=[H]f, -g and u=[H]v. Then
if the calculated solution f of (3)
equals the ideal solution f of (1),
P2=e2, Hence we here attempt to
calculate ¢, which results 1in p?2
being as near as possible to e2.

(%9a)

From {9%9a)
(9b) ¢2 =¢p = 92 -2¢, yTu + 202,

That is for values of ¢, satisfying
(8), the relation between §2 and €.
is a vertical parabola. The vertex
of this parabola is obtained at a
negative value of ¢ .

The solution f is calculated
from (6) for 3 different values of
ty; namely for ¢&,=0, +§&/2. The
values of $2 are calculated from
(9) for the three values of £,
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Trer inverse interpolation is used
to calculate the parameter ¢, which
results in p2=e2, We used the
inverse interpolation method de-
scribed by Ralston®, pp.57-62.

C. Some practical considerations

We here account for some practi-
cal situations concerning the para-

meters ¢, and ¢, . That 1is when
these parameters do not satisfy
(8) .

For low and moderate blur, par-

ticularly for 1large noise term e,
the calculated parameter €. is pos-
itive and may be > & .  The calcu-
lated solution vector £ 1in this
case would be 1inaccurate. This
situation occured in our calcula-
tion when we took &,=0.01 for mod-
erate blur with added large noise.
This resulted in the restored image
of Fig. 2d below. If this situa-
tion occurs, we may recalculate the
problem with a larger value of ¢
which equals the sum of the old
values of ¢ and t. . Then the new
calculated ¢, would be very small;
almost zero.

For severe blur, for the case of
no added noise, the calculated ¢,
is negative and nearly equals - E,.
Again in this case, the calculation
would be inaccurate. It is found
in this case, that a value of
t,=-& /2, would both nearly satisfy
the inequality (8a) for o« =1, and

produce a small value of ?2 to be
tolerated.

Finally for severe blur with
addead noise, the calculated

restored image for a particular ¢,
may appear very noisy. A larger
value of ¢, would eliminate this
noise but reduce the sharpness of
the image.
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IV. Fxperimental resualts

A computer program for the pre-
sent algorithm 1is written in FOR-
TRAN IV and has been tested or the
IBM 370/3032 computer.

The example considered here is
the classical iraje of the GITL.
To start, a portion of the image of

the GIERL 1is decimated by taking
every second pixel every second
line. This gives the 103x64 matrix

[F] in fiqure 1.
obtained by blurring the ideal
image [F] and adding noise to the
blurred image.

The image [G] is

We experimented with £€,=0.01 and
€,=0.02 . We found tiat for severe
blur with no added noise & =0.01 is
an adequate choice, although threre
is no nmuch difference between the
restored images for ¢, =0.01 and
€=0.02 . Tor severe blur with
added noise €,=0.02 was an adequate
choice. Also for low and moderate
blur withk added noise, t,=0.02 vas
an adequate choice. See Fig 2
below where restored images ¥or
moderate blur with added noise are
shown for £,=0.01 and ¢=0.02 .

The execution time per run for
this example on the IBM 370/3032
computer is about 50 seconds for
all cases. This time includes
creating intermediate data sets for
printing intermediate results.

We have compared the aritkmetic
operations count with other direcr
methods suck as those of Pefs. &4,
7, 8 and 10. From this and fronm
the numerical results, we conclude
that the present method compares
favorably with other known direct
methods.
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Figure 1. The 103x64 matrix repre-
senting a portion of the image of
the GIRL decimated by taking every
second pixel every second line.
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(a)

(c)

(e)

Figure 2. Restoration from moderate SIPSF blur (a) Blurred noisy
image, with additive Gaussian noise, mean =0 standard deviation =1,
S/N =1750; (b) Blurred noisy image, with additive Gaussian noise, mean
=0, standard deviation =3, S/N =195; (c) Restored for (a) for €,=0.01.
(d) Restored for (b) for €,=0.01. (e) Restored for (a) for e‘=0.02.
(£) Restored for (b) for ¢,=0.02.
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(c) (d)

Figure 3. Restoration from severe SIPSF blur (a) Blurred image, with
no additive noise; (b) Blurred noisy image, with additive Gaussian
noise, mean =0, standard deviation =0.5, S/N =7000; (c) Restored for
(a) for € ,=0.02. (d) Restored for (b) for ¢,=0.02.
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(a) (b)

(c)

(e)

Figure 4. Restoration from SVPSF blur. (a) Blurred

image with no
noise, 1low blur. (b) Blurred image with no noise, medium blur. (c)

Blurred image with no noise, severe blur. (d) Restored for (a)

€,=0.01. (e) Restored for (b) for € =0.01. (f) Restored for (c) for
¢,=0.01.
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