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ABSTRACT 

In this paper we report some experimental 
results of a practical algorithm for the 
solution of digital image restoration problems. 
The solution is obtained directly from the 
system of linear equations which result from 
the discretization of the Fredholm integral 
equation of the first kind. This algorithm uses 
a simple regularized least squares technique. 
Also the regularization parameter for the 
optimum solution is calculated by a direct 
(non-iterative) method. A computer simulated 
example using both space-invariant and space­
variant, spatially separable point spread 
functions, is presented. We show that this 
method compares favorably with other known 
d irec t methods. 

RESUME 

La presente communication decrit certains 
resultats obtenus grace a un algorithme 
pratique de resolution des problemes de 
restitution des images numeriques. La solution 
decoule directement du systeme d'equations 
lineaires qui represente sous forme discrete 
l'integrale de la premiere espece de Fredholm. 
Cet algorithme fait intervenir une technique 
des moindres carres simple et regularisee. En 
outre, le parametre de regularisation de la 
solution optimale est calcule par une methode 
directe (non iterative). Un exemple de 
simulation par ordinateur, faisant appel a des 
fonctions d'etalement des points, separables 
et, soit variantes, soit invariantes dans 
l'espace, est presente. Nous demontrons que 
cette methode se compare favorablement a 
d'autres methodes directes connues. 
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I.. Introduction 

In the linear model, the image 
restoration problem is described by 
the Fredholm integral equation of 
the first kind. The discretization 
of this equation gives a system of 
linear equations of the form 

(1) g = [H]f + e, 

where g is a stacked real m-vector 
representing the known or given 
degraded image, f is a stacked real 
n-vector representing the unknown 
or undegraded image and e is a, 
stacked real m-vector representing 
the noise term. [H) is an mxn real 
matrix resulting from the discreti­
zation of the point spread function 
in the integral equation. If the 
known image is represented by an 
IxJ matrix, m=I.J. Also if the 
unknown image is represented by KxL 
matrix, then n=K.L. Without loss 
of generality we assume in this 
paper that m~n. 

A classical approach for solving 
Eg. (1) is to calculate its least 
squares solution. However, Eq. 
(1) in general is ill-posed in the 
sense that small changes in vector 
9 may cause large changes in the 
solution vector f. That is, ill­
posed problems are ,also ill­
conditioned. See for example 
PhillipSl. 

, 

A successful technique for over­
coming the i11-posedness of Eq. 
(1) is to dampen or regularize its 
least squares solution. The damped 
least squares solution to system 
(1) is obtained from the normal 
equation 

( 2) 

where [H jT is the transpose of 
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matrix [H] and [I] is an n unit 
matrix. The parame ter l is a 
small positive quantity known as 
the regularization Farameter. See 
for example Futishauser2, p. 481, 
where he called this the r~laxed 
least squares solution. See also a 
recent paper by Varah 3 , p. 102. 

Hence, assuming that the ~atrix 
in the l.h.s. of Eq. (2) is 
nonsingular, an approximate solu­
tion to Eg. (1) is given by 

(3) f = ([H{[H]+€.[I])-l[H]'g 

The parameter ! in ':-j. (2) is 
increased or decreased, and a new 
solution is calculated each time. 
This is usually done a few times 
until a physically accept~b1e solu­
tion is obtained. The cost ,6£ 
these repeatFd solutions, in terms 
of the arithmetic operations count, 
is prohibitively high, iE the pro­
blem is solved from scratch each 
time a repeated solution is 
calculated. 

In the present work, the solu­
tion is obtained directly from ES. 
(2). Hence both sFace invariant 
and space variant point spread 
function cases may be solved by 
this method. Once more, the regu­
larization parameter for the best 
or near best solution is obtained 
by an inverse interpolation method 
not iteratively as in Hunt4 and 
Reddi 5 • This results in consider­
able saving of comFuter time. We 
conclude that the Fresent metLod 
compares favorab1y with other known 
direct methods. 

11. Description of the present 
algorithm 
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T 
Consider the matrix ([ H] [H)+ 

t [11) in Eg. (2). Let l = (t.,H L ) 

>0, where £,>0 and It1.l<l.l' Let 
also matrix [Cl be 

( 4a) 
Then 
(4h) 

T r C] = ([ H) [H]+ El [ I ]) • 

([ H ,.,. rH )+ q I ]) = ([ C ]+ E.~ [ I ]) ,~ 

We assume that ~ is large enough 
such tt.at matrix ([Hj"'"[H]+ f [I]) is 
nonsin~ilar and reasonably well 
conditioned, and also E, is large 
enough such that matrix [Cl is 
nOLsingular and reasonably well 
conditioned. Thus from (4b), 

'T 
([ H] [H )+H 11) -1:[ C ]-l[ [I ]+l • .r C]-l ]-' 

Hence provided that 

where 11-11 denotes any subordinate 
matrix norm, we may approximate the 
last equality and rewrite it as 
follows. See for example stewart 6 

, p. 192. 

([ H 1 T [ H )+ £. r 11) -1::=[ C)-I ([ I )- E<&.[ C)-I) 

Substituting in Eg. (3), the 
approximate solution f is given by 

f = [Cl-I[ H{q - t ... [Cl-2[H]'9. 
Or, " .. 
(6) f = fo - Eo. v, 

~ ~ ~ 

where fo =[ C ]- 1 [ H) g and v=[ C ]- 1 fo • 

Therefore, once the parameters 
l, and ~ .. are correctly calculated, 

an approximate solution to the pro­
blem is given by (6). Also from 
(6), repeated solutions, i.e,. for 
different values of l ... are easily 
calcula ted~ 

Ill. The regularization parameter 
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'.~' 

In this section we argue in 
favour of choosing a reasoliable 
value for the parameter ~. Then 
we describe a method Eor calculat­
ing the parameter l .... 

A. The choice of ~, 

It is known that the eigelivalues 
of matrix [C] in (4a) a re them­
selves the eigenvalues of matrix 
([H]T[H]) with an (., added to e'3.ch 
one. Also ([H]T[H]) is a symmetric 
positive semi-definite matrix. 
That is its eigenvalues are real 
non-negative. 

For low and moderate blur, 
matrix ([ H )T( H]) is fairly well 
conditioned. That is its smallest 
eigenvalue is not very small. Thus 
adding a small positive parameter 
(I to each of its diagonal elements 

would cause a small change to its 
smallest eigenvalues. Yet for 
severe blur, matrix «(HJ'T[H]) is 
nearly singular. That is its 
smallest eigenvalues are r.early 
zeros. Therefore by adding El to 
each of the diagonal elements of 
C[ H f [H]) , the smallest eiger: value 
of matrix (C] would te a?proximat~­
ly ll' Therefore, in yeneral, we 
may state that the smallest eigen­
value of matrix (c]= (I(~" where 
0{ =1 for severe blur and 0( is 
greater than 1 for low and moderate 
blur. 

~rom this argument, ~or further 
use, we here state the ~ollowing. 
Matrix (C] is symmetric positive 
definite, its eigenvalues are them­
selves its singular values. Hence 
by considering the spectral norm, 
in (5), 
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NOw, because of the round-off 
error accumulating in the calcula­
tion, a calculated parameter x say, 
is considered zero if Ixl<EPS, 
where EPS is a specified tolerance. 
For the IBM 370 computer, the 
round-off level in single precisiori 
calculation is about 10-&. For 
this computer, usually, we take 
EPS=lo--. A reasonable choice of 
the parameter t, would be of the 
order of y'EPS=0.01. In this paper, 
we experimented with f.., =0.01 and 
l~=0~02. It is found that this 
choice of l, is adequate for pro­
blems solvable by other methods 
using the present form of point 
spread function matrix [H] of Gaus­
sian distribution type. See part C 
in this section. 

Matrix [C ]-1 in Eg. (4) is 
calculated bV applying m Gauss­
Jordan elimination steps with par­
tial pivotinq to matrix [Cl and its 
updates. Since matrix [Cl is sym­
metric positive definite, we pivot 
anI V over the diagonal elements of 
[Cl and its updates. For the above 
choice of E.

" 
for severe blur, the 

smallest pivot in the Gauss-Jordan 
steps is found to be, as expec­
ted 7 ,a, about 0.01 and 0.02 respec­
tively for ~,=O.Ol and 0.02 • 

B. Calculating E.L 

To start, the parameter EL 
should satisfy the inequality (S). 
From (7), the inequality (S) is 
sa tisfied if 

(Sa) I [ .. I <. < 0( t, 

where 0<. is defined in section 3A 
above. 

However, 
that 0( )1 
blur, then 

since it is only known 
for low and moderate 
for low and moderate 
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blur, we may safely replace (8a) by 
the following inequality which does 
not include 0(, namely 

(Sb) I f. ... 1 < l, • 

Tl:e method of calcala ting E& is 
analogous to the method of calcu~ 
lating the parameter Y for a rele­
vant problem by Hunt4. This method 
is based on the knowledge of the 
unbiased estimate of the variance 
denoted by S2(e} and of the mean 
denoted by f" (e) of the nois!? vec­
tor e in Eq. (1). It is assumed 
that S2(e) and r2(e) are known and 
thus e 2 is estimated. 

From Eg. (1), the r-esidual. vec;, 
tor for the calculated solut~on f 
is given by .. 

f=[H]f-g. 

Or by using (b), 

(9a) 
,.. 

where f. =[ H Jf. -g and u=[ H ]v. Then 
if the calculated solution I of (3) 
equals the ideal solution f of (1), 

p2=e 2• Hence we here atte~pt to 
ca lcula te fL wh ich r esul t s in f 2 

being as near as possible to e 2 • 

From (9a) 
.,. 

(9b) f 2 =f r = 
,. 

f 2 - 2 ~l. ~ U + £~ U <1 • 
o • 

That is for values of ~ .. satis~ying 
(S), the relation between ~2 and~ .. 
is a vertical parabola. The vertex 
of this parabola is obtained at a 
negative value of lL' 

,... 
The solution f is calculated 

from (b) for 3 different values of 
la.; namely for l~ =0, ± E.,/2. The 
values of f2 are calculated from 
(9) for the three values of f..l. • 
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Trep. inverse interpolation is used 
to calculate the parameter \.L which 
results in j'2=e 2 ,. We used the 
inverse interpolation method de­
scribed by Falston 9 , pp.57-62. 

c. Some practical consider~tions 

We here ~ccount for some practi­
cal situations concerning the para­
meters (., and lL'. Tha t is when 
these parameters do not satisfy 
(8) • 

For low and moderate blur, par­
ticularlv for large noise term e, 
the calculated parameter E.~ is pos-
itive and mav be > El .... The calcu-
lated solution vector f in this 
case would be inaccurate. This 
situation occured in our calcula­
tion when we took (,=0.01 for mod­
erate blur with added large noise. 
This resulted in the restored image 
of Fig. 2d below. If this situa­
tion occurs, we may recalculate the 
problem with a larger value of fo, 
which equals the sum of the old 
values of fo, and lL. Then the new 
calc ula ted lL would be very small; 
almost zero. 

For severe blur, for the case of 
no added noise, the calculated [~ 
is negative and nearly equals - E,. 
Aqain in this case, the calculation 
would Le inaccurate. It is found 
in this case, that a value of 
[~=-l'/2, would both nearly satisfy 
the inequality (8a) for ~ =1, and 
produce a small value of y2 to be 
tolerated. 

Finally for 
added noise, 

severe blur with 
the calculated 
a particular €\ 
noisy. A larger 

restored imaqe for 
may appear verv 
value of E, lriould 
noise but reduce 
the image. 

eliminate this 
the s~arpness of 
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IV. Fxperimental res~lts 

A computer program for the pre­
sent algorithm is writt~n in Fon­
TRAN IV and has been tested on the 
IBM 370/3032 comp~ter. 

The ex~mple considered here is 
the classical imaje ~~ the GI~L. 
To start, a portion of the image of 
the GIRL is decimated by takiLg 
every second pixel every second 
line. This gives the 103K64 matrix 
[P] in figure 1. The im'ige [G J is 
obtained by blurring the ide'il 
image [F] and adding noise to the 
blurred image. 

We experimented with (,=0.01 ani 
El =0.02. We found t:la t for severe 
blur with no added noise £, =0.01 is 
an adequate choice, altho~gh there 
is no much difference between the 
restored images for I., =0.01 and 
l,=0.02 ~or severe blur ¥ith 
added noise l,=0.02 was an adeauate 
choice. Also for low and moderate 
blur witt added noise, ~,=0.02 was 
an adequate choice. See Fig 2 
below where restored images ~or 
moderate blur with added noise are 
shown for E.,=0.01 and (,=0.02. 

The execution time per run ~or 
this example on the IBM 370/3032 
computer is about 50 seconds :or 
all cases. ~his time ificludes 
creating intermediate data sets for 
printing intermediate res~lts. 

We have compared the arittmetic 
operations COUfit with ot~er direcr 
methods SUce as those of ?ef~. 4, 
7, 8 and 10. :'roJl this and from 
the numerical results, we conclude 
that the present method compares 
favorably with ot~er known direct 
methods .• 
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blurred image. 

We experimented with (,=0.01 ani 
El =0.02. We found t:la t for severe 
blur with no added noise £, =0.01 is 
an adequate choice, altho~gh there 
is no much difference between the 
restored images for I., =0.01 and 
l,=0.02 ~or severe blur ¥ith 
added noise l,=0.02 was an adeauate 
choice. Also for low and moderate 
blur witt added noise, ~,=0.02 was 
an adequate choice. See Fig 2 
below where restored images ~or 
moderate blur with added noise are 
shown for E.,=0.01 and (,=0.02. 

The execution time per run ~or 
this example on the IBM 370/3032 
computer is about 50 seconds :or 
all cases. ~his time ificludes 
creating intermediate data sets for 
printing intermediate res~lts. 

We have compared the arittmetic 
operations COUfit with ot~er direcr 
methods SUce as those of ?ef~. 4, 
7, 8 and 10. :'roJl this and from 
the numerical results, we conclude 
that the present method compares 
favorably with ot~er known direct 
methods .• 
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(a) 

(c) 

(e) 

Figure 2. Restoration from moderate SIPSF blur Ca) Blurred noisy 
image, with additive Gaussian noise, mean =0 standard deviation =1, 
SIN =1750; Cb) Blurred noisy image, with additive Gaussian noise, mean 
=0, standard deviation =3, SIN =195; Cc) Restored for Ca) for £,=0.01. 
Cd) Restored for Cb) for €,=0.01. (e) Restored for (a) for €,=0.02. 
Cf) Restored for (b) for ~,=0.02. 
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(a) (b) 

( c ) (d) 

Figure 3. Restoration from severe SIP SF blur (a) Blurred image, with 
no additive noise; (b) Blurred noisy image, with additive Gaussian 
noise, mean =0, standard deviation =0.5, SIN =7000; (c) Restored for 
(a) for E. =0.02 ,. (d) Restored for (b) for (.. =0.02. 
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(a) (b ) 

(c) (d) 

(e) (f) 

Fiqure 4.. Restoration from SVPSF blur. Ca) Blurred image with no 
noise, low blur. Cb) Blurred image with no noise, medium blur. Cc) 
Blurred image with no noise, severe blur. Cd) Restored for (a) for 
~,=O.01. (e) Restored for (b) for t:.,=O.01. (f) Restored for (c) for 
~I =0 ,.0 1. 
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