
- 77 -

rOWARDS UNIFORM USER INTERFACES IN AN OFFICE AUTOMATION SYSTEM

Ronald L. Danielson

Department of Electrical Engineering and Computer Science
University of santa Clara, California

ABSTRACT

The facilities provided by an office
automation system must be efficiently usable
by a wide variety of different user group_,
each of which has definable characteristics
with respect to skills, which should be
exploited by,and expectations, which should be
satisfied by, the user-system interface. There
are three basic dialog formats which may be "_,­
combined to implement this interaction: menu,
command, and softkey. An examination of the
respective characteristics of dialog formats
and user classes leads to the conclusion that a
softkey interface best satisfies the needs of
the widest range of users and thus should form
the basis for most of the interaction.
Examples are given of how uniformity of
interaction of existing office utility programs
with menu and command interfaces may be
improved by m"odifyingthose programs to use
softkeys. The modifications may be done in a
way which allows all classes of users to shift
from the existing interface to the new
interface without retraining.

Les ressources offertes par un systeme de
bureautique doivent pouvoir etre utilisees de
fa~on efficace par une variete de classes
d'utilisateurs differentes qui ont des
caracteristiques identifiables du point de vue
des competences, que l'interface
utilisateur-systeme doit exploiter, et des
attentes auxquelles il doit satisfaire. 11
exis>e trois modes de dialogue de base que l'on
peut combiner pour mettre en oeuvre
l'interaction: menu, commande et touche
personnalisable. Suite a une etude des
caracteristiques respectives des modes de
dialogue et des classes d'utilisateurs on
conclut qu'une interface a touche
personnalisable repond le mieux auxbesoins de
la plus grande' gamme d'utilisateurs et qu'elle
devrait donc servir de base a la plus grande
partie du dialogue.

On donne des exemples sur la fa~on
d'ameliorer l'uniformite de dialogue des
programmes utilitaires de bureau existants,
munis d'interfaces de mode menu et de commande,
en les convertissant a une interface a touche
personnalisable. Les modifications peuvent etre
faites de fa~on a permettre a toutes les
classes d'utilisateurs de passer de l'interface
existante a une nouvelle interface sans qu'un
recyclage soit necessaire.

CMCCS '81 I ACCHO '81

- 77 -

rOWARDS UNIFORM USER INTERFACES IN AN OFFICE AUTOMATION SYSTEM

Ronald L. Danielson

Department of Electrical Engineering and Computer Science
University of santa Clara, California

ABSTRACT

The facilities provided by an office
automation system must be efficiently usable
by a wide variety of different user group_,
each of which has definable characteristics
with respect to skills, which should be
exploited by,and expectations, which should be
satisfied by, the user-system interface. There
are three basic dialog formats which may be "_,­
combined to implement this interaction: menu,
command, and softkey. An examination of the
respective characteristics of dialog formats
and user classes leads to the conclusion that a
softkey interface best satisfies the needs of
the widest range of users and thus should form
the basis for most of the interaction.
Examples are given of how uniformity of
interaction of existing office utility programs
with menu and command interfaces may be
improved by m"odifyingthose programs to use
softkeys. The modifications may be done in a
way which allows all classes of users to shift
from the existing interface to the new
interface without retraining.

Les ressources offertes par un systeme de
bureautique doivent pouvoir etre utilisees de
fa~on efficace par une variete de classes
d'utilisateurs differentes qui ont des
caracteristiques identifiables du point de vue
des competences, que l'interface
utilisateur-systeme doit exploiter, et des
attentes auxquelles il doit satisfaire. 11
exis>e trois modes de dialogue de base que l'on
peut combiner pour mettre en oeuvre
l'interaction: menu, commande et touche
personnalisable. Suite a une etude des
caracteristiques respectives des modes de
dialogue et des classes d'utilisateurs on
conclut qu'une interface a touche
personnalisable repond le mieux auxbesoins de
la plus grande' gamme d'utilisateurs et qu'elle
devrait donc servir de base a la plus grande
partie du dialogue.

On donne des exemples sur la fa~on
d'ameliorer l'uniformite de dialogue des
programmes utilitaires de bureau existants,
munis d'interfaces de mode menu et de commande,
en les convertissant a une interface a touche
personnalisable. Les modifications peuvent etre
faites de fa~on a permettre a toutes les
classes d'utilisateurs de passer de l'interface
existante a une nouvelle interface sans qu'un
recyclage soit necessaire.

CMCCS '81 I ACCHO '81

- 78 -

1. Office Automation and User Interfaces

It is generally agreed that development of of­
fice information systems (OIS's) has the poten­
tial to greatly increase the eroductivity of.
office workers at all levels Ll, 2, 3]. It IS

also agreed [2,4] that to realize this poten­
tial, an 015 must be integrated:

- at the program level, to tnsure efficient
computer processing;

- at the functional level, so that all nec­
essary office activities may be performed;
and

- at the user interface level, for without
a smooth, functional interface an 015 may
~ot be used at all.

Hayes, et. al. [5], gives a striking example
of the typical frustrations of the human­
machine interface, and a discussion of research
activities aimed at improving that interface.
This paper, by contrast, is concerned with im­
proving the uniformity of the user interface
in current OIS's, through software techniques
which are well-understood and using hardware
which is commonly and inexpensively availa&le.

Each user (or user community) can be character­
ized with respect to skills and expectations,
which should be exploited and satisfied (re­
spectively) by the interface. The interface
designer must match these characteristics with
the characteristics of the particular mode of
interaction, within the hardware/software con­
text in which the implementation occurs.

The end goal is to make the user/system inter­
face as un iform as poss i'ble across the whole
range of functions offered by the 015. This
provides the user with a familiar environment
during all interaction with the system, making
it easier to learn new functions, and to shift
between use of different func t ions. Schne i derman
[6] summarizes a number of design considera­
tions for interactive systems.

One aspect of an 015 which is somewhat unique
is the wide range of functions provided by
(what the user should view as) a single system.
This means that even a user who spends a lot
of time on the system may use some of thefunc­
tions only rarely. It is thus important to
emphasize that each user learns different as­
pects of a system at different rates [7], and
goes through several phases while learning any
particular aspect [8]. This means that the
interface must accommodate changes in charac­
teristics for a single user across different

015 functions, as well as for different users
within each function, to be effective.

2. Characterizing Users

Since it is obviously impossible to char~cterize
individual users, one is first faced with the
pro&lem of identifying classes of users and
then characterizing typical members of each
class. De Blasis [9] suggests a categorization
&ased on the user's role in the office: manager,
principal, secretary:-crerical, etc. The prob­
lem,with such a classification is the wide dif­
ferences in abilities which can exist between
two individuals who fill the same role in dif­
ferent offices.

Cuff [10] discusses the characteristics of
"casual users," classifying individuals as ca­
sual or not &ased on considerations such as
frequency of use, level of skill, and familiar­
ity with computer concepts. A categorization
&ased on these more general considerations
would &e applicable to any office, and would
permit a single user to fit into different cate­
gories depending on the office function bein9
performed.

Figure I summarizes the characteristics of four
different user classes, determined by their
knowledge of computers (naive or sophisticated)
and how often they use the system (frequently
or occas i ona 11 y) • Members of each ca teqory are
descri&ed in terms of their:

- initial knowledge of the system and abil­
ity to learn durinq a session,

- frequency of error and level of correc­
t i on needed,

- desired pace of interaction,

- need for context, and

- ability to handle complexity.

Naive and occasional (N-O) users need as much
handholding as the, system can provide. They
don't know what the system expects of them,
nor have they experience on which to base
guesses. They expect to make errors, but need
a "safety net" to he I p them recover when they'
do. 'A minimum complexity, slow-paced dialog
is desired. Since they are only occasional
users, they are unwilling to invest much,time
(certainly less than an hour) in training, and
thus wi 11 have only a general idea of what the
system can or will do. An example of a proto­
typical N-O user would be a personnel manaqer

CMCCS '81 I ACCHO '81

- 78 -

1. Office Automation and User Interfaces

It is generally agreed that development of of­
fice information systems (OIS's) has the poten­
tial to greatly increase the eroductivity of.
office workers at all levels Ll, 2, 3]. It IS

also agreed [2,4] that to realize this poten­
tial, an 015 must be integrated:

- at the program level, to tnsure efficient
computer processing;

- at the functional level, so that all nec­
essary office activities may be performed;
and

- at the user interface level, for without
a smooth, functional interface an 015 may
~ot be used at all.

Hayes, et. al. [5], gives a striking example
of the typical frustrations of the human­
machine interface, and a discussion of research
activities aimed at improving that interface.
This paper, by contrast, is concerned with im­
proving the uniformity of the user interface
in current OIS's, through software techniques
which are well-understood and using hardware
which is commonly and inexpensively availa&le.

Each user (or user community) can be character­
ized with respect to skills and expectations,
which should be exploited and satisfied (re­
spectively) by the interface. The interface
designer must match these characteristics with
the characteristics of the particular mode of
interaction, within the hardware/software con­
text in which the implementation occurs.

The end goal is to make the user/system inter­
face as un iform as poss i'ble across the whole
range of functions offered by the 015. This
provides the user with a familiar environment
during all interaction with the system, making
it easier to learn new functions, and to shift
between use of different func t ions. Schne i derman
[6] summarizes a number of design considera­
tions for interactive systems.

One aspect of an 015 which is somewhat unique
is the wide range of functions provided by
(what the user should view as) a single system.
This means that even a user who spends a lot
of time on the system may use some of thefunc­
tions only rarely. It is thus important to
emphasize that each user learns different as­
pects of a system at different rates [7], and
goes through several phases while learning any
particular aspect [8]. This means that the
interface must accommodate changes in charac­
teristics for a single user across different

015 functions, as well as for different users
within each function, to be effective.

2. Characterizing Users

Since it is obviously impossible to char~cterize
individual users, one is first faced with the
pro&lem of identifying classes of users and
then characterizing typical members of each
class. De Blasis [9] suggests a categorization
&ased on the user's role in the office: manager,
principal, secretary:-crerical, etc. The prob­
lem,with such a classification is the wide dif­
ferences in abilities which can exist between
two individuals who fill the same role in dif­
ferent offices.

Cuff [10] discusses the characteristics of
"casual users," classifying individuals as ca­
sual or not &ased on considerations such as
frequency of use, level of skill, and familiar­
ity with computer concepts. A categorization
&ased on these more general considerations
would &e applicable to any office, and would
permit a single user to fit into different cate­
gories depending on the office function bein9
performed.

Figure I summarizes the characteristics of four
different user classes, determined by their
knowledge of computers (naive or sophisticated)
and how often they use the system (frequently
or occas i ona 11 y) • Members of each ca teqory are
descri&ed in terms of their:

- initial knowledge of the system and abil­
ity to learn durinq a session,

- frequency of error and level of correc­
t i on needed,

- desired pace of interaction,

- need for context, and

- ability to handle complexity.

Naive and occasional (N-O) users need as much
handholding as the, system can provide. They
don't know what the system expects of them,
nor have they experience on which to base
guesses. They expect to make errors, but need
a "safety net" to he I p them recover when they'
do. 'A minimum complexity, slow-paced dialog
is desired. Since they are only occasional
users, they are unwilling to invest much,time
(certainly less than an hour) in training, and
thus wi 11 have only a general idea of what the
system can or will do. An example of a proto­
typical N-O user would be a personnel manaqer

CMCCS '81 I ACCHO '81

- 79 -

IV
c:
o

'" IV
U
U
o

Naive

little initial knowledge of system, little
learning during session; uses HELP often

expects to make errors; detai led descrip­
tion of error and possible corrections
needed

prefers slow-paced interaction; not trou­
bled by slow output

needs explicit context to be able to de­
cide on action to perform

needs minimum complexity of interaction

good initial knowledge of system; infre­
quent use of HELP

surprised at errors; summarized descrip­
tion of error needed, no description
of possible corrections necessary

wants fast interaction, fast output

no explicit context needed

prefers to minimize complexity

Sophisticated

little initial knowledge of system, good
learning during session; relates to
other systems known; infrequent use of
HELP

expects to make errors; summarized de­
scription of error and possible correc­
tions helpful

wants quick response once input is made;
faster output desired, especially as
session runs on

explicit context reduces errors; can func­
tion without it

doesn't know system well enough to use
complex dialog capability

good initial knowledge of system; almost
no use of HELP

surprised at errors; usually no descrip­
tion of error needed

demands rapid interaction

no explicit context needed

complexity no problem

Matrix of User Characteristics
Figure I

using a filing system to retrieve and print a
document.

Sophisticated and occasional (S-O) users, by
contrast, are able to learn quite a bit about
a system during a session, although they for­
get much of that knowledge between sessions.
Typically, they relate this system's actions
to those of s im i I ar systems wi th wh i ch they are
familiar. They also expect to make errors,
but recover with much less assistance. A com­
plex dialog would not be a problem, but they
usually wi II never learn the system well enough
to use the complexity. A typical S-O user
might be a programmer trying to schedule a ..
meeting using an on-line calendar system.

Naive and frequent (N-F) users are very famil­
iar wi th the system, probably through some for­
mal training period as well as constant prac­
tice. Des~ite their familiarity, they prefer
to minimize the complexity of the dialog by,

CMCCS '81

for example, restricting the set of system func­
tions they will employ [11]. They want rapid
interaction and minimal system prompts, since
they probably don't have to read the prompts to
decide what to do next (they have "internal ized"
the dialog context). A secretary doing text
processing via a familiar editor is an example
of an N-F user.

The sophisticated and frequent (S-F) user needs
little help from the system, demanding as fast
and functional an interface as possihle; ex­
cessive prompting by the system is a definite
hindrance to the user/system dialog. They
don't expect to make errors, but when errors
occur a simple notification, without explana­
tion, i.s usually enough to allow correction.
Most S-F users will have trained themselves
through adventurous trial-and-error experimen­
tation. A programmer using her favorite edi­
tor would fall into the S-F category.

I ACt;:HO'R1

- 79 -

IV
c:
o

'" IV
U
U
o

Naive

little initial knowledge of system, little
learning during session; uses HELP often

expects to make errors; detai led descrip­
tion of error and possible corrections
needed

prefers slow-paced interaction; not trou­
bled by slow output

needs explicit context to be able to de­
cide on action to perform

needs minimum complexity of interaction

good initial knowledge of system; infre­
quent use of HELP

surprised at errors; summarized descrip­
tion of error needed, no description
of possible corrections necessary

wants fast interaction, fast output

no explicit context needed

prefers to minimize complexity

Sophisticated

little initial knowledge of system, good
learning during session; relates to
other systems known; infrequent use of
HELP

expects to make errors; summarized de­
scription of error and possible correc­
tions helpful

wants quick response once input is made;
faster output desired, especially as
session runs on

explicit context reduces errors; can func­
tion without it

doesn't know system well enough to use
complex dialog capability

good initial knowledge of system; almost
no use of HELP

surprised at errors; usually no descrip­
tion of error needed

demands rapid interaction

no explicit context needed

complexity no problem

Matrix of User Characteristics
Figure I

using a filing system to retrieve and print a
document.

Sophisticated and occasional (S-O) users, by
contrast, are able to learn quite a bit about
a system during a session, although they for­
get much of that knowledge between sessions.
Typically, they relate this system's actions
to those of s im i I ar systems wi th wh i ch they are
familiar. They also expect to make errors,
but recover with much less assistance. A com­
plex dialog would not be a problem, but they
usually wi II never learn the system well enough
to use the complexity. A typical S-O user
might be a programmer trying to schedule a ..
meeting using an on-line calendar system.

Naive and frequent (N-F) users are very famil­
iar wi th the system, probably through some for­
mal training period as well as constant prac­
tice. Des~ite their familiarity, they prefer
to minimize the complexity of the dialog by,

CMCCS '81

for example, restricting the set of system func­
tions they will employ [11]. They want rapid
interaction and minimal system prompts, since
they probably don't have to read the prompts to
decide what to do next (they have "internal ized"
the dialog context). A secretary doing text
processing via a familiar editor is an example
of an N-F user.

The sophisticated and frequent (S-F) user needs
little help from the system, demanding as fast
and functional an interface as possihle; ex­
cessive prompting by the system is a definite
hindrance to the user/system dialog. They
don't expect to make errors, but when errors
occur a simple notification, without explana­
tion, i.s usually enough to allow correction.
Most S-F users will have trained themselves
through adventurous trial-and-error experimen­
tation. A programmer using her favorite edi­
tor would fall into the S-F category.

I ACt;:HO'R1

- 80 -

One characteristic which is common to" members
of all four categories is poor typing ability.
Even many people who must type frequently do
not type well, and typing difficulties arecom­
pounded if special character keys must be used.

3. Characterizing Interface Modes

As with user characteristics, there are a num­
ber of different ways to categorize modes of
interaction. For example, Martin [12] lists
23 different interface techniques for alpha­
numeric displays alone. This is much too fine
a classification for our purposes. In addition,
we have explicitly excluded expensive or un­
usual media (voice output, speech recognition,
eye motion, and pointing devices such as light
pen or mouse) from consideration, even though
they may significantly enhance the interface.

Therefore, we will consider three broad classes
of interface. Each of the three classes will
use text display as a common output medium,
and are thus differentiated by the type of in­
put. The classes are: menu, command, and
softkey.

3.1: Menu Interface Considerations

The term "menu" refers to a display screen
which provides a context to aid the user with
input. Menus either allow the user to select
different actions ("branching" menus} or ask
for information to be input ("data entry"
menus). Branching menus sometimes contain one
or two fields for data entry.

Usually, menus are connected as a tree. In
general, a user moves down in the tree, selec­
ting choices on branching menus and inserting
information on data entry menus, until a de-
s i red ac t ion is accomp I i shed. Data ent ry menus
are usually followed in sequence, with no ex­
plicit user choice allowed.

Movement back up the tree after completion is
not so straightforward. Typically, the user
must back out menu-by-menu, until a menu is
reached which allows following the next de­
sired branch of the tree. This is relatively
slow, and a user often desires to move as rap­
idly as possible to a known menu elsewhere in
the tree.

As a minimum, the interface should facilitate
such movement by providing capability from any
menu to return to the immediately preceding
menu, return to the last menu which offered a
choice of branches, or return to the main menu
for the function.

Displaying menus on the terminal screen can be
a very slow process, particularly at low trans­
mission bandwidths, which in turn drastically
limits the pace of the dialog. Limiting the
number of selections offered on any particular
branching menu reduces the impact of this re­
striction, as does use of short, concise se­
lection descriptions. This limitation of
choices also agrees with the concept of memory
chunking, and allows the user to determine the
possible choices much more rapidly.

The number of keypresses needed to m~-k~a se­
lection should be minimized (i.e., lower case
rather than capital letters) to reduce the need
for typing skills.

3.2. Command Interface Considerations

Command-driven interfaces require the user to
input a string of characters representing an
action to be performed. This approach typi­
cally allows a faster rate of interaction than
the menu technique, due to the significant re­
duction in output from the system. However, a
correspondingly greater burden is placed on the
user to be aware of possible actions. This
burden can be reduced by providing a context,
in the form of a prompt to solicit input of a
command. The pace of the dialog is slowed ac­
cording to the length of the prompt.

In order to minimize memorization, the total
number of commands within a function should be
kept as small as possible. Frequently, one
command word may invoke any of several related
actions, depending on parameters entered by the
user in response to prompts. Thus, the user
enters a single command (a function to be per­
formed, for example) and is prompted for the
object of the command.

This eases the memorization problem for new or
occasional users. Frequent users can enter the
command string and required parameters all at
once, which reduces or eliminates the need for
prompting, and speeds up the interaction.

To make commands easier to remember, the com­
mand string should be a natural language word
which has the same meaning TO THE TYPICAL USER
as the corresponding comman~action. Word-s-­
which have a meaning as computer jargon, but
don't have the same meaning in everyday commu­
nication, should be avoided. In addition, the
same command should be used for similar actions
in different functions.

It is also necessary that the interface accept
abbreviations as well as full commands, since
typing long command strings quickly becomes

CMCCS '81 I ACCHO '81

- 80 -

One characteristic which is common to" members
of all four categories is poor typing ability.
Even many people who must type frequently do
not type well, and typing difficulties arecom­
pounded if special character keys must be used.

3. Characterizing Interface Modes

As with user characteristics, there are a num­
ber of different ways to categorize modes of
interaction. For example, Martin [12] lists
23 different interface techniques for alpha­
numeric displays alone. This is much too fine
a classification for our purposes. In addition,
we have explicitly excluded expensive or un­
usual media (voice output, speech recognition,
eye motion, and pointing devices such as light
pen or mouse) from consideration, even though
they may significantly enhance the interface.

Therefore, we will consider three broad classes
of interface. Each of the three classes will
use text display as a common output medium,
and are thus differentiated by the type of in­
put. The classes are: menu, command, and
softkey.

3.1: Menu Interface Considerations

The term "menu" refers to a display screen
which provides a context to aid the user with
input. Menus either allow the user to select
different actions ("branching" menus} or ask
for information to be input ("data entry"
menus). Branching menus sometimes contain one
or two fields for data entry.

Usually, menus are connected as a tree. In
general, a user moves down in the tree, selec­
ting choices on branching menus and inserting
information on data entry menus, until a de-
s i red ac t ion is accomp I i shed. Data ent ry menus
are usually followed in sequence, with no ex­
plicit user choice allowed.

Movement back up the tree after completion is
not so straightforward. Typically, the user
must back out menu-by-menu, until a menu is
reached which allows following the next de­
sired branch of the tree. This is relatively
slow, and a user often desires to move as rap­
idly as possible to a known menu elsewhere in
the tree.

As a minimum, the interface should facilitate
such movement by providing capability from any
menu to return to the immediately preceding
menu, return to the last menu which offered a
choice of branches, or return to the main menu
for the function.

Displaying menus on the terminal screen can be
a very slow process, particularly at low trans­
mission bandwidths, which in turn drastically
limits the pace of the dialog. Limiting the
number of selections offered on any particular
branching menu reduces the impact of this re­
striction, as does use of short, concise se­
lection descriptions. This limitation of
choices also agrees with the concept of memory
chunking, and allows the user to determine the
possible choices much more rapidly.

The number of keypresses needed to m~-k~a se­
lection should be minimized (i.e., lower case
rather than capital letters) to reduce the need
for typing skills.

3.2. Command Interface Considerations

Command-driven interfaces require the user to
input a string of characters representing an
action to be performed. This approach typi­
cally allows a faster rate of interaction than
the menu technique, due to the significant re­
duction in output from the system. However, a
correspondingly greater burden is placed on the
user to be aware of possible actions. This
burden can be reduced by providing a context,
in the form of a prompt to solicit input of a
command. The pace of the dialog is slowed ac­
cording to the length of the prompt.

In order to minimize memorization, the total
number of commands within a function should be
kept as small as possible. Frequently, one
command word may invoke any of several related
actions, depending on parameters entered by the
user in response to prompts. Thus, the user
enters a single command (a function to be per­
formed, for example) and is prompted for the
object of the command.

This eases the memorization problem for new or
occasional users. Frequent users can enter the
command string and required parameters all at
once, which reduces or eliminates the need for
prompting, and speeds up the interaction.

To make commands easier to remember, the com­
mand string should be a natural language word
which has the same meaning TO THE TYPICAL USER
as the corresponding comman~action. Word-s-­
which have a meaning as computer jargon, but
don't have the same meaning in everyday commu­
nication, should be avoided. In addition, the
same command should be used for similar actions
in different functions.

It is also necessary that the interface accept
abbreviations as well as full commands, since
typing long command strings quickly becomes

CMCCS '81 I ACCHO '81

- 81 -

tedious. Abbreviations should have a uniform
length (e.g., all three characters). If the
system specified that any unique prefix of the
command is an adequate abbreviation, the user
must know all commands to determine what is
unique. This is a major problem for occasional
users. Abbreviations should also be .formed in
a uniform manner.

3.3. Softkey Interface Considerations

Softkeys are spec.ial keys whose function can be
varied under program control, and which are
typically grouped together in a separate area
of the keyboard. The number of softkeys avail­
able can vary between about eight and 20.

They represent an intermediate approach between
menu and command interfaces. The meaning cur­
rently attached to each of the keys may be dis­
played on the screen, providing a context in
which to make a choice, and selections are in­
dicated by a single keypress. Displaying the
valid softkeys only requires writing a single
line, which allows very rapid interaction.
However, the limited number of keys sacrifices
some of the flexibility of the command inter­
face for greater ease of use.

Meaningful titles, which reflect the actions
performed, should be chosen for the softkeys,
similar to command string selection. Keys
which are active within a given function are
typ i ca 11 y grouped together Into "softkey sets,"
whose functions are displayed on the terminal
screen. Only the keys within a set which rep­
resent meaningful actions in the current con­
text should be displayed.

Multiple keysets within a function represent
one ·means of circumventing the limited number
of softkeys. The user simply scrolls through
the avai lable keysets unti I softkeys imple­
menting the desired action are displayed, and
then proceeds normally.

Another approach would be to use prompts and
parameters to expand the capabilities of each
key, as described for commands. The rate of
interaction using such prompting may be in­
creased by prompting for more than one input
parameter with a single output. Note that this
approach again places a premium on typing abil­
ity.

display speed makes them impracticah~e for S-F
users. Commands give the user almost complete
control over the pace of the dialog, but re­
quire accurate, fast typing ability to obtain
a high rate of interaction, and the amount of
memorization required is intimidating for oc­
casional users. Softkeys provide less context
than menus, and allow less user control than
commands, but they do yield a high rate of
interaction and require an absolute minimum of
typing to effect program control.

One might be tempted to specify three different
interfaces: menus for N-O users, softkeys for
N-F and S-O users, and commands for S-F users.
However, such an arrangement, coupled with
varying frequencies of use of the different
functions within an OIS, would require users to
shift back and forth between interface types
as they changed functions.

If a preponderance of the anticipated users
fell into one of the classes, the corresponding
interface WOUld be the obvious choice. If that
is not the case, a softkey interface is the
best compromise for all users, being nearly
ideally suited to N-F and S-O users, and more
than acceptable to the other two classes.

Choosing softkeys as the principal mode· of user
interaction does not rule out the use of other
modes, or softkeys in conjunction with other
modes, for some applications.

For example, a function selected by softkey
will frequently require several parameter val­
ues before execution. Prompting for these data
is very tedious at slow transmission speeds.
Use of a data entry menu is usually faster and
clearer for input in a structured, unvarying
manner.

5. Implementing Softkey Interfaces

If the OIS is being implemented as a new sys­
tem, designing the softkey interface is no pro­
blem. However, many existing 015's, particu­
larly those running on a shared central com­
puter, have been developed in a piecemeal fash­
ion with different user interfaces. In this
case, the new interface must be implemented so
as to be minimally disrupting to the existing
user community.

For command interfaces, the existing commands
4. Matching User and Interface Characteristics serve as the basis for the new softkey labels.

The commands must be grouped into keysets con-
It should be clear (hat no single interface taining related functions. The command string
satisfies the requirements of all four catego- (or perhaps the abbreviation) would be the la-
ries of users. Menus provide excellent con- bel for the corresponding softkey. This pro-
text to aid N-O users, but the resulting slow vides an immediate association with the previous

CMCCS '81 / ACCHO '81

- 81 -

tedious. Abbreviations should have a uniform
length (e.g., all three characters). If the
system specified that any unique prefix of the
command is an adequate abbreviation, the user
must know all commands to determine what is
unique. This is a major problem for occasional
users. Abbreviations should also be .formed in
a uniform manner.

3.3. Softkey Interface Considerations

Softkeys are spec.ial keys whose function can be
varied under program control, and which are
typically grouped together in a separate area
of the keyboard. The number of softkeys avail­
able can vary between about eight and 20.

They represent an intermediate approach between
menu and command interfaces. The meaning cur­
rently attached to each of the keys may be dis­
played on the screen, providing a context in
which to make a choice, and selections are in­
dicated by a single keypress. Displaying the
valid softkeys only requires writing a single
line, which allows very rapid interaction.
However, the limited number of keys sacrifices
some of the flexibility of the command inter­
face for greater ease of use.

Meaningful titles, which reflect the actions
performed, should be chosen for the softkeys,
similar to command string selection. Keys
which are active within a given function are
typ i ca 11 y grouped together Into "softkey sets,"
whose functions are displayed on the terminal
screen. Only the keys within a set which rep­
resent meaningful actions in the current con­
text should be displayed.

Multiple keysets within a function represent
one ·means of circumventing the limited number
of softkeys. The user simply scrolls through
the avai lable keysets unti I softkeys imple­
menting the desired action are displayed, and
then proceeds normally.

Another approach would be to use prompts and
parameters to expand the capabilities of each
key, as described for commands. The rate of
interaction using such prompting may be in­
creased by prompting for more than one input
parameter with a single output. Note that this
approach again places a premium on typing abil­
ity.

display speed makes them impracticah~e for S-F
users. Commands give the user almost complete
control over the pace of the dialog, but re­
quire accurate, fast typing ability to obtain
a high rate of interaction, and the amount of
memorization required is intimidating for oc­
casional users. Softkeys provide less context
than menus, and allow less user control than
commands, but they do yield a high rate of
interaction and require an absolute minimum of
typing to effect program control.

One might be tempted to specify three different
interfaces: menus for N-O users, softkeys for
N-F and S-O users, and commands for S-F users.
However, such an arrangement, coupled with
varying frequencies of use of the different
functions within an OIS, would require users to
shift back and forth between interface types
as they changed functions.

If a preponderance of the anticipated users
fell into one of the classes, the corresponding
interface WOUld be the obvious choice. If that
is not the case, a softkey interface is the
best compromise for all users, being nearly
ideally suited to N-F and S-O users, and more
than acceptable to the other two classes.

Choosing softkeys as the principal mode· of user
interaction does not rule out the use of other
modes, or softkeys in conjunction with other
modes, for some applications.

For example, a function selected by softkey
will frequently require several parameter val­
ues before execution. Prompting for these data
is very tedious at slow transmission speeds.
Use of a data entry menu is usually faster and
clearer for input in a structured, unvarying
manner.

5. Implementing Softkey Interfaces

If the OIS is being implemented as a new sys­
tem, designing the softkey interface is no pro­
blem. However, many existing 015's, particu­
larly those running on a shared central com­
puter, have been developed in a piecemeal fash­
ion with different user interfaces. In this
case, the new interface must be implemented so
as to be minimally disrupting to the existing
user community.

For command interfaces, the existing commands
4. Matching User and Interface Characteristics serve as the basis for the new softkey labels.

The commands must be grouped into keysets con-
It should be clear (hat no single interface taining related functions. The command string
satisfies the requirements of all four catego- (or perhaps the abbreviation) would be the la-
ries of users. Menus provide excellent con- bel for the corresponding softkey. This pro-
text to aid N-O users, but the resulting slow vides an immediate association with the previous

CMCCS '81 / ACCHO '81

- B2 -

command, resulting in an almost effortless con­
version. Note that this is not the time to cor­
rect inconsistencies in abbreviations or com­
mand mnemonics.

For example, Figure 2 contains the command list
for a hypothetical electronic mail system. The
original commands formed two groups, one for
typical mail functions and a smaller group for
maintenance of distribution lists. Assuming
eight softkeys, the resulting three keysets are
shown in Figure 3. Note that two additional
keys had to be included: one to toggle between
keysets in the main mail routine, and another
to return to the main routine from the distribu­
tion list function.

CANCEL
DELETE
DISTRIBUTION LIST
HELP
NAME
PRINT
QUIT
READ
RECEIVERS
REPLY
SAVE
SEND
SUMMARY
ADD
CREATE
DELETE
DESTROY
DISPLAY

Erase message already sent
Erase message received
Begin distribution list functions
Access help material
Input this user's mail name
Make a hard copy of message
Leave the message program.
Read incoming messages
Access directory of valid recipients
Respond to message received
Copy message to disk file
Send message
See synopsis of messages received
Add name to existing distribution list
Create new distribution list
Delete name from existing distribution list
Destroy existing distribution list
View names on existing distribution list

Hypothetical Message System Commands
Figure 2

~THERSET) (NAME) (READ) (SEND) c:0 0UMMARY) C __)

€THERSET) (SAVE) ~ (CANCEL) (DELETE) GISTLlST) (!lUll)(HELP)

() (CREATE) (DESTROY) C ADD) (DELETE) (DISPLAY) (RETURN) C HELP)

Softkeys for Message System
Figure 3

CMCCS '81 I ACCHO '81

- B2 -

command, resulting in an almost effortless con­
version. Note that this is not the time to cor­
rect inconsistencies in abbreviations or com­
mand mnemonics.

For example, Figure 2 contains the command list
for a hypothetical electronic mail system. The
original commands formed two groups, one for
typical mail functions and a smaller group for
maintenance of distribution lists. Assuming
eight softkeys, the resulting three keysets are
shown in Figure 3. Note that two additional
keys had to be included: one to toggle between
keysets in the main mail routine, and another
to return to the main routine from the distribu­
tion list function.

CANCEL
DELETE
DISTRIBUTION LIST
HELP
NAME
PRINT
QUIT
READ
RECEIVERS
REPLY
SAVE
SEND
SUMMARY
ADD
CREATE
DELETE
DESTROY
DISPLAY

Erase message already sent
Erase message received
Begin distribution list functions
Access help material
Input this user's mail name
Make a hard copy of message
Leave the message program.
Read incoming messages
Access directory of valid recipients
Respond to message received
Copy message to disk file
Send message
See synopsis of messages received
Add name to existing distribution list
Create new distribution list
Delete name from existing distribution list
Destroy existing distribution list
View names on existing distribution list

Hypothetical Message System Commands
Figure 2

~THERSET) (NAME) (READ) (SEND) c:0 0UMMARY) C __)

€THERSET) (SAVE) ~ (CANCEL) (DELETE) GISTLlST) (!lUll)(HELP)

() (CREATE) (DESTROY) C ADD) (DELETE) (DISPLAY) (RETURN) C HELP)

Softkeys for Message System
Figure 3

CMCCS '81 I ACCHO '81

- 83 -

The transition from menus to softkeys is some­
what more involved. For branching menus, the
ideal choice is to have each selection corre­
spond to one softkey. This may require that
menus be broken up into more than one set of
keys, depending on the number available. Labels
for the keys should be chosen from keywords in
the selection description.

A gradual transition might be desirable, in
which case the softkeys which will be available
should be emphasized by, for example, capital­
izing the keywords with which the keys will be
labeled. Intermenu movement could be imple­
mented via softkeys, as well.

6. Summary

An integrated user interface design is impor­
tant to the succeisful use of the various func­
tions of an OIS. Considering the diversity of
users an OIS must satisfy, and the different
levels of familiarity any single user will have
with different functions, an interface based on
softkeys is the best compromise between speed
of interaction (to satisfy experienced, de­
manding users) and support and guidance (needed
by inexperienced, hesitant users). Existing
menu and command interfaces can be modified to
use softkeys, and greatly increase uniformity
across separately developed functions, with a
minimum of disruption of the existing user
community.

7. Acknowledgements

The author would like to thank L. Hurtado­
Sanchez for his comments on several topics in
this paper, particularly user classification
and characteristics. He would also like to
thank R. Feirstein, R. Horowitz, M. Moy and
A. Mueller for discussions about practical user
interfaces.

8. References

I. Engelbart, D. C., "Towards integrated, evo­
lutionary office automation systems,"
Proceedings of the 1978 Joint Engineering
Management Conference (October, 1978) pp.
63 - 68.

2. Tsichritzis, D. C. and F. H. Lochovsky,
"Office information systems: challenge
for the 80's," Proceedings of the IEEE,
68:9 (September, 1980) pp. 1054 - 1059.

3. Rhodes, W. L., Jr., "How to boost your
office productivity," Infosystems (August,
1980) pp. 38 - 42.

4. Ellis, C. A. and G. J. Nutt, "Office in­
formation systems and computer science,"
ACM Computing Surveys, 12:1 (March, 1980)
pp. 27 - 60.

5. Hayes, P., E. Bal I, and R. Reddy, "Breaking
the man-machine communications barrier,"
Computer, 14:3 (March, 1980) pp. 10 - 30.

6. Schneiderman, B., "Human factors experi­
ments in designing interactive systems,"
Computer, 12: 12 (December, 1979) pp. 9·- 19.

7. Nickerson, R. S., "Man-computer inter­
action: a challenge for human factors re­
search," IEEE Transactions on Man-Machine
Systems, MMS-IO (December, 1969) pp. 164 -
180.

8. Bennett, J. L., "The user interface in
interactive systems," in Annual Review of
Information Science and Technology, Vol.
7, C.·A. Cuadra, Ed., American Society for
Information Science, Washington, D. C.
(1972).

9. De Blasis, J. A., "An office automation
perspective to information systems manage­
ment," Proceedings of the Twelfth Inter­
national Conference on System Sciences,
Vol. II (January, 1979) pp. 40 - 49.

10. Cuff, R. N., "On casual users," Inter­
national Journal of Man-Machine Studies,
12:2 (February, 1980) pp. 163 - IA7.

11. Wimmer, K. E., "Research on human inter­
face considerations for interactive text
generation," Proceedings of the Fourth
International Conference on Computer
Communications: Evolutions in Computer
Communications (September, 1978) pp. 727 -
732.

12. Martin, J., Design of. Man-computer
Dialogues, Prentice-Hall, Englewood Cliffs,
New Jersey (1973).

CMCCS '81 / ACCHO '81

- 83 -

The transition from menus to softkeys is some­
what more involved. For branching menus, the
ideal choice is to have each selection corre­
spond to one softkey. This may require that
menus be broken up into more than one set of
keys, depending on the number available. Labels
for the keys should be chosen from keywords in
the selection description.

A gradual transition might be desirable, in
which case the softkeys which will be available
should be emphasized by, for example, capital­
izing the keywords with which the keys will be
labeled. Intermenu movement could be imple­
mented via softkeys, as well.

6. Summary

An integrated user interface design is impor­
tant to the succeisful use of the various func­
tions of an OIS. Considering the diversity of
users an OIS must satisfy, and the different
levels of familiarity any single user will have
with different functions, an interface based on
softkeys is the best compromise between speed
of interaction (to satisfy experienced, de­
manding users) and support and guidance (needed
by inexperienced, hesitant users). Existing
menu and command interfaces can be modified to
use softkeys, and greatly increase uniformity
across separately developed functions, with a
minimum of disruption of the existing user
community.

7. Acknowledgements

The author would like to thank L. Hurtado­
Sanchez for his comments on several topics in
this paper, particularly user classification
and characteristics. He would also like to
thank R. Feirstein, R. Horowitz, M. Moy and
A. Mueller for discussions about practical user
interfaces.

8. References

I. Engelbart, D. C., "Towards integrated, evo­
lutionary office automation systems,"
Proceedings of the 1978 Joint Engineering
Management Conference (October, 1978) pp.
63 - 68.

2. Tsichritzis, D. C. and F. H. Lochovsky,
"Office information systems: challenge
for the 80's," Proceedings of the IEEE,
68:9 (September, 1980) pp. 1054 - 1059.

3. Rhodes, W. L., Jr., "How to boost your
office productivity," Infosystems (August,
1980) pp. 38 - 42.

4. Ellis, C. A. and G. J. Nutt, "Office in­
formation systems and computer science,"
ACM Computing Surveys, 12:1 (March, 1980)
pp. 27 - 60.

5. Hayes, P., E. Bal I, and R. Reddy, "Breaking
the man-machine communications barrier,"
Computer, 14:3 (March, 1980) pp. 10 - 30.

6. Schneiderman, B., "Human factors experi­
ments in designing interactive systems,"
Computer, 12: 12 (December, 1979) pp. 9·- 19.

7. Nickerson, R. S., "Man-computer inter­
action: a challenge for human factors re­
search," IEEE Transactions on Man-Machine
Systems, MMS-IO (December, 1969) pp. 164 -
180.

8. Bennett, J. L., "The user interface in
interactive systems," in Annual Review of
Information Science and Technology, Vol.
7, C.·A. Cuadra, Ed., American Society for
Information Science, Washington, D. C.
(1972).

9. De Blasis, J. A., "An office automation
perspective to information systems manage­
ment," Proceedings of the Twelfth Inter­
national Conference on System Sciences,
Vol. II (January, 1979) pp. 40 - 49.

10. Cuff, R. N., "On casual users," Inter­
national Journal of Man-Machine Studies,
12:2 (February, 1980) pp. 163 - IA7.

11. Wimmer, K. E., "Research on human inter­
face considerations for interactive text
generation," Proceedings of the Fourth
International Conference on Computer
Communications: Evolutions in Computer
Communications (September, 1978) pp. 727 -
732.

12. Martin, J., Design of. Man-computer
Dialogues, Prentice-Hall, Englewood Cliffs,
New Jersey (1973).

CMCCS '81 / ACCHO '81

