
- 115 -

EXPERIMENTAL EVALUATION OF THE ZOG FRAME EDITOR

C.K. Robertson, D.L. McCracken, and A. Newell

computer Science Department
Carnegie-Mellon University, Pennsylvania

ABSTRACT

ZOG is a rapid-response menu-selection
system whose databases are networks of frames
or screenfuls. ZOG's frame editor, ZED,
combines facilities like those of other text
editors, and facilities specialized to the
network character of the ZOG database. This
paper describes an effort to evaluate ZED for
overall ease of use, time to do specific tasks,
keystrokes required to do a task.

We began with Teresa Robert's study,
"Evaluation of Computer Text Editors", which
uses specific document editing tasks to compare
four text editors--Wang, NLS, TECO, and Wylbur.
Four suhjects did Roberts' tasks using ZOG.
The results showed that overall task time in
ZED was most comparable with TECO, Roberts'
slowest editor.

To analyze the sources of the task time in
detail, we applied Card, Moran, and Newell's
keystroke level analysis of search-modify­
verify cycles in editing (Keystroke-Level Model
for User Performance Time with Interactive
Systems). Using this method, we were able to
account for most of the actual time required to
do the tasks. This level of analysis and the
attendant partitioning of the total editing
time showed specific types of tasks at which
ZED excelled and others at which ZED was less
efficient than the other editors. We thus
identified specific system changes which would
result in immediate and visible improvements in
editing with ZED.

RESUME

ZOG est un systeme de "menu-selection" a
reponse rapide dont les bases de donnees sont
des reseaux de cadres ou ecrans. ZED, l'editeur
de cadres de ZOG, combine des elements de
redaction tels que ceux d'autres editeurs de
textes, et des elements specifiques au
caractere du reseaux des bases de donnees de
ZOG. Ce rapport presente un effort d'evaluer la
facilite d'utilisation globale de ZED, le temps
necessaire pour accomplir des taches
specifiques et le nombre de frappes necessaire
pour executer une tache.

Nous avons commence avec une etude de
Teresa Roberts, "Evaluation of Computer Text
Editors." Cette etude a utilise des taches de
redaction specifiques pour comparer quatre
editeurs de textes; Wang, NLS, TECO et Hylbur.
A titre d'essai, quatre de nos sujets ont
execute les taches de T. Roberts en se servant
de ZOG. Les resultats ont revele que le temps
d'execution global de ZED est le plus
comparable a celui de TECO, l'editeur le moins
rapide de Roberts.

Pour analyser en detail les sources du
temps d'execution des taches, nous avons
applique l'analyse du niveau de frappe des
cycles de recherche-modification-verification
en redaction de Card, Moran et Newell,
"Keystroke-Level Model for User Performance
Time with Interactive Systems." En utilisant
cette methode, nous sommes arrives a tenir
compte de la plupart du temps reel necessaire
pour accomplir les taches. Ce niveau d'analyse
et le partage du temps de redaction total qui
l'accompagnait ont indique les types de taches
specifiques dans lesquels ZED excelle et
d'autres types pour lesquels ZED est moins
efficace que les autres editeurs. Nous avons
ainsi identifie des changements de systeme
specifiques qui produiraient des ameliorations
immediates et evidentes en se servant de
l' ed iteur ZED.

CMCCS '81 / ACCHO '81

- 115 -

EXPERIMENTAL EVALUATION OF THE ZOG FRAME EDITOR

C.K. Robertson, D.L. McCracken, and A. Newell

computer Science Department
Carnegie-Mellon University, Pennsylvania

ABSTRACT

ZOG is a rapid-response menu-selection
system whose databases are networks of frames
or screenfuls. ZOG's frame editor, ZED,
combines facilities like those of other text
editors, and facilities specialized to the
network character of the ZOG database. This
paper describes an effort to evaluate ZED for
overall ease of use, time to do specific tasks,
keystrokes required to do a task.

We began with Teresa Robert's study,
"Evaluation of Computer Text Editors", which
uses specific document editing tasks to compare
four text editors--Wang, NLS, TECO, and Wylbur.
Four suhjects did Roberts' tasks using ZOG.
The results showed that overall task time in
ZED was most comparable with TECO, Roberts'
slowest editor.

To analyze the sources of the task time in
detail, we applied Card, Moran, and Newell's
keystroke level analysis of search-modify­
verify cycles in editing (Keystroke-Level Model
for User Performance Time with Interactive
Systems). Using this method, we were able to
account for most of the actual time required to
do the tasks. This level of analysis and the
attendant partitioning of the total editing
time showed specific types of tasks at which
ZED excelled and others at which ZED was less
efficient than the other editors. We thus
identified specific system changes which would
result in immediate and visible improvements in
editing with ZED.

RESUME

ZOG est un systeme de "menu-selection" a
reponse rapide dont les bases de donnees sont
des reseaux de cadres ou ecrans. ZED, l'editeur
de cadres de ZOG, combine des elements de
redaction tels que ceux d'autres editeurs de
textes, et des elements specifiques au
caractere du reseaux des bases de donnees de
ZOG. Ce rapport presente un effort d'evaluer la
facilite d'utilisation globale de ZED, le temps
necessaire pour accomplir des taches
specifiques et le nombre de frappes necessaire
pour executer une tache.

Nous avons commence avec une etude de
Teresa Roberts, "Evaluation of Computer Text
Editors." Cette etude a utilise des taches de
redaction specifiques pour comparer quatre
editeurs de textes; Wang, NLS, TECO et Hylbur.
A titre d'essai, quatre de nos sujets ont
execute les taches de T. Roberts en se servant
de ZOG. Les resultats ont revele que le temps
d'execution global de ZED est le plus
comparable a celui de TECO, l'editeur le moins
rapide de Roberts.

Pour analyser en detail les sources du
temps d'execution des taches, nous avons
applique l'analyse du niveau de frappe des
cycles de recherche-modification-verification
en redaction de Card, Moran et Newell,
"Keystroke-Level Model for User Performance
Time with Interactive Systems." En utilisant
cette methode, nous sommes arrives a tenir
compte de la plupart du temps reel necessaire
pour accomplir les taches. Ce niveau d'analyse
et le partage du temps de redaction total qui
l'accompagnait ont indique les types de taches
specifiques dans lesquels ZED excelle et
d'autres types pour lesquels ZED est moins
efficace que les autres editeurs. Nous avons
ainsi identifie des changements de systeme
specifiques qui produiraient des ameliorations
immediates et evidentes en se servant de
l' ed iteur ZED.

CMCCS '81 / ACCHO '81

- 116 -

1. Introduction
In the past few years there has been a growing interest in

evaluating human· computer interfaces, including· interfaces
to computer text editors. Several studies (Card, Moran, and
Newell, 1980a, 1980b) model users' interaction with an
editor in terms of keystrokes and time required to acquire
the next unit of text modification. Another study (Roberts,
1979) applied this model to compare experts' editing time on
a standard task for four editors··TECO, Wylbur, NLS, and
Wang.

ZOG is an experimental interactive system developed at
CMU (Robertson, McCracken, Newell, 1980). One of our
goals in developing ZOG is to find how to respond rapidly to
user difficulties by effective diagnosis and subsequent
system modification. To this end we are searching for
methods of evaluating systems undergoing frequent design
changes. ZOG contains an editor, ZED, which combines
facilities like those of standard text editors with facilites
specialized to the network character of ZOG's data base
(McCracken and Robertson, 1979). ZED 'is becoming
increasingly important, but was not initially the major focus
of ZOG's design. The keystroke model and Roberts'
"prepackaged" editor evaluation offers the possibility of
comparing ZOG/ZED with other systems. Conversely,
ZOG/ZED offers an interesting test of whether these
techniques could be extended to a somewhat different
system.

This paper presents the initial results of such an
evaluation. Below, we first present a brief description of
ZOG. Following this, we describe the experiment we
performed. Then we discuss the results of comparing ZOG
with TECO, Wylbur, NLS, and Wang, and the results of our
keystroke level analysis of ZOG use. Finally, we summarize
system design changes suggested by these results.

1.1. What Is ZOG?
ZOG is a general purpose, rapid·response, menu·

selection interface to a computer system. ZOG's databases
are strongly hierarchical, multiply linked nets of displays
called frames, each the size of a terminal display screen.
Each frame (see Figure 1) consists of a set of items: title, a
few lines of text, a set of numbered (or lettered) menu items
called options and local pads, and a line of ZOG commands
called global pads at the bottom of the screen. Global pads
include back (back up one frame) and edit (edit the current
frame), An option, local pad, or global pad is selected by a
single character, usually the first in its description.

An option or local pad can point to a program and/or
another frame. Local pads usually point down subsidiary
paths in the net. When the user makes a selection, the
system executes the program or displays the appropriate
next· frame. This structure allows rapid traversal of large

amounts of information, with the system guiding the user in
natural language. If the user selects an option or local pad
with no next frame, ZOG will, at the user's option, create a
new frame linked to that selection. 7.0G then places the
user at the new frame, in the editor (ZED), Thus a user
creating a ZOG net moves freely between ZOG selection
mode and ZED.

This TITLE line summarizes the frame's content Frame1

This TEXT expands the frame's main point of information. 11 is
often omitted; the options can provide an enumerated expansion.

1. This OPTION leads to another frame

2. OPTIONs often are like subpoints in an outline

L This LOCAL PAD is a cross· reference link

A. Local pads can also execute actions

edit help back next mark return 109 top display user goto find info

Figure 1: A Self· Describing, Typical ZOG Frame

ZED is a display editor with a large set of commands for
editing the textual content of the frame, rearranging the
positions of items on the frame, and editing the non·
displayed information such as next· frame links. Most ZED
commands are single characters. After the user has
selected edit, all keyboard input is interpreted as ZED
commands rather than ZOG selections. Within ZED there
are several modes: command mode, in which characters
are interpreted as commands and command arguments,
insert mode, in which characters are inserted into the text at
the current cursor location, position-item mode, and ZED
help. The exit command returns the user to ZOG selection
mode.

2. Methodology for the Experiment
In describing our experiment, we will use terminology

consistent with the model of editing of Roberts and Card,
Moran, and Newell, who conceptualize editing tasks as
follows. The user breaks his editing into units called unit
tasks. Each unit task consists of (1) task acquisition
(reading manuscript or screen), and (2) execution
(searching for the text to be modified and modifying it).
There may also be some verification. The sequence of edit
commands used in execution is called a method, Basically,
a unit task is the set of text modifications Wllich the user can
absorb and accomplish with one substantial look at the
document.

CMCCS '81 I ACCHO '81

- 116 -

1. Introduction
In the past few years there has been a growing interest in

evaluating human· computer interfaces, including· interfaces
to computer text editors. Several studies (Card, Moran, and
Newell, 1980a, 1980b) model users' interaction with an
editor in terms of keystrokes and time required to acquire
the next unit of text modification. Another study (Roberts,
1979) applied this model to compare experts' editing time on
a standard task for four editors··TECO, Wylbur, NLS, and
Wang.

ZOG is an experimental interactive system developed at
CMU (Robertson, McCracken, Newell, 1980). One of our
goals in developing ZOG is to find how to respond rapidly to
user difficulties by effective diagnosis and subsequent
system modification. To this end we are searching for
methods of evaluating systems undergoing frequent design
changes. ZOG contains an editor, ZED, which combines
facilities like those of standard text editors with facilites
specialized to the network character of ZOG's data base
(McCracken and Robertson, 1979). ZED 'is becoming
increasingly important, but was not initially the major focus
of ZOG's design. The keystroke model and Roberts'
"prepackaged" editor evaluation offers the possibility of
comparing ZOG/ZED with other systems. Conversely,
ZOG/ZED offers an interesting test of whether these
techniques could be extended to a somewhat different
system.

This paper presents the initial results of such an
evaluation. Below, we first present a brief description of
ZOG. Following this, we describe the experiment we
performed. Then we discuss the results of comparing ZOG
with TECO, Wylbur, NLS, and Wang, and the results of our
keystroke level analysis of ZOG use. Finally, we summarize
system design changes suggested by these results.

1.1. What Is ZOG?
ZOG is a general purpose, rapid·response, menu·

selection interface to a computer system. ZOG's databases
are strongly hierarchical, multiply linked nets of displays
called frames, each the size of a terminal display screen.
Each frame (see Figure 1) consists of a set of items: title, a
few lines of text, a set of numbered (or lettered) menu items
called options and local pads, and a line of ZOG commands
called global pads at the bottom of the screen. Global pads
include back (back up one frame) and edit (edit the current
frame), An option, local pad, or global pad is selected by a
single character, usually the first in its description.

An option or local pad can point to a program and/or
another frame. Local pads usually point down subsidiary
paths in the net. When the user makes a selection, the
system executes the program or displays the appropriate
next· frame. This structure allows rapid traversal of large

amounts of information, with the system guiding the user in
natural language. If the user selects an option or local pad
with no next frame, ZOG will, at the user's option, create a
new frame linked to that selection. 7.0G then places the
user at the new frame, in the editor (ZED), Thus a user
creating a ZOG net moves freely between ZOG selection
mode and ZED.

This TITLE line summarizes the frame's content Frame1

This TEXT expands the frame's main point of information. 11 is
often omitted; the options can provide an enumerated expansion.

1. This OPTION leads to another frame

2. OPTIONs often are like subpoints in an outline

L This LOCAL PAD is a cross· reference link

A. Local pads can also execute actions

edit help back next mark return 109 top display user goto find info

Figure 1: A Self· Describing, Typical ZOG Frame

ZED is a display editor with a large set of commands for
editing the textual content of the frame, rearranging the
positions of items on the frame, and editing the non·
displayed information such as next· frame links. Most ZED
commands are single characters. After the user has
selected edit, all keyboard input is interpreted as ZED
commands rather than ZOG selections. Within ZED there
are several modes: command mode, in which characters
are interpreted as commands and command arguments,
insert mode, in which characters are inserted into the text at
the current cursor location, position-item mode, and ZED
help. The exit command returns the user to ZOG selection
mode.

2. Methodology for the Experiment
In describing our experiment, we will use terminology

consistent with the model of editing of Roberts and Card,
Moran, and Newell, who conceptualize editing tasks as
follows. The user breaks his editing into units called unit
tasks. Each unit task consists of (1) task acquisition
(reading manuscript or screen), and (2) execution
(searching for the text to be modified and modifying it).
There may also be some verification. The sequence of edit
commands used in execution is called a method, Basically,
a unit task is the set of text modifications Wllich the user can
absorb and accomplish with one substantial look at the
document.

CMCCS '81 I ACCHO '81

- 117 -

2.1. Roberts' Methodology
Roberts developed a set of experiments including tests of

experts' use of a set of commonly used core commands, and
tests of functionality, ease of learning, and error and disaster
potential of an editor. For this experiment, we used only the
53 editing tasks· of the "expert core speed" experiment.
These tasks are contained in a set of six short documents
each marked in red with corrections the user is to make. If
the user omits a task or does a task incorrectly, he must go
back .and make corrections at the end. Data are collected

. from editing of the last four documents; the first two are for
practice. A typing test, administered at the end of the tasks,
is provided to calibrate for the user's typing speed and
accuracy. The principal data collected are: (1) total task
time, including real time to edit the four documents plus
correction time at the end; and (2) error·free time derived
from (1) and a log of errors and corrections. Error·free time
includes system delays and acquisition time. The total time
and the error· free time are to be compared with those of
other editors. Using this procedure, we hoped to compare
ZOG/ZED with the editors Roberts studied.

2.2. The Keystroke Model
The keystroke model provides a way to characterize

editing methods and the expenditures of time during editing,
in detail. According to the model, the time T to do an editing
task is composed of T aCQ (acquisition time) . and T ex

(execution time):

T=TaCQ+Tex

T ex is the sum of system response times and time spent
making keystrokes, drawing, or homing to a painting device
or keyboard, plus a mental preparation time for each action
executed. As we apply it to ZOG use, execution time is:

T ex = T keystrokes + T mental prep .

The model posits a time for each ope~ation: the user's
typing rate for keystrokes, and 1.35 seconds for mental
preparation. For an expert user, a mental preparation time is
assumed for any command or keystroke which was not
completely determin~ by previous actions. System
response time counts only if it causes the user to wait; we
were able to factor out these perceptible delays empirically.

The significance of this model is that if it does in fact apply
to a given system, and if we can factor out system delays, we
should be able to predict the amount of time an editing task
will take based solely on the user's keystrokes. Thus if we
find it does apply to ZOG use, we can use it to predict the
duration of ZED editing tasks. With this tool, we can gather
insight into the nature of ZOG use, and we can predict time
savings resulting from specific improvements in ZED before
we change the system. Since Roberts also collected some
keystroke data, this approach provides a comparison in
addition to task time, with her editors.

3. Procedure

3.1. Users
Users were five computer scientists, each with several

years' experience in computing and in text editing. The
users had each used ZED for over a year and were
considered expert in its use. Data from user 2 were not used
because he exhibited a variety of behalf/ors not exhibited by
the other users.

3.2. The Task
We mapped Roberts' documents onto ZOG frames, one

paragraph per frame where possible, with additional frames
indexing the sections and paragraphs of each document.
Mapping the documents onto frames was not the obvious
procedure we anticipated, and the mapping we chose
resulted in some difficulties during the experiment. ZOG
frames with their titles and options have an appearance
which can make it difficult to match a frame against a
manuscript with the same content. Also, our duplication of
the first lines of paragraphs as option texts in index frames
created a problem: if the option pointed to a frame whose
first line was to be edited, the user assumed he was to edit
the option text as well. Editing of option texts was later
deleted from the data; these unit tasks are designated
artifact tasks.

A copy of the document net was created for each user to.
modify. One user at a time sat at a Minibee terminal with a
9600 baud hardwired line to a DEC Vax 111780 computer.
ZOG was already invoked: the user saw a list of selections,
each leading to one of the documents he was to edit, and in
the order in which they were assigned. He could ask
questions about the tasks at any time.

J.3. Data Collection
Each user was filmed on videotape. A copy of the screen

text the .user was reading was superimposed on the
television picture, along with a millisecond timestamp.
Videotape data were accurate to one thirtieth of a second
(the frequency of the video fmmes}.During the session,
ZOG unobtrusively recorded the user's path through the net
and the selections and editing commands at each frame,
each timestamped, on a log file. These data were pooled to
identify errors and to partition the total task time among
delays, acquisition time, and task execution time.

3.4. Treatment of Data
Actual editing methods were obtained for each user from

the log files. Acquisition intervals were logqed by scanning
the videotapes and recording the appropriate time stamps.

CMCCS '81 I ACCHO '81

- 117 -

2.1. Roberts' Methodology
Roberts developed a set of experiments including tests of

experts' use of a set of commonly used core commands, and
tests of functionality, ease of learning, and error and disaster
potential of an editor. For this experiment, we used only the
53 editing tasks· of the "expert core speed" experiment.
These tasks are contained in a set of six short documents
each marked in red with corrections the user is to make. If
the user omits a task or does a task incorrectly, he must go
back .and make corrections at the end. Data are collected

. from editing of the last four documents; the first two are for
practice. A typing test, administered at the end of the tasks,
is provided to calibrate for the user's typing speed and
accuracy. The principal data collected are: (1) total task
time, including real time to edit the four documents plus
correction time at the end; and (2) error·free time derived
from (1) and a log of errors and corrections. Error·free time
includes system delays and acquisition time. The total time
and the error· free time are to be compared with those of
other editors. Using this procedure, we hoped to compare
ZOG/ZED with the editors Roberts studied.

2.2. The Keystroke Model
The keystroke model provides a way to characterize

editing methods and the expenditures of time during editing,
in detail. According to the model, the time T to do an editing
task is composed of T aCQ (acquisition time) . and T ex

(execution time):

T=TaCQ+Tex

T ex is the sum of system response times and time spent
making keystrokes, drawing, or homing to a painting device
or keyboard, plus a mental preparation time for each action
executed. As we apply it to ZOG use, execution time is:

T ex = T keystrokes + T mental prep .

The model posits a time for each ope~ation: the user's
typing rate for keystrokes, and 1.35 seconds for mental
preparation. For an expert user, a mental preparation time is
assumed for any command or keystroke which was not
completely determin~ by previous actions. System
response time counts only if it causes the user to wait; we
were able to factor out these perceptible delays empirically.

The significance of this model is that if it does in fact apply
to a given system, and if we can factor out system delays, we
should be able to predict the amount of time an editing task
will take based solely on the user's keystrokes. Thus if we
find it does apply to ZOG use, we can use it to predict the
duration of ZED editing tasks. With this tool, we can gather
insight into the nature of ZOG use, and we can predict time
savings resulting from specific improvements in ZED before
we change the system. Since Roberts also collected some
keystroke data, this approach provides a comparison in
addition to task time, with her editors.

3. Procedure

3.1. Users
Users were five computer scientists, each with several

years' experience in computing and in text editing. The
users had each used ZED for over a year and were
considered expert in its use. Data from user 2 were not used
because he exhibited a variety of behalf/ors not exhibited by
the other users.

3.2. The Task
We mapped Roberts' documents onto ZOG frames, one

paragraph per frame where possible, with additional frames
indexing the sections and paragraphs of each document.
Mapping the documents onto frames was not the obvious
procedure we anticipated, and the mapping we chose
resulted in some difficulties during the experiment. ZOG
frames with their titles and options have an appearance
which can make it difficult to match a frame against a
manuscript with the same content. Also, our duplication of
the first lines of paragraphs as option texts in index frames
created a problem: if the option pointed to a frame whose
first line was to be edited, the user assumed he was to edit
the option text as well. Editing of option texts was later
deleted from the data; these unit tasks are designated
artifact tasks.

A copy of the document net was created for each user to.
modify. One user at a time sat at a Minibee terminal with a
9600 baud hardwired line to a DEC Vax 111780 computer.
ZOG was already invoked: the user saw a list of selections,
each leading to one of the documents he was to edit, and in
the order in which they were assigned. He could ask
questions about the tasks at any time.

J.3. Data Collection
Each user was filmed on videotape. A copy of the screen

text the .user was reading was superimposed on the
television picture, along with a millisecond timestamp.
Videotape data were accurate to one thirtieth of a second
(the frequency of the video fmmes}.During the session,
ZOG unobtrusively recorded the user's path through the net
and the selections and editing commands at each frame,
each timestamped, on a log file. These data were pooled to
identify errors and to partition the total task time among
delays, acquisition time, and task execution time.

3.4. Treatment of Data
Actual editing methods were obtained for each user from

the log files. Acquisition intervals were logqed by scanning
the videotapes and recording the appropriate time stamps.

CMCCS '81 I ACCHO '81

- 118 -

Acquisition was considered terminated if the user's head
turned away from what he was reading, or if he struck a key.
The portion of the acquisition time which occurred while
ZED's ·Edit· flag was on the screen was assigned to the
ZED partition of the user's time, and other acquisition time
was ass'igned to another partition (composed of searching
the net or other non·editing activities in ZOG). The latter
partition wil! be called net behavior. ZED and net behavior
partitions were also obtained for non· task time, errors, and
system delays. Delays while entering or exiting ZED were
also logged.

To obtain the keystroke predictions, we, at first used the
users' typing rates as recorded from their typing tests.
However, since our initial keystroke predictions were very
low, we analyzed all individual inserts (strings of text
inserted while editing). Calculating typing rate from inserts'
in the same way as we had from the typing tests, we fou'nd
that actual typing during the tasks was much slower
(average: .32 seconds per character) than during the typing
tests (average: .20). Therefore each user's insert typing rate
was used in the keystroke prediction of the time to execute
his editing methods.

Finally, based on our users' distribution of acquisition
time, we modeled their unit task behavior as: (1) one net
behavior unit task to get to a target frame to edit; (2) one unit
task composed of entering ZED and editing until the user
went back to the document for another piece of his editing
assignment; and (3) additional unit tasks within ZED.
Finally, since exiting from ZED took a noticeable amount of
time, users tended to look back at the manuscript after the
delay to acquire the next task. Thus (4) exits were counted
as unit tasks unto themselves.

3.5. Ite rations
Our users S1 and S3 exhibited a clear need for some

changes in ZED; exit times were inordinately long, and edit
commands for finding a string (rather than just a single
character) and for moving text within a frame were needed.
We therefore improved exit speed and added the two editing
capabilities. Some individual ZED operations were also
made faster. As stated above, one of our goals was to find
ways ,to evaluate a changing system; if the keystroke model
proved applicable, we could use it to verify the task time
improvement from these changes. S4 and S5 did the tasks
with the improved system.

4. Results of Comparison with Roberts' Editors

4.1. ZOG Task Times
Figure 2 splits ZOG total time to edit Roberts' documents

into various partitions. The first four columns represent our
four users, The fifth contains the averages for the four users.

The remaining columns contain Roberts' average times for
TECO, Wylbur, NLS, and Wang, converted to seconds. Her
figures are adapted from her Table 3,2 (Roberts, 1979). '

ZOG total time, comparable to Roberts' total task time,
includes: correction time, "non·task" time (such as
clarifying correction marks); error time; artifact task time;
ZED enter/exit delay time; other specific system delays (for
such things as redisplay after justifying frame text);
acquisition time; and actual task execution time traversing
the ZOG net and executing ZED commands. For purposes
of discussion, acquisition time is partitioned by net behavior
and ZED editing.

To be comparable to Roberts' error· free time, ZOG figures
must not include error time or any time not actually spenton
the task. However, in Roberts' accounting of unit tasks,
there is always one enter and one exit per document. The
enter and exit commands themselves are a legitimate part of
ZOG editing. However, the large enter and exit delays do not
correspond to anything in Roberts' data. Also, improving
the enter and exit delays was the major system inodification
between our two pairs of users (S1, S3 average: 474
seconds; 84, S5: 167). Since the purpose is to allow direct
comparison of actual unit task times, we also subtract enter
and exit delay time to obtain our error·free time. Other
system delays remain in ZOG error· free time.

4.2. Error-Free Time Results
The average ZOG error· free time, 2766 seconds, is clearly

at the time·costly end of the spectrum of editors. However,
ZOG/ZED, TECO, and Wylbur are difficult to separate
clearly due to the small sample sizes. A t·test (a = .02)
shows that neither ZOG and TECO, nor TECO and Wylbur,
are Significantly different, but that ZOG and Wylbur are.
(Roberts showed that TECO and Wylbur are significantly
different from NLS and Wang.) Nevertheless, it is clear that
much about ZOG/ZED must be analyzed and can be
improved.

4.3. Unit Task Comparison
As stated above, a unit task takes one of three forms: (1)

net behavior; (2) editing, sometimes combined with entering
ZED; or (3) exiting ZED. On average, ZOG users did the
entire set of tasks in 142 unit tasks. The table below shows
that ZOG users performed only 30% to 40% of their total unit
tasks within ZED. They did 26% more unit tasks than TEeO
users (the one data point provided by Roberts).

S1 S3 S4 S5 Ave TECO
Net 39 50 51 49 47
ZED 47 45 54 59 51
Exit 39 48 46 41 44
Total 125 143 151 149 142 113

CMCCS '81 I ACCHO '81

- 118 -

Acquisition was considered terminated if the user's head
turned away from what he was reading, or if he struck a key.
The portion of the acquisition time which occurred while
ZED's ·Edit· flag was on the screen was assigned to the
ZED partition of the user's time, and other acquisition time
was ass'igned to another partition (composed of searching
the net or other non·editing activities in ZOG). The latter
partition wil! be called net behavior. ZED and net behavior
partitions were also obtained for non· task time, errors, and
system delays. Delays while entering or exiting ZED were
also logged.

To obtain the keystroke predictions, we, at first used the
users' typing rates as recorded from their typing tests.
However, since our initial keystroke predictions were very
low, we analyzed all individual inserts (strings of text
inserted while editing). Calculating typing rate from inserts'
in the same way as we had from the typing tests, we fou'nd
that actual typing during the tasks was much slower
(average: .32 seconds per character) than during the typing
tests (average: .20). Therefore each user's insert typing rate
was used in the keystroke prediction of the time to execute
his editing methods.

Finally, based on our users' distribution of acquisition
time, we modeled their unit task behavior as: (1) one net
behavior unit task to get to a target frame to edit; (2) one unit
task composed of entering ZED and editing until the user
went back to the document for another piece of his editing
assignment; and (3) additional unit tasks within ZED.
Finally, since exiting from ZED took a noticeable amount of
time, users tended to look back at the manuscript after the
delay to acquire the next task. Thus (4) exits were counted
as unit tasks unto themselves.

3.5. Ite rations
Our users S1 and S3 exhibited a clear need for some

changes in ZED; exit times were inordinately long, and edit
commands for finding a string (rather than just a single
character) and for moving text within a frame were needed.
We therefore improved exit speed and added the two editing
capabilities. Some individual ZED operations were also
made faster. As stated above, one of our goals was to find
ways ,to evaluate a changing system; if the keystroke model
proved applicable, we could use it to verify the task time
improvement from these changes. S4 and S5 did the tasks
with the improved system.

4. Results of Comparison with Roberts' Editors

4.1. ZOG Task Times
Figure 2 splits ZOG total time to edit Roberts' documents

into various partitions. The first four columns represent our
four users, The fifth contains the averages for the four users.

The remaining columns contain Roberts' average times for
TECO, Wylbur, NLS, and Wang, converted to seconds. Her
figures are adapted from her Table 3,2 (Roberts, 1979). '

ZOG total time, comparable to Roberts' total task time,
includes: correction time, "non·task" time (such as
clarifying correction marks); error time; artifact task time;
ZED enter/exit delay time; other specific system delays (for
such things as redisplay after justifying frame text);
acquisition time; and actual task execution time traversing
the ZOG net and executing ZED commands. For purposes
of discussion, acquisition time is partitioned by net behavior
and ZED editing.

To be comparable to Roberts' error· free time, ZOG figures
must not include error time or any time not actually spenton
the task. However, in Roberts' accounting of unit tasks,
there is always one enter and one exit per document. The
enter and exit commands themselves are a legitimate part of
ZOG editing. However, the large enter and exit delays do not
correspond to anything in Roberts' data. Also, improving
the enter and exit delays was the major system inodification
between our two pairs of users (S1, S3 average: 474
seconds; 84, S5: 167). Since the purpose is to allow direct
comparison of actual unit task times, we also subtract enter
and exit delay time to obtain our error·free time. Other
system delays remain in ZOG error· free time.

4.2. Error-Free Time Results
The average ZOG error· free time, 2766 seconds, is clearly

at the time·costly end of the spectrum of editors. However,
ZOG/ZED, TECO, and Wylbur are difficult to separate
clearly due to the small sample sizes. A t·test (a = .02)
shows that neither ZOG and TECO, nor TECO and Wylbur,
are Significantly different, but that ZOG and Wylbur are.
(Roberts showed that TECO and Wylbur are significantly
different from NLS and Wang.) Nevertheless, it is clear that
much about ZOG/ZED must be analyzed and can be
improved.

4.3. Unit Task Comparison
As stated above, a unit task takes one of three forms: (1)

net behavior; (2) editing, sometimes combined with entering
ZED; or (3) exiting ZED. On average, ZOG users did the
entire set of tasks in 142 unit tasks. The table below shows
that ZOG users performed only 30% to 40% of their total unit
tasks within ZED. They did 26% more unit tasks than TEeO
users (the one data point provided by Roberts).

S1 S3 S4 S5 Ave TECO
Net 39 50 51 49 47
ZED 47 45 54 59 51
Exit 39 48 46 41 44
Total 125 143 151 149 142 113

CMCCS '81 I ACCHO '81

- 119 -

These figures allow us to calculate the average task
acquisition time for unit tasks involving text modification··a
figure which can then be compared with similar iigures for
previous editing studies. For our users, the average
acquisition time per ZED unit task was 7.0 seconds.

SEC

4000

3500

1SOO

1000

500

S1

Total Time

.;;:(
ARTIFACT <

TASKS

ENTER
& EXIT

DELAYS [
OTHER (
DELAYS

.. ET (
ACQ

EXEC NET (

S3

f~(~

ZED
EXEC

zoo
AVE

task. We have mapped linear text onto hierarchically
structured frames to compare editors. On frames containing
paragraph text, the frame title, frame name, and selections

influence the overall shape of what is on the screer). Further,
the manuscript contains nothing corresponrling to the index

TECO WYtBUA N..S

TotalTims
Error Free

Tims

o ~-------S~'~--~S3~--~&I~' ----~~~--~ZOG~--~T~ECO~~WY~LBUR~~~NLS~~~W~ANO~~--------~
AYE

Figure 2: Real Task Times

5. Discussion

frames. The user must verify that the lirst lines of
5.1. Mapping as a Sou rce of Error-Free Time paragraphs (the frame's option texts) are the appropriate

Since the amount of error· free time spent by ZOG users is ones for the path he is taking. In fact. our users spent about
comparatively high, we would like to understand the sources 50% of their net behavior acquisition time loolling rapidly
of the extra time. One strong candidate is an artifact of the from screen to manuscript and b;l.ck. Only c]hout ;:'0°0 of their

CMCCS 'S1 I ACCHO 'S1

- 119 -

These figures allow us to calculate the average task
acquisition time for unit tasks involving text modification··a
figure which can then be compared with similar iigures for
previous editing studies. For our users, the average
acquisition time per ZED unit task was 7.0 seconds.

SEC

4000

3500

1SOO

1000

500

S1

Total Time

.;;:(
ARTIFACT <

TASKS

ENTER
& EXIT

DELAYS [
OTHER (
DELAYS

.. ET (
ACQ

EXEC NET (

S3

f~(~

ZED
EXEC

zoo
AVE

task. We have mapped linear text onto hierarchically
structured frames to compare editors. On frames containing
paragraph text, the frame title, frame name, and selections

influence the overall shape of what is on the screer). Further,
the manuscript contains nothing corresponrling to the index

TECO WYtBUA N..S

TotalTims
Error Free

Tims

o ~-------S~'~--~S3~--~&I~' ----~~~--~ZOG~--~T~ECO~~WY~LBUR~~~NLS~~~W~ANO~~--------~
AYE

Figure 2: Real Task Times

5. Discussion

frames. The user must verify that the lirst lines of
5.1. Mapping as a Sou rce of Error-Free Time paragraphs (the frame's option texts) are the appropriate

Since the amount of error· free time spent by ZOG users is ones for the path he is taking. In fact. our users spent about
comparatively high, we would like to understand the sources 50% of their net behavior acquisition time loolling rapidly
of the extra time. One strong candidate is an artifact of the from screen to manuscript and b;l.ck. Only c]hout ;:'0°0 of their

CMCCS 'S1 I ACCHO 'S1

- 120 -

ZED acquisition time was spent in rapid comparison. This
indicates that during net behavior, the user is spending
some effort locating himself in the net as opposed to
deciding what to do for his next task. Besides this, to go to a
location "lower" in the manuscript, the user may have to go
"up" in the hierarchy of frames and then down another
branch , which may require additional mental calculation.

We can also look at ZOG's large error· free time in terms of
the unit task results. ZOG users' average number of unit
tasks is noticeably higher than that of Roberts' TECO users.
In the methods which Roberts predicted her users would
use, one unit task generally corresponds to the editing
changes at one location in the manuscript. One of her tasks
contains (in general) one short search per location.

This contrasts with typical ZOG use, where a net unit
task ··an extra search··is usually required to locate the target
frame. As Figure 2 shows, out of roughly 2000 seconds of
execution time, about 25% is spent searching for the frame
to edit. Including the exits, the ZOG user does at least three
unit tasks. for every time he enters ZED. The more steps
there are in finding the location of the next text to modify,
the more search and verification of location there is likely to
be before any editing is done. Thus part of the time and
many of the unit tasks may be artifacts of mapping linear text
onto hierarchical frames.

5.2. Acquisition Time
The 7.0 second average ZED unit task acquisition time is

somewhat longer than we would expect from Card, Moran,
and Newell 's results of 4.0 plus or minus 1.9 seconds. The
most likely source of extra "acquisition" time is the fact that
it was difficult, empirically, to separate any verification time
from acquisition of the next task. Their studies effectively
eliminated verification time. For comparison, according to
Card, Moran, and Newell , acquisition takes only 1.8 seconds
per unit task if scanning the screen had not been required
(as with nondisplay editors) .

5.3. Conclusions from Editor Comparison
The mapping problem may indicate that Roberts' stimulus

must be adjusted for use with a net structured system. We
could have avoided certain problems (the artifact tasks) by
mapping paragraphs onto frames differently, but the user
would still have to "translate" paragraph format into frame
format as he searches for the frame to edit. For ZOG users,
it might be appropriate to format the hard copy document
containing the 53 tasks to look like a set of frames.

Nevertheless, Roberts' method was beneficial in two

we noted that 7 to 12% of all insert limG W<:l:3 sp;mt making
typographical errors and correcting them with individual
character·erase commands. This suggests that an erase·
previous· word command would make editing easier.

Second, the numbers of unit tasks and keystrokes, as well
as error· free time, indicate that ZED users flre spending
more time than Wylbur, NLS, and Wang users. This
indicates that we should look more closely at system
changes which would improve overall task time in ZED.

6. Keystroke Level AnalysiS

6.1 . Results of Keystroke Analysis
Figure 3 shows the result of our keystroke model

prediction of task time, based on each users' actual
methods and insert typing rate. The points on the graph are
theoretical t~sk times calculated by the execution time
formula discussed above. The shaded areas represent the
un predicted time for net behavior and for ZED. On average,
the new predictions account for 88% of ZED execution time,
but for only 49% of net behavior execution time.

SEC.
;.!iOO

2000

1500

1000

ZED

2124 2129

AVE .
5 1'l',NE I

UNPf1C D

AVE.
12~o ZEf)

UNP RE.O

AVE.
88':"0/TI)

PilE I).

01--..:.......-----------
SI ss /lVE .

Figu re 3: Predictions for ZOG t.xecution Time

ways. First, in partitioning system delays we identified 6.2. Discussion of ZED Keystroke Predictions
several specific sources of delay which should be improved, These results show that the keystroke modl'1 in its present
including exit time and certain ZED operations such as form cannot tell us very much ahout net biJ h ~ l v ior . Further
jus tify. Along this line, in calculating the insert typing rates, experiments will be Ileeded to identify the tYJJc of ad justment

CMCCS '81 / ACCHO '81

- 120 -

ZED acquisition time was spent in rapid comparison. This
indicates that during net behavior, the user is spending
some effort locating himself in the net as opposed to
deciding what to do for his next task. Besides this, to go to a
location "lower" in the manuscript, the user may have to go
"up" in the hierarchy of frames and then down another
branch , which may require additional mental calculation.

We can also look at ZOG's large error· free time in terms of
the unit task results. ZOG users' average number of unit
tasks is noticeably higher than that of Roberts' TECO users.
In the methods which Roberts predicted her users would
use, one unit task generally corresponds to the editing
changes at one location in the manuscript. One of her tasks
contains (in general) one short search per location.

This contrasts with typical ZOG use, where a net unit
task ··an extra search··is usually required to locate the target
frame. As Figure 2 shows, out of roughly 2000 seconds of
execution time, about 25% is spent searching for the frame
to edit. Including the exits, the ZOG user does at least three
unit tasks. for every time he enters ZED. The more steps
there are in finding the location of the next text to modify,
the more search and verification of location there is likely to
be before any editing is done. Thus part of the time and
many of the unit tasks may be artifacts of mapping linear text
onto hierarchical frames.

5.2. Acquisition Time
The 7.0 second average ZED unit task acquisition time is

somewhat longer than we would expect from Card, Moran,
and Newell 's results of 4.0 plus or minus 1.9 seconds. The
most likely source of extra "acquisition" time is the fact that
it was difficult, empirically, to separate any verification time
from acquisition of the next task. Their studies effectively
eliminated verification time. For comparison, according to
Card, Moran, and Newell , acquisition takes only 1.8 seconds
per unit task if scanning the screen had not been required
(as with nondisplay editors) .

5.3. Conclusions from Editor Comparison
The mapping problem may indicate that Roberts' stimulus

must be adjusted for use with a net structured system. We
could have avoided certain problems (the artifact tasks) by
mapping paragraphs onto frames differently, but the user
would still have to "translate" paragraph format into frame
format as he searches for the frame to edit. For ZOG users,
it might be appropriate to format the hard copy document
containing the 53 tasks to look like a set of frames.

Nevertheless, Roberts' method was beneficial in two

we noted that 7 to 12% of all insert limG W<:l:3 sp;mt making
typographical errors and correcting them with individual
character·erase commands. This suggests that an erase·
previous· word command would make editing easier.

Second, the numbers of unit tasks and keystrokes, as well
as error· free time, indicate that ZED users flre spending
more time than Wylbur, NLS, and Wang users. This
indicates that we should look more closely at system
changes which would improve overall task time in ZED.

6. Keystroke Level AnalysiS

6.1 . Results of Keystroke Analysis
Figure 3 shows the result of our keystroke model

prediction of task time, based on each users' actual
methods and insert typing rate. The points on the graph are
theoretical t~sk times calculated by the execution time
formula discussed above. The shaded areas represent the
un predicted time for net behavior and for ZED. On average,
the new predictions account for 88% of ZED execution time,
but for only 49% of net behavior execution time.

SEC.
;.!iOO

2000

1500

1000

ZED

2124 2129

AVE .
5 1'l',NE I

UNPf1C D

AVE.
12~o ZEf)

UNP RE.O

AVE.
88':"0/TI)

PilE I).

01--..:.......-----------
SI ss /lVE .

Figu re 3: Predictions for ZOG t.xecution Time

ways. First, in partitioning system delays we identified 6.2. Discussion of ZED Keystroke Predictions
several specific sources of delay which should be improved, These results show that the keystroke modl'1 in its present
including exit time and certain ZED operations such as form cannot tell us very much ahout net biJ h ~ l v ior . Further
jus tify. Along this line, in calculating the insert typing rates, experiments will be Ileeded to identify the tYJJc of ad justment

CMCCS '81 / ACCHO '81

- 121 -

which would allow us to use the model to describe this
aspect of ZOG behailior. However, we have accounted for
most of the ZED execution time with the keystroke
prediction. The question is. have we modeled ZED behavior
well enough to warrant using the model for further analysis
of ZED?· The original experiments (Card, Moran, and Newell,
980b) verifying the keystroke model (to a root mean square
error of 20% on a single unit task) indicate that the the model
should predict 97% of the real execution time for an
experiment with 53 unit tasks. Thus our prediction error of
about 12% indicates that we have not accounted for some
aspect of the users' behavior.

The videotapes suggest one possible source for the
unpredicted task time in ZED: the possibility of an extra
mental calculation involved in switching levels or contexts
within ZED. 5ince a frame is a collection of somewhat
independent items (text, title, selections), there are two
levels of cursor·moving commands (within, and between
items). Besides keeping track of the item he is editing, the
user must remember several contexts: net search versus
edit and within edit, normal search/modify context versus
ins~rt, position· item, or help. Although ZED experts move·
among the contexts and items rapidly, perhaps they would
be modeled more closely by incorporating an additional
mental preparation for every context change. If so, this
suggests one source of small and highly distributed delays
which may contribute to ZED execution time.

This type of discrepancy does not necessarily mean that
we cannot make use of our predictions, however. In this
regard, it is useful to compare our results with Roberts'.
First, we note .that Roberts predicted the editing methods
her users would use, and predicted the task time from these
methods. Her users' actual methods were somewhat more
cautious (using longer search strings, for example). Also,
her predicted times include a predicted amount of task
acquisition and a small amount of system delay, which ours
do not include. Thus her predictions are not exactly
comparable with ours (which are based on empirical
methods and do not include acquisition or delays).
Nevertheless, given the aspects of the tasks for which she
made predictions, her results are a useful yardstick for ours.

Comparing predicted time for predicted methods against
real time to use those methods, her prediction error was
about 30% overall. Her conclusion is that, with the caution
that predicted times must be multiplied by some factor to
represent real time, the prediction can be used to describe
editing behavior. Based on this argument, our prediction
error is low enough to allow us to use the keystroke model to
analyze most of the time expenditure in ZED behavior.

7. Application of the Keystroke Model

7.1. Original ZED vs. Theoretical Minimum Time
Our first application of the keystroke model apart from

modeling empirical behavior is to find a lower bound for ZED
execution time. We constructed a set of editing methods for
doing the 53 tasks, based on commonly used commands
and command sequences available in the oriyinal version of
ZED. The methods were constructed so that, based on
keystroke model predictions, the tasks would collectively
take the minimum possible execution time. Besides showing
the theoretical minimum. time for ZED, this gives us a way of
estimating the amount of execution time due to users'
choice of methods. Figure 4 gives the results of this
prediction; the first bar, labelled .. ZED1," refers to the
original version of ZED. The bottom (shaded) portion of the
bar is the keystroke prediction. The entire bar including the
white portion represents the average predicted ZED
execution time for the actual methods of 51 and 53, who
used this version of ZED. Our users' average insert typing
~ate, .32 seconds per character, was used as the keystroke
duration in this and subsequent time predictions for
minimum·time methods. This prediction indicates that our
users could, theoretically, have accomplished the task in
23% less time. Possible reasons for their large empirical
task times will be discussed in the next section.

sec.

1600

1400

1258

1200

1000

800

600

400

200

o

Figu re 4: Predicted Execution Times

CMCCS '81 I ACCHO '81

- 121 -

which would allow us to use the model to describe this
aspect of ZOG behailior. However, we have accounted for
most of the ZED execution time with the keystroke
prediction. The question is. have we modeled ZED behavior
well enough to warrant using the model for further analysis
of ZED?· The original experiments (Card, Moran, and Newell,
980b) verifying the keystroke model (to a root mean square
error of 20% on a single unit task) indicate that the the model
should predict 97% of the real execution time for an
experiment with 53 unit tasks. Thus our prediction error of
about 12% indicates that we have not accounted for some
aspect of the users' behavior.

The videotapes suggest one possible source for the
unpredicted task time in ZED: the possibility of an extra
mental calculation involved in switching levels or contexts
within ZED. 5ince a frame is a collection of somewhat
independent items (text, title, selections), there are two
levels of cursor·moving commands (within, and between
items). Besides keeping track of the item he is editing, the
user must remember several contexts: net search versus
edit and within edit, normal search/modify context versus
ins~rt, position· item, or help. Although ZED experts move·
among the contexts and items rapidly, perhaps they would
be modeled more closely by incorporating an additional
mental preparation for every context change. If so, this
suggests one source of small and highly distributed delays
which may contribute to ZED execution time.

This type of discrepancy does not necessarily mean that
we cannot make use of our predictions, however. In this
regard, it is useful to compare our results with Roberts'.
First, we note .that Roberts predicted the editing methods
her users would use, and predicted the task time from these
methods. Her users' actual methods were somewhat more
cautious (using longer search strings, for example). Also,
her predicted times include a predicted amount of task
acquisition and a small amount of system delay, which ours
do not include. Thus her predictions are not exactly
comparable with ours (which are based on empirical
methods and do not include acquisition or delays).
Nevertheless, given the aspects of the tasks for which she
made predictions, her results are a useful yardstick for ours.

Comparing predicted time for predicted methods against
real time to use those methods, her prediction error was
about 30% overall. Her conclusion is that, with the caution
that predicted times must be multiplied by some factor to
represent real time, the prediction can be used to describe
editing behavior. Based on this argument, our prediction
error is low enough to allow us to use the keystroke model to
analyze most of the time expenditure in ZED behavior.

7. Application of the Keystroke Model

7.1. Original ZED vs. Theoretical Minimum Time
Our first application of the keystroke model apart from

modeling empirical behavior is to find a lower bound for ZED
execution time. We constructed a set of editing methods for
doing the 53 tasks, based on commonly used commands
and command sequences available in the oriyinal version of
ZED. The methods were constructed so that, based on
keystroke model predictions, the tasks would collectively
take the minimum possible execution time. Besides showing
the theoretical minimum. time for ZED, this gives us a way of
estimating the amount of execution time due to users'
choice of methods. Figure 4 gives the results of this
prediction; the first bar, labelled .. ZED1," refers to the
original version of ZED. The bottom (shaded) portion of the
bar is the keystroke prediction. The entire bar including the
white portion represents the average predicted ZED
execution time for the actual methods of 51 and 53, who
used this version of ZED. Our users' average insert typing
~ate, .32 seconds per character, was used as the keystroke
duration in this and subsequent time predictions for
minimum·time methods. This prediction indicates that our
users could, theoretically, have accomplished the task in
23% less time. Possible reasons for their large empirical
task times will be discussed in the next section.

sec.

1600

1400

1258

1200

1000

800

600

400

200

o

Figu re 4: Predicted Execution Times

CMCCS '81 I ACCHO '81

- 122 -

7.2. ZEDl vs. ZED2
Next, we compare the original lED with the improved

version. As stated above (see Section 3.5), between S3's
and S4's sessions, we improved the speed of lED exits, and
added find<string> and a facility for copying or moving any
text within a frame. The combined shaded portions of the
second bar (lED2) in Figure 4 represent the minimum-time
prediction for this second version. The lighter shaded
portion of the bar indicates the amount of the execution time
predicted for all unit tasks. directly affected by the system
change. The entire bar including the white portion
represents the average predicted ZED execution time for the
actual methods of S4 and S5, who used this version of ZED.
The space between ijle shaded area of the ZED2 bar and the
dashed line is the time saving resulting from the design
change. (The third bar, partitioned similarly to the ZED2 bar,
represents a hypothetical ZED3 which will be discussed
below.)

Thus we see that (1) users using both versions of ZED
could have spent less time executing the ZED unit tasks, and
(2) theoretically, ZED2 allows some time saving over ZED1.
Taking this second observation first, the graph shows that in
going from ZEDl to ZED2, the minimum execution time
decreases by 14% of predicted ZE.Dl time. This is equivalent
to 33% of the predicted time associated with unit tasks
affected by the system changes. If we incorporate system
delays, we would see additional improvement (since most of
the actual system changes had to do with delays).

We can now address the Question of the difference
between the minimum execution times and the users'
predicted times. One source of the difference can be seen
by comparing the users' specific methods with
corresponding minimum-time methods. As in Roberts'
study, the users actually used more commands and longer
find strings than necessary. For example, each user tends
to use command strings such as k.k.k.d (kif/to next period
three times and delete the next character, to delete three
sentences). The user could have typed 3k.d. Similarly, we
observe whole series of s<c> (search for single character c)
when the user could have used find(string>. One
explanation is that 3k. and find<best-string> require extra
calculation. With a display editor, and a set of single­
character commands with mostly single- or zero-character
arguments, it is easier to wait for the redisplay and react to it
than to be sure ahead of time where the cursor will come to
rest.

Now consider why ZEDl users' time was smaller than that
of ZED2 users. In fact, Sl and S3 largely avoided the ZED
commands which were subsequently made faster. Thus we
would not necessarily expect to see a decrease in real time
between pre- and post-system improvement users. That S4
and S5 actually took more time may be a matter of individual
differences. However, their time is due in part to the

invention oi methods not anticipated by tile desiuners. For
example, they used' the new find command to ask ZED
whether a given string was on the current frame or not. This
saved reading a long frame text and may in fact have
substituted for additional acquisition time. In task execution,
this me'thod appears as a set of commands with no
counterpart in the methods of S 1 and 53, Further analysis of
the relationships between predicted and actual editing
methods would require more data.

However, in the absence of large amounts of data on
users and with large differences in editing style, the ZED1-
ZED2 predictions allows us to make a preliminary
assessment of our design changes. Our users later said that
they liked the new commands, and the commands became a
permanent part of the lOG system. As noted above, enter·
exit delays, improved in this iteration, did drop off from S1 to
S5.

7.3. Prediction for a Future lteration--ZED3
Our final keystroke model analysis predicts the results of a

hypothetical system version, lED3 (see Figure.4). One clear
deficiency in ZED is the lack of facilities for moving text or
whole items between frames. ZED3 will have this capability,
as follows. lED2 saves in a buffer whatever text has been
deleted from an item. The contents of the buffer can be
cleared with the clear command and retrieved with the caret
command until the next exit from ZED. In ZED3, the save­
text buffer will not be cleared at an exit but will save the
latest deletions to some maximum length (losing the earlier
deletions as necessary). This allows the buffer's contents to
be inserted on another frame. ZED3 will also have, ,an
analogous set {)f functions and a buffer to save any whole
frame item which has been deleted. For selections, this
means saving the one-line option text plus its designated
selection character, any action triggered by the option, and
the next· frame pointer associated with the option. Since the
two buffers are saved continuously, the user must clear
them before deleting any text or item he wishes to move.

In Figure 4, the ZED3 bar shows that the above design
change would save 23% of the ZED execution time of ZED2.
This is equivalent to 88% of time involved in unit tasks
affected by the changes. The reason for the large saving is
that the system changes save typing several hundred text
insert characters, a time-costly and error-prone activity. (In
general, error-time savings do not appear in the execution
time prediction; however, fewer typing errors would appear
in the form of a lower average keystroke duration. when the
keystroke model is applied.) Examination of our users'
actual methods shows that there would be a real saving.
(For example, 12% of S5's predicted ZED execution time is
saved if these new methods are substituted for his
corresponding methods.) Thus we see that the keystroke
model can be a useful tool in evaluating current and future
system iterations.

CMCCS '81 / ACCHO '81

- 122 -

7.2. ZEDl vs. ZED2
Next, we compare the original lED with the improved

version. As stated above (see Section 3.5), between S3's
and S4's sessions, we improved the speed of lED exits, and
added find<string> and a facility for copying or moving any
text within a frame. The combined shaded portions of the
second bar (lED2) in Figure 4 represent the minimum-time
prediction for this second version. The lighter shaded
portion of the bar indicates the amount of the execution time
predicted for all unit tasks. directly affected by the system
change. The entire bar including the white portion
represents the average predicted ZED execution time for the
actual methods of S4 and S5, who used this version of ZED.
The space between ijle shaded area of the ZED2 bar and the
dashed line is the time saving resulting from the design
change. (The third bar, partitioned similarly to the ZED2 bar,
represents a hypothetical ZED3 which will be discussed
below.)

Thus we see that (1) users using both versions of ZED
could have spent less time executing the ZED unit tasks, and
(2) theoretically, ZED2 allows some time saving over ZED1.
Taking this second observation first, the graph shows that in
going from ZEDl to ZED2, the minimum execution time
decreases by 14% of predicted ZE.Dl time. This is equivalent
to 33% of the predicted time associated with unit tasks
affected by the system changes. If we incorporate system
delays, we would see additional improvement (since most of
the actual system changes had to do with delays).

We can now address the Question of the difference
between the minimum execution times and the users'
predicted times. One source of the difference can be seen
by comparing the users' specific methods with
corresponding minimum-time methods. As in Roberts'
study, the users actually used more commands and longer
find strings than necessary. For example, each user tends
to use command strings such as k.k.k.d (kif/to next period
three times and delete the next character, to delete three
sentences). The user could have typed 3k.d. Similarly, we
observe whole series of s<c> (search for single character c)
when the user could have used find(string>. One
explanation is that 3k. and find<best-string> require extra
calculation. With a display editor, and a set of single­
character commands with mostly single- or zero-character
arguments, it is easier to wait for the redisplay and react to it
than to be sure ahead of time where the cursor will come to
rest.

Now consider why ZEDl users' time was smaller than that
of ZED2 users. In fact, Sl and S3 largely avoided the ZED
commands which were subsequently made faster. Thus we
would not necessarily expect to see a decrease in real time
between pre- and post-system improvement users. That S4
and S5 actually took more time may be a matter of individual
differences. However, their time is due in part to the

invention oi methods not anticipated by tile desiuners. For
example, they used' the new find command to ask ZED
whether a given string was on the current frame or not. This
saved reading a long frame text and may in fact have
substituted for additional acquisition time. In task execution,
this me'thod appears as a set of commands with no
counterpart in the methods of S 1 and 53, Further analysis of
the relationships between predicted and actual editing
methods would require more data.

However, in the absence of large amounts of data on
users and with large differences in editing style, the ZED1-
ZED2 predictions allows us to make a preliminary
assessment of our design changes. Our users later said that
they liked the new commands, and the commands became a
permanent part of the lOG system. As noted above, enter·
exit delays, improved in this iteration, did drop off from S1 to
S5.

7.3. Prediction for a Future lteration--ZED3
Our final keystroke model analysis predicts the results of a

hypothetical system version, lED3 (see Figure.4). One clear
deficiency in ZED is the lack of facilities for moving text or
whole items between frames. ZED3 will have this capability,
as follows. lED2 saves in a buffer whatever text has been
deleted from an item. The contents of the buffer can be
cleared with the clear command and retrieved with the caret
command until the next exit from ZED. In ZED3, the save­
text buffer will not be cleared at an exit but will save the
latest deletions to some maximum length (losing the earlier
deletions as necessary). This allows the buffer's contents to
be inserted on another frame. ZED3 will also have, ,an
analogous set {)f functions and a buffer to save any whole
frame item which has been deleted. For selections, this
means saving the one-line option text plus its designated
selection character, any action triggered by the option, and
the next· frame pointer associated with the option. Since the
two buffers are saved continuously, the user must clear
them before deleting any text or item he wishes to move.

In Figure 4, the ZED3 bar shows that the above design
change would save 23% of the ZED execution time of ZED2.
This is equivalent to 88% of time involved in unit tasks
affected by the changes. The reason for the large saving is
that the system changes save typing several hundred text
insert characters, a time-costly and error-prone activity. (In
general, error-time savings do not appear in the execution
time prediction; however, fewer typing errors would appear
in the form of a lower average keystroke duration. when the
keystroke model is applied.) Examination of our users'
actual methods shows that there would be a real saving.
(For example, 12% of S5's predicted ZED execution time is
saved if these new methods are substituted for his
corresponding methods.) Thus we see that the keystroke
model can be a useful tool in evaluating current and future
system iterations.

CMCCS '81 / ACCHO '81

- 123 -

8. Conclusions
Our study has shown that both Roberts' methodology and

the keystroke model can be applied to practical evaluation
and improvement of an interactive system. Despite
ZOG/ZED being quite different from standard editors, we
have found a way to make useful comparisons. The two
techniques are complementary, and when combined with an
iterative approach to system development, are an
inexpensive way to analyze design changes.

ZOG's strong point remains its hierarchical structure.
Moving or deleting large parts of the net is easy because of
the modular nature of frames. This structure also made
traversing large par.ts of a document relatively easy.
However, analyzing the nature of net behavior remains for
future studies. Future studies should also investigate how
much of the execution time is due to the format of the
manuscript from which editing is being done.

During the course of the experiment, we identified and
tested several improvements, specifically shorter exit delays
and several potentially time and effort saving ZED
commands such as find(string> and the copy)'move text
facility. The experiment also identified several
improvements for future system versions, specifically the
ability to move or copy text and items between frames. A
backward· erase command in ZED and additional speed
improvements would also produce visible time savings. We
have also identified context calculation in ZED and strings of
short,' uncalculated commands as sources of unpredicted
execution time. However, ZED's weakest'point appears to
be the many enter and exit transitions between net
searching and editing. Perhaps a future version of ZED
could execute lind(string> over multiple frames, do a depth·
first search of the net, and leave the user editing the frame
containing (string>. However this problem is solved, we will
continue to consider new user problems and new design
changes. Future system versions combined with theoretical
predictions of the improvement should greatly increase our
ability to improve ZOO.

A ck now ledgements

The authors are grateful to George Robertson for
contributions to all aspects of this work, and to Sandra Esch
for many hours of data analysis and for drawing the figures
for this paper.

This research was sponsored 'by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 3597,
monitored by the Air Force Avionics Laboratory under

Contract F33615-i'8-C-1551. It was also partblly supported
by the Office of Naval Research under contract N00014.76.
0874, and by a grant from the Palo Alto Research Center of
Xerox Corporation. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied; of the Defense Advanced Research
Projects Agency, the Office of Naval Research, Xerox
Corporation, or the US Government.

References

Card, S., Moran, T.. and Newell, A. Computer Text Editing:
An Information-Processing Analysis of a Routine
Cognitive Skill. Cognitive Psychology, 1980a, 12(1),
32·74.

Card, S., Moran, T., and Newell, A. The Keystroke-Level
Model for User Performance Time with Interactive
Systems. Communications of the ACM, 1980b, 7,396·
410.

McCracken, D., and Robertson, G. Editing Tools for lOG, a
Highly Interactive Man-Machine Interface. In ICC '79
Conference Record. IEEE Communications Society,
1979.

Roberts, T. Evaluation of Computer Text Editors. Technical
Report SSL-79-9. Xerox Palo Alto Research Center,
November 1979.

Robertson. G., McCracken, D., and Newell, A. The lOG
Approach to Man·Machine Communication.
International Journal 01 Man-Machine Studies, 1980 ,
in press.

CMCCS '81 / ACCHO '81

- 123 -

8. Conclusions
Our study has shown that both Roberts' methodology and

the keystroke model can be applied to practical evaluation
and improvement of an interactive system. Despite
ZOG/ZED being quite different from standard editors, we
have found a way to make useful comparisons. The two
techniques are complementary, and when combined with an
iterative approach to system development, are an
inexpensive way to analyze design changes.

ZOG's strong point remains its hierarchical structure.
Moving or deleting large parts of the net is easy because of
the modular nature of frames. This structure also made
traversing large par.ts of a document relatively easy.
However, analyzing the nature of net behavior remains for
future studies. Future studies should also investigate how
much of the execution time is due to the format of the
manuscript from which editing is being done.

During the course of the experiment, we identified and
tested several improvements, specifically shorter exit delays
and several potentially time and effort saving ZED
commands such as find(string> and the copy)'move text
facility. The experiment also identified several
improvements for future system versions, specifically the
ability to move or copy text and items between frames. A
backward· erase command in ZED and additional speed
improvements would also produce visible time savings. We
have also identified context calculation in ZED and strings of
short,' uncalculated commands as sources of unpredicted
execution time. However, ZED's weakest'point appears to
be the many enter and exit transitions between net
searching and editing. Perhaps a future version of ZED
could execute lind(string> over multiple frames, do a depth·
first search of the net, and leave the user editing the frame
containing (string>. However this problem is solved, we will
continue to consider new user problems and new design
changes. Future system versions combined with theoretical
predictions of the improvement should greatly increase our
ability to improve ZOO.

A ck now ledgements

The authors are grateful to George Robertson for
contributions to all aspects of this work, and to Sandra Esch
for many hours of data analysis and for drawing the figures
for this paper.

This research was sponsored 'by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 3597,
monitored by the Air Force Avionics Laboratory under

Contract F33615-i'8-C-1551. It was also partblly supported
by the Office of Naval Research under contract N00014.76.
0874, and by a grant from the Palo Alto Research Center of
Xerox Corporation. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied; of the Defense Advanced Research
Projects Agency, the Office of Naval Research, Xerox
Corporation, or the US Government.

References

Card, S., Moran, T.. and Newell, A. Computer Text Editing:
An Information-Processing Analysis of a Routine
Cognitive Skill. Cognitive Psychology, 1980a, 12(1),
32·74.

Card, S., Moran, T., and Newell, A. The Keystroke-Level
Model for User Performance Time with Interactive
Systems. Communications of the ACM, 1980b, 7,396·
410.

McCracken, D., and Robertson, G. Editing Tools for lOG, a
Highly Interactive Man-Machine Interface. In ICC '79
Conference Record. IEEE Communications Society,
1979.

Roberts, T. Evaluation of Computer Text Editors. Technical
Report SSL-79-9. Xerox Palo Alto Research Center,
November 1979.

Robertson. G., McCracken, D., and Newell, A. The lOG
Approach to Man·Machine Communication.
International Journal 01 Man-Machine Studies, 1980 ,
in press.

CMCCS '81 / ACCHO '81

