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ABSTRACT 

This paper presents a systematic 
development of hierarchical, or tree-based, 
representations of digital pictures which have 
been proposed for use in computer graphics and 
image processing. Starting with the one 
dimensional case, the development proceeds to 
quad trees (the 2-D. case), then to oc trees (the 
3-D case), and finally to hextrees (the 4-D 
case), and the relationships shown between 
successive representations. A brief summary of 
the algorithms and results for quadtrees is 
presented. Since less research has been 
conducted for octrees, there are fewer results 
to report. The details of an algorithm for 
projecting an octree onto a quad tree are 
presented; this algorithm is necessary for 
producing a display of an octree on an output 
device. In addition, the applicability of the 
octree representation to three dimensional 
scenes, is discussed. Finally, a hierarchical 
data structure for representing four 
dimensional 'objects' where the fourth 
dimension is time, will be given. 

Cette communication decrit de fa~on 

systematique les diverses representations 
hierarchiques ou arborescentes des images 
numeriques qui ont eteproposees pour le 
traitement, par ordinateur, de l'information 
graphique et des images. L'etude presente 
d'abord le cas de la representation uni­
dimensionne11e, puis aborde successivement 1es 
tetra-arborescences (le cas 2-D), 1es octo­
arborescences (le cas 3-D) et, enfin, 1es 
hexa-arborescences (le cas 4-D) et les 
correlations entre les representations 
successives. Cette analyse est suivie d'une 
presentation sommaire des a1gorithmes et des 
resultats relatifs aux tetra-arborescences. 
Comme les octo-arborescences ont fait l'objet 
de beaucoup moins de recherches, les resultats 
signales sont moins nombreux. L'a1gorithme 
servant a projeter une octo-arborescence sur 
une tetra-arborescence est expose en detail; 
cet algorithme est necessaire a l'affichage 
d'une octo-arborescence sur un peripherique de 
sortie. On traite en outre de la possibilite 
d'app1iquer la representation sous forme 
d'octo-arborescence aux images tridimensionnel­
les. L'expose se terminera par la description 
d'une structure hierarchique des donnees pour 
la representation des objets a quatre 
dimensions, lorsque la quatrieme dimension est 
le temps. 
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1. Introduction 

A hierarchical data structure to represent a picture is a 
tree whose nodes correspond to, and represent, some 
portion of the picture. The picture may reconstructed in 
a conventional form by traversing the tree. This paper 
surveys some of the tree data structures which have 
been used in graphics and image processing. A uniform 
development of tree structures to represent images in 
one, two, three, and four dimensions is made. After each 
structure is defined, the possible uses for it are 
discussed, as well as how the tree structure compares to 
other possible representations. 

The representation of images in a computer graphics 
or image processing system is of primary importance. 
Unfortunately, many designers do not devote much 
thought towards what sort of data structures to use; ad 
hoc decisions are generally made. However, interest in 
hierarchical data structures for graphics and image pro­
cessing has been increasing. 

Recursive algorithms to process images have existed 
for some time. Warnock (9) eliminates hidden surfaces 
by recursively subdividing a picture until each area is 
'simple' according to his criteria. The same principle is 
used for most tree representations of pictures: the origi­
nal picture is recursively subdivided until each area is 
'simple' according to some criteria. The most common 
criterion is that all the picture elements in an area be the 
same, or at least similar, colour. A tree data structure 
can be constructed such that each of its nodes 
corresponds to some portion of the picture. A node is a 
leaf if the portion which it represents is 'simple'. 
Non-terminal nodes have sons each of which 
corresponds to some smaller portion of the area which 
their father represents. The root of the tree 
corresponds to the entire picture. Horowitz and Pavlidis 
(4) demonatrate the usefulness of such a data structure in 
graphics and image processing. 

A different sort of hierarchic structure for graphics is 
given by Mallgren and Shaw (8). In their structure nodes 
do not represent areas of the scene. Each node is either 
a graphic transformation (rotation, scaling, translation, 
etc.) or a picture object A picture object consists of a 
set of graphic operations which produce a picture of 
some scene, and can only be found at a leaf of the tree. 
All internal nodes are graphic transformations which are 
to be applied to their sons, which may again be transfor­
mations. As the tree is traversed several transformations 
may be encountered and applied to the picture objects 
found at the leaves. 

The best prospect for an image processing hierarchic 
structure is a pyramid structure 11. 14). Here, an image is 
simplified by averaging regions of pixels over the entire 
picture, thus producing a smaller, blurred picture. In (14) 
the pixels in a two by two region are averaged, whereas 
in (1) the regions are chosen according to some global 
criteria. In either case, the 'pyramid' is the complete set 
of successive.ly smaller pictures. 

The vast majority of the work in the area of tree data 
structures has focused upon the two dimensional case. 
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with four-space, where the fourth dimension is time. 
Each successive data structure is developed as an 
extension of the previous structure through the added 
dimension. Section 2 deals with the one dimensional 
case. Section 3 the two dimensional case, Section 4 the 
three dimensional case, Section 5 the four dimensional 
case. and Section 6 draws the conclusions. 

2. One Dimension - Bitrees 

Consider a one dimensional picture, say the projection 
of a two dimensional picture onto an axis. For 
convenience, assume that the picture consists of k=2**n 
'units' (where '**' denotes exponentiation). Objects in the 
picture are drawn with only one colour, BLt\CK, and the 
rest of the picture is filled with EMPTY spaces. A binary 
tree (bitree) may be constructed to represent this picture 
as follows: 

1) every node in the bitree represents a linear 
region of the picture whose size is 2-(n-d) 
units, where d is the depth of the node (the root 
is at depth 0); 

2) every node n in the bitree either is a leaf or has 
exactly two sons. One son represents the left. 
or Western, half of the region which n 
represents. The second son represents the 
right, or Eastern, half. 

3) every node n in the bitree. has a colour 
associated with it. If every pOint In the region 
represented by n is BLACK, then n is coloured 
BLACK. If every point in the region is EMPTY, 
then n is coloured EMPTY. In both cases n is a 
leaf. Otherwise, the region is a mixture of 
BLACKs and EMPTYs, so n is coloured MIXED 
and is given two sons to represent the two 
halves of the region. 

Note that no node will have two sons that are leaves and 
both coloured the same, since this is more compactly 
represented by colouring the father node and removing 
the sons from the tree. See Fig. 1 for a linear picture 
and the corresponding bitree. 

It should be apparent from Fig. 1 that the bitree rep­
resentation of a linear picture is not economical. A 
picture can be represented much more efficiently by 
vector end-points, or even, in some cases, as an array of 
colour values. Since the bitree representation reqUires 
more space than other representations,. it is of .Iittle 
practical use. This, plus the minimal utility for linear 
pictures, accounts for the lack of Interest In the bltree 
representation. Bitrees are of theoretical Interest, how­
ever, as a simple basis for the other, higher dimensional 
tree structures. 

3. Two Dimensions - Quadtrees 

Now, consider two dimensional pictures The basic 
unit of a two dimensional picture is a unit square area 
called a pixel. Again, assume that each dimension is k 
'units' in size and that pixels are either BLACK or EMPTY. 

More recent interest has been shown for three There are several ways to represent such a two 
dimensional extensions of two dimensional structures. dimensional picture, the simplest being a two dimensional 
The remainder of this paper will develop tree data struc- array of colours. A raster display on a mOnitor IS such 
tures to represent images in various spaces. The an array. Unfortunately, such arrays tend to be sparse 
discussion starts with linear pictures (one-space). and waste a great deal of space. A tree representation, 
proceeds through two- and three-space, and finishes the quadtree, is more space-effiCient, as well as being 
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(c) SI tree constructed from (b) 

Ftg.1 A one dimensional picture and the bitree which 
represents It. The vertical bars In (b) Indicate 
the recursive subdivision points. The higher the 
bar is. the closer to the root the representative 
bltree node Is. The numbers on \b) and (c) are 
labels Indicating quadtree terminal nodes. 

relatively easy to manipulate. A quadtree is defined by: 
1) every node n in the quadtree represents a 

square area of the picture whose sides are of 
length 2**(n-d). where d is the depth of n; 

2) every node n either is a leaf. or has four sons 
each of which represents one quadrant of the 
are.a . n r~presents. The area of n is split up by 
diViding In half along each axis; 

3) every node n has a colour associated with it If 
every pixel in the area represented is BLACK. 
then n IS a leaf a.nd is coloured BLACK. If every 
plxel In the area IS EMPTY then n is a leaf and is 
coloured EMPTY. Otherwise. if the area is a 
mixture of BLACKs and EMPTYs. then n is 
coloured MIXED and is given four sons to rep­
resent the four quadrants of the area. 

Note that the introduction of an additional dimension 
means that the internal. nodes in the tree have twice as 
many sons as in the one dimensional case. Fig. 2 shows 
the relationship between the subquadrants (labelled NW. 
NE. SW. SE). and t.he sons. of a quadtree node. Fig. 3 
shows a two dimensional picture and the corresponding 
quadtree. . 

From Fig. 3 it can be seen that the quadtree represen­
tation can be more space efficient than a matrix of 
colour values. Recall that in the one dimensional case the 
tree representation was .Iess space efficient than an array 
representation. By moving to two dimensions the array 
representation has grown exponentially. If the picture 
being represented conSists of a few regions of 
contiguous .. same-colour pixels then the quadtree repre­
sentation Will not grow nearly as fast. This difference 
becomes even more significant in the higher dimensional 
cases. 

Of course. there are representations of two 
dimensional pictures other than pixel matrices and 
quadtrees. e.g.. boundary codes and polygon edges. 
Since anyone representation has its own advantages. it is 
useful to be able convert from one representation to an­
other. 

Samet 11 2) gives an algorithm for constructing a 
qU!ldtree from the pixel array representation of a picture. 
ThiS algOrithm has a running time which is linear in the 
number of pixels in the picture. The reverse process. 
from a quadtree to a pixel array. is equally 
straightforward. The conversion of a quadtree to a pixel 
array IS necessary for producing the display of a 
quadtree. 

In [11) Samet gives an algorithm for converting from 
boundary code representations to quadtrees in time O(p * 
log dl. where p is the perimeter and d the diameter of the 
object being represented Dyer. Rosenfeld and Samet [3) 
give a complementary algorithm for converting a 
quadtree representation of a picture to a boundary code 
representation in time O(p). 

A two-dimensional polygonal object may be repre­
sented by a sequence of vectors which describe. the 
polygon boundary. Usually such vectors are stored as 
vector end-points. In 16) Hunter and Steiglitz present an 
algorithm for constructing a quadtree from such a 
polygon-vertex description of the boundary of a region 
In time O(v+p+ql. where v is the number of vertices. p 
the perimeter of the region. and q is a resolution param­
eter. In 15) an algorithm is presented to perform a 
general linear transformation of a picture represented by 
a quadtree In time O(n + s*P + mql. where m is the 
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m rn 
(a) Quadr~nt labels (b) Quadtree node labels 

fig. 2 The labels of quadrants of a square area, 
and the corresponding quadtree node sons. 

number polygon edges in the picture. n is the number of 
nodes in the quadtree. and s is a 'scaling factor'. The 
resolution factor in both algorithms is a fixed constant 
for any particular application. but it is useful to know 
what the effect of changing the resolution is. 

Dyer 12) presents an image processing application for 
quadtrees. The Euler number of an image region is the 
number of connected components minus the number of 
holes. Dyer gives an algorithm to find the Euler number 
of a region represented by a quadtree. The the running 
time of the algorithm proportional to the number of 
leaves of the quadtree. 

As a means for storing two dimensional pictures 
quadtrees are both space- and time-efficient. The 
efficiency of tree structures is even more apparent in 
three dimensions. 

4. Three Dimensions - Octrees 

The transition from two to three dimensions is 
analogous to the transition from one to two dimensions. 
A unit cube is called a voxel (for volume element). The 
additional dimension is divided in two by recursive 
subdivision. and so cubes are subdivided into eight equal 
octants. One face of the universe cube is arbitrarily 
chosen to be the front. and the four octants adjacent to 
this face are labelled Front Similarly. the other four 
octants are labelled Back. Fig. 4 shows the subdivision of 
a cube. the labelling of the eight octants. and the 
correspondence of octants to the sons of a tree node. 

The definition of a tree, the octree. to represent three 
dimensional scenes is also analogous to the one and two 
dimensional cases. Assume that the voxels in the picture 
are either BLACK or EMPTY. Each node of the octree is 
either a leaf, or has eight sons each of which represents 
an octant of the father. A node is a leaf if all the voxels 
in the cube of space represented are the same colour. 
Fig. 5 shows a simple three dimensional picture and the 
octree which represents it. 

A cube of three-space can be viewed as the various 
instances of a square frame of two-space in an interval 
of the third dimension, depth. As the frame moves 
through the third dimension, each pixel of the square will 
create several voxels. The colours of the voxels created 
will be independent of the colour of the original pixel. 
Although this view of three-space is unorthodox, it will 
be helpful when dealing with four dimensions. 

Relatively little research has 
octrees. Jackins and Tanimoto 

been conducted on 
(7) discuss simple 

rotations of octrees (by multiples of 90 degrees). and an 
algorithm for the translation of octrees. Both algorithms 
are roughly linear in the number of nodes in the octree. 
Srihari 113) discusses various hierarchIcal representations 
of three dimensional pictures. including octrees. In addi­
tion, he discusses a structure similar to the octree except 
that the recursive subdivision need not divide a volume 
into cubes but may divide into rectangular parallelpipeds 
of unequal size. A similar approach is also discussed by 
Rubin and Whitted 110). 

Regardless of the representation used for a three 
dimensional picture, it is still necessary to produce two 
dimensional images on a display screen. The primary 
problem in displaying three dimensional ob jects is the 
elimination of hidden surfaces. Many algorithms for the 
removal of hidden surfaces need to sort the surfaces of 
a scene by depth. Then 'rays' are extended from the 
viewpoint to find the closest surface at each pixel. 
Newman and Sproull 19) give examples of such 
algorithms. For most conventional picture representa­
tions. the sorting of surfaces is non-trivial. and the time 
required grows exponentially as the complexity of the 
scene increases 19). An octree. on the other hand, does 
not suffer from this combinatorial explosion. Due to the 
organization of an octree the surface sorting is inherent 
in the structure of the tree. The surfaces which are 
hidden can be easily removed by a 'ray tracing' algorithm 
which traverses the octree from front to back. An 
algorithm follOWS which produces the quadtree repre­
sented by projecting an octree onto a plane coincident 
with its front face. A display of the quadtree can then be 
generated easily. 

4.1. Octree to Quadtree Projection Algorithm 

This algorithm begins with an octree, 0, and constructs 
a quadtree. q. which is the orthogonal projection of 0 
onto the front face plane. In any octree a BLACK front 
sub-octant will obscure any equal or smaller sized 
sub-octants behind it. for instance. BLACKs in the FNE 
octant will obscure any octants behind them in the BNE 
octant. If the octree 0 is traversed from front to back 
the hidden cubes can be discovered quickly and 
discarded. 

A quadtree node will have 6 fields associated with it a 
pointer to the father node, a colour (which can be BLACK. 
EMPTY. or MIXED)' and four son pointers !labelled NW. 
NE. SW. SE). An octree node will have 10 fields 
associated with it: a pointer to the father node. a colour. 
and eight son pointers !labelled FNW. FNE. FSW, FSE, 
BNW. BNE. BSW, BSE). These are defined in Pascal as 
follows: 

type 
Octants = (FNW. FNE, FSW, FSE, 

BNW, BNE, BSW, BSE); 
Quadrants = (NW. NE, SW, SE); 
Colours = (BLACK. EMPTY. MIXED); 
Oref = 1Octree; 
Qref = 1Quadtree; 
Octree = 

record 
colour: Colours; 
father: Oref; 
son: array( Octants ) of Oret. 

end; 
Quadtree = 

record 
colour; Colours; 
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fig. 2 The labels of quadrants of a square area, 
and the corresponding quadtree node sons. 
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octant. If the octree 0 is traversed from front to back 
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A quadtree node will have 6 fields associated with it a 
pointer to the father node, a colour (which can be BLACK. 
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NE. SW. SE). An octree node will have 10 fields 
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(c) Quadtree constructed from (b) 

Fig 3. A two dimensional picture and the corr­
esponding quadtree. The plxel array in 
(a) has 256 entries, while the quadtree 
In (b) has just 57 nodes. However, the 
quadtree nodes do take more space to 
store. 

father: Qref; 
son: array( Quadrants) of Qref; 

end; 

The recursive traversal of the octree to produce the 
quadtree proceeds as follows. If the original octree ~s 
one solid colour (BLACK or EMPTY) then the quadtree will 
be one node of that same colour. However, if the octree 
is not a solid colour then the front sons are recursively 
projected towards their fronts, which is also the frontof 
the top level octree. Any EMPTYs left after proJectmg 
the front sons can then be filled in by the back sons. 
Note that BLACKs created by the front sons will obscure 
anything behind them. 

The projection algorithm' is implemented by a 
procedure Project, which takes two parameters. The 
first parameter, 0, is an octree which is being projected 
towards its front face. 0 is either the original octree or 
some descendant of the original. The second parameter, 
q, is a pointer to a quadtree which is to be constructed 
from o. Since 0 can be a 'backwards' son of the original 
picture it is possible that at least part of it may be 
obscured. q is used to pass such information along during 
the construction process. If q arrives as a nil pointer, 
then that quadrant of the quadtree has not been 
constructed yet, so a node is created for q and coloured 
EMPTY. However, if q isn't nil and the colour of q is 
MIXED or EMPTY then at least part of q remains which 
may be coloured BLACK. Finally, if q iSrTt nil and is 
coloured BLACK, then q has already been completely 
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Fig. 4 Labels of the octants of a cube, and the 
corresponding labels of the sons of an 
octree node. Note that octant BSW Is 
hidden In (a). 

coloured by octants which were further towards the 
front of the father octree. and so sub-octree 0 is com­
pletely obscured. 

Now assume that q has not been previously filled (i.e. it 
is currently EMPTY or MIXED). If 0 is completely BLACK 
then the EMPTY quadrants of q are filled in with BLACK. 
If 0 is completely EMPTY then q is not changed at all. If 
o is MIXED (all sons are not the same colour), then the 
projection algorithm proceeds recursively by calling 
Project to project the sons of 0 onto the sons of q. 
starting with the front octants and proceeding to the 
back octants. The following is an algorithm for the 
procedure: 

procedure Project( 0 : Octree. var q : Qref ); 
if q is nil then 

create a new node for q, and colour it EMPTY; 
else 

if c(T' is coloured BLACK then 
return; 

endif 
end if 

(* 
* now. q is not nil, and if we reach this point 
* then q has quadrants (or sub-quadrants) which 
* have not been filled yet. 
*) 
if 0 is not coloured MIXED then 

if q'I' is coloured MIXED then 
project 0 onto the sons of ql; 

else 
colour q1' the same as 0; 
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(a) Three dimensional picture 

o 

I I I III I I I 
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I 

(b) Octree representation of (a) 

Fig. 5 A simple three dimensional picture and 
the corresponding octree. 

endif 
else 

project the front sons of 0 onto sons of ~ 
project the back sons of 0 onto sons of qT: 
if all sons of q'I' are same colour. not MIXED then 

merge the sons into one node in q1: 
endif 

endif 
end 

It should be clear that since this algorithm is merely a 
traversal of the octree 0, the algorithm is linear in the 
number of nodes in the octree. However. not all nodes 
of the octree need be traversed since traversal occurs 
only if the corresponding area of the quad tree q has not 
been filled yet. Thus. in the average case. w~en the~e are 
back volumes which are occluded. the algorithm will not 
need to traverse the entire octree. 

4.2. Applicability of Octrees 

Octrees are quite suitable for use in three dimensional 
graphics. Usually they use less space than other repre­
sentations of the same scene. AlgOrithms to manipulate 
octrees should be forth-coming in the near future as 
more people investigate tree data structures. . In 
particular, if octrees are to become usable for graphics 
users and programmers algorithms must be developed to 
convert existing picture data bases from polygon repre-
sentations to octrees. 

However, some questions remain. For instance, it is 
not clear, at present, what effect applying linear trans­
formations to octrees will have on the accuracy of the 
representation. Since an octree is an approximation to 
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number of nodes in the octree. However. not all nodes 
of the octree need be traversed since traversal occurs 
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more people investigate tree data structures. . In 
particular, if octrees are to become usable for graphics 
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the ob Ject being represented, there may be information 
Jost (due to rounding errors) if several transformations 
applied 

5. Four Dimensions 

The final extension, to the fourth dimension, is not as 
simple as the previous cases. To begin with, the fourth 
dimension, time. is not measured In the same Units as the 
other three dimensions. As well, people have trouble 
conceiving what a four dimensional picture is. 

A picture in four dimensions may be. thought of as the 
various instances of a three dimensional scene as It 
changes, continuously, through time .. However, for the 
purposes of storage time .must be, dlvl~ed Into arb!trary 
discrete steps. Time IS split Into k units to be conSistent 
with the other three dimensions, although time IS 
measured in different units. The basic unit of four-space 
is called a tixel (time element) and consists of a unit of 
time and a voxel of three-space (during that unit of time). 

The recursive subdivision for the tree representation 
divides the time dimension in half at each step. The 'ear­
lier' half of the four-space will be referred as Past, and 
the 'later' half will be referred to as Future (in the same 
way that three space was divided into Front and Back). A 
hyper-volume of four-space is divided into 16. equal 
sized sections, hence the tree structure name IS the 
hextree. The hextree is defined much like the lower 
dimensional trees: a node represents a hyper-volume of 
tixels and is a leaf if all the tixels of that volume are the 
same colour. 

The meaning of 'all the tixels being the same colour' 
should be clarified A tixel is a unit hyper-volume of 
four-space, i.e. a unit cube of . three-space during a unit 
time interval. Thus, for all the tlxe)s In a hyper-volume to 
be the same colour, the voxe)s of that section of 
three-space must remain the same colour throughout that 
interval of time. For example, If the voxels In a 4 by 4 
by 4 volume of three-space remain the same colour for 
4 time steps, then that volume of four-space need not 
be divided by the recursive subdivi.sion. This is analogous 
to the three dimensional case discussed In section 4, 
when a voxel was considered to be the instances of a 
pixel through an interval of depth. 

Real-time computer animation requires that several 
image frames be displayed in rapid. succession. 
Generally, the difference between successive frames IS 
small. Thus, if the frames are stored as a sequence of 
two- or three-dimensional scenes then there will be a 
great deal of redundant information, and wasted space, 
between consecutive frames. The hextree representa­
tion, on the other hand, takes advantage of any voxels 
which remain constant for more than one unit of time by 
merging them into one node. And so, a hextree will save 
space 

To generate a display of a hextree at an instant of 
time it is necessary to select the hyper plane of that 
particular time. Such a selection requires only to traverse 
the hextree constructing an octree which represents. the 
three-dimensional scene at that time. Such an algOrithm 
is similar to the octree projection algorithm given in 
Section 4. 

- 161 -

Hextrees may provide an effective, structured 
approach to computer animation. They are particularly 
more efficient than producing a series of pictures for 
display and discarding each after it has been displayed. 

6. Conclusions 

. This paper has presented a sequence of hierarchical 
data structures for use in computer graphics and image 
processing. Each structure was shown to be directly 
related to other structures, and that the space-efficiency 
of the structures increased with the number of 
dimensions. 

In order for these tree data structures to become 
Wide-spread there will have to be changes made to the 
programming techniques in current use by graphics 
programmers. The computer language most widely used 
at present is FORTRAN. It is well known that FORTRAN 
suffers from various flaws. The most serious flaws, for 
the purposes of implementing trees, is the lack of data 
structuring and recursion. And so, FORTRAN needs to be 
abandoned if tree data structures are to gain acceptance. 
The language that replaces FORTRAN will need data 
structuring capabilities, recursion, 'number crunching', and 
various graphic instructions to make picture displaYing 
easy. 

The gains from using tree data structures are several. 
The tree structures save storage space and execution 
time over other representations. As well there is the gain 
of portability of picture data bases if the common imple­
mentations are used. 
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