
- 155 -

TREE DATA STRUCTURES FOR GRAPHICS AND IMAGE PROCESSING

R. Gillespie and W.A. Davis

Department of Computing Science
University of Alberta, Edmonton

ABSTRACT

This paper presents a systematic
development of hierarchical, or tree-based,
representations of digital pictures which have
been proposed for use in computer graphics and
image processing. Starting with the one
dimensional case, the development proceeds to
quad trees (the 2-D. case), then to oc trees (the
3-D case), and finally to hextrees (the 4-D
case), and the relationships shown between
successive representations. A brief summary of
the algorithms and results for quadtrees is
presented. Since less research has been
conducted for octrees, there are fewer results
to report. The details of an algorithm for
projecting an octree onto a quad tree are
presented; this algorithm is necessary for
producing a display of an octree on an output
device. In addition, the applicability of the
octree representation to three dimensional
scenes, is discussed. Finally, a hierarchical
data structure for representing four
dimensional 'objects' where the fourth
dimension is time, will be given.

Cette communication decrit de fa~on

systematique les diverses representations
hierarchiques ou arborescentes des images
numeriques qui ont eteproposees pour le
traitement, par ordinateur, de l'information
graphique et des images. L'etude presente
d'abord le cas de la representation uni­
dimensionne11e, puis aborde successivement 1es
tetra-arborescences (le cas 2-D), 1es octo­
arborescences (le cas 3-D) et, enfin, 1es
hexa-arborescences (le cas 4-D) et les
correlations entre les representations
successives. Cette analyse est suivie d'une
presentation sommaire des a1gorithmes et des
resultats relatifs aux tetra-arborescences.
Comme les octo-arborescences ont fait l'objet
de beaucoup moins de recherches, les resultats
signales sont moins nombreux. L'a1gorithme
servant a projeter une octo-arborescence sur
une tetra-arborescence est expose en detail;
cet algorithme est necessaire a l'affichage
d'une octo-arborescence sur un peripherique de
sortie. On traite en outre de la possibilite
d'app1iquer la representation sous forme
d'octo-arborescence aux images tridimensionnel­
les. L'expose se terminera par la description
d'une structure hierarchique des donnees pour
la representation des objets a quatre
dimensions, lorsque la quatrieme dimension est
le temps.

CMCCS '81 / ACCHO '81

- 155 -

TREE DATA STRUCTURES FOR GRAPHICS AND IMAGE PROCESSING

R. Gillespie and W.A. Davis

Department of Computing Science
University of Alberta, Edmonton

ABSTRACT

This paper presents a systematic
development of hierarchical, or tree-based,
representations of digital pictures which have
been proposed for use in computer graphics and
image processing. Starting with the one
dimensional case, the development proceeds to
quad trees (the 2-D. case), then to oc trees (the
3-D case), and finally to hextrees (the 4-D
case), and the relationships shown between
successive representations. A brief summary of
the algorithms and results for quadtrees is
presented. Since less research has been
conducted for octrees, there are fewer results
to report. The details of an algorithm for
projecting an octree onto a quad tree are
presented; this algorithm is necessary for
producing a display of an octree on an output
device. In addition, the applicability of the
octree representation to three dimensional
scenes, is discussed. Finally, a hierarchical
data structure for representing four
dimensional 'objects' where the fourth
dimension is time, will be given.

Cette communication decrit de fa~on

systematique les diverses representations
hierarchiques ou arborescentes des images
numeriques qui ont eteproposees pour le
traitement, par ordinateur, de l'information
graphique et des images. L'etude presente
d'abord le cas de la representation uni­
dimensionne11e, puis aborde successivement 1es
tetra-arborescences (le cas 2-D), 1es octo­
arborescences (le cas 3-D) et, enfin, 1es
hexa-arborescences (le cas 4-D) et les
correlations entre les representations
successives. Cette analyse est suivie d'une
presentation sommaire des a1gorithmes et des
resultats relatifs aux tetra-arborescences.
Comme les octo-arborescences ont fait l'objet
de beaucoup moins de recherches, les resultats
signales sont moins nombreux. L'a1gorithme
servant a projeter une octo-arborescence sur
une tetra-arborescence est expose en detail;
cet algorithme est necessaire a l'affichage
d'une octo-arborescence sur un peripherique de
sortie. On traite en outre de la possibilite
d'app1iquer la representation sous forme
d'octo-arborescence aux images tridimensionnel­
les. L'expose se terminera par la description
d'une structure hierarchique des donnees pour
la representation des objets a quatre
dimensions, lorsque la quatrieme dimension est
le temps.

CMCCS '81 / ACCHO '81

1. Introduction

A hierarchical data structure to represent a picture is a
tree whose nodes correspond to, and represent, some
portion of the picture. The picture may reconstructed in
a conventional form by traversing the tree. This paper
surveys some of the tree data structures which have
been used in graphics and image processing. A uniform
development of tree structures to represent images in
one, two, three, and four dimensions is made. After each
structure is defined, the possible uses for it are
discussed, as well as how the tree structure compares to
other possible representations.

The representation of images in a computer graphics
or image processing system is of primary importance.
Unfortunately, many designers do not devote much
thought towards what sort of data structures to use; ad
hoc decisions are generally made. However, interest in
hierarchical data structures for graphics and image pro­
cessing has been increasing.

Recursive algorithms to process images have existed
for some time. Warnock (9) eliminates hidden surfaces
by recursively subdividing a picture until each area is
'simple' according to his criteria. The same principle is
used for most tree representations of pictures: the origi­
nal picture is recursively subdivided until each area is
'simple' according to some criteria. The most common
criterion is that all the picture elements in an area be the
same, or at least similar, colour. A tree data structure
can be constructed such that each of its nodes
corresponds to some portion of the picture. A node is a
leaf if the portion which it represents is 'simple'.
Non-terminal nodes have sons each of which
corresponds to some smaller portion of the area which
their father represents. The root of the tree
corresponds to the entire picture. Horowitz and Pavlidis
(4) demonatrate the usefulness of such a data structure in
graphics and image processing.

A different sort of hierarchic structure for graphics is
given by Mallgren and Shaw (8). In their structure nodes
do not represent areas of the scene. Each node is either
a graphic transformation (rotation, scaling, translation,
etc.) or a picture object A picture object consists of a
set of graphic operations which produce a picture of
some scene, and can only be found at a leaf of the tree.
All internal nodes are graphic transformations which are
to be applied to their sons, which may again be transfor­
mations. As the tree is traversed several transformations
may be encountered and applied to the picture objects
found at the leaves.

The best prospect for an image processing hierarchic
structure is a pyramid structure 11. 14). Here, an image is
simplified by averaging regions of pixels over the entire
picture, thus producing a smaller, blurred picture. In (14)
the pixels in a two by two region are averaged, whereas
in (1) the regions are chosen according to some global
criteria. In either case, the 'pyramid' is the complete set
of successive.ly smaller pictures.

The vast majority of the work in the area of tree data
structures has focused upon the two dimensional case.

- 156 -

with four-space, where the fourth dimension is time.
Each successive data structure is developed as an
extension of the previous structure through the added
dimension. Section 2 deals with the one dimensional
case. Section 3 the two dimensional case, Section 4 the
three dimensional case, Section 5 the four dimensional
case. and Section 6 draws the conclusions.

2. One Dimension - Bitrees

Consider a one dimensional picture, say the projection
of a two dimensional picture onto an axis. For
convenience, assume that the picture consists of k=2**n
'units' (where '**' denotes exponentiation). Objects in the
picture are drawn with only one colour, BLt\CK, and the
rest of the picture is filled with EMPTY spaces. A binary
tree (bitree) may be constructed to represent this picture
as follows:

1) every node in the bitree represents a linear
region of the picture whose size is 2-(n-d)
units, where d is the depth of the node (the root
is at depth 0);

2) every node n in the bitree either is a leaf or has
exactly two sons. One son represents the left.
or Western, half of the region which n
represents. The second son represents the
right, or Eastern, half.

3) every node n in the bitree. has a colour
associated with it. If every pOint In the region
represented by n is BLACK, then n is coloured
BLACK. If every point in the region is EMPTY,
then n is coloured EMPTY. In both cases n is a
leaf. Otherwise, the region is a mixture of
BLACKs and EMPTYs, so n is coloured MIXED
and is given two sons to represent the two
halves of the region.

Note that no node will have two sons that are leaves and
both coloured the same, since this is more compactly
represented by colouring the father node and removing
the sons from the tree. See Fig. 1 for a linear picture
and the corresponding bitree.

It should be apparent from Fig. 1 that the bitree rep­
resentation of a linear picture is not economical. A
picture can be represented much more efficiently by
vector end-points, or even, in some cases, as an array of
colour values. Since the bitree representation reqUires
more space than other representations,. it is of .Iittle
practical use. This, plus the minimal utility for linear
pictures, accounts for the lack of Interest In the bltree
representation. Bitrees are of theoretical Interest, how­
ever, as a simple basis for the other, higher dimensional
tree structures.

3. Two Dimensions - Quadtrees

Now, consider two dimensional pictures The basic
unit of a two dimensional picture is a unit square area
called a pixel. Again, assume that each dimension is k
'units' in size and that pixels are either BLACK or EMPTY.

More recent interest has been shown for three There are several ways to represent such a two
dimensional extensions of two dimensional structures. dimensional picture, the simplest being a two dimensional
The remainder of this paper will develop tree data struc- array of colours. A raster display on a mOnitor IS such
tures to represent images in various spaces. The an array. Unfortunately, such arrays tend to be sparse
discussion starts with linear pictures (one-space). and waste a great deal of space. A tree representation,
proceeds through two- and three-space, and finishes the quadtree, is more space-effiCient, as well as being

CMCCS '81 I ACCHO '81

1. Introduction

A hierarchical data structure to represent a picture is a
tree whose nodes correspond to, and represent, some
portion of the picture. The picture may reconstructed in
a conventional form by traversing the tree. This paper
surveys some of the tree data structures which have
been used in graphics and image processing. A uniform
development of tree structures to represent images in
one, two, three, and four dimensions is made. After each
structure is defined, the possible uses for it are
discussed, as well as how the tree structure compares to
other possible representations.

The representation of images in a computer graphics
or image processing system is of primary importance.
Unfortunately, many designers do not devote much
thought towards what sort of data structures to use; ad
hoc decisions are generally made. However, interest in
hierarchical data structures for graphics and image pro­
cessing has been increasing.

Recursive algorithms to process images have existed
for some time. Warnock (9) eliminates hidden surfaces
by recursively subdividing a picture until each area is
'simple' according to his criteria. The same principle is
used for most tree representations of pictures: the origi­
nal picture is recursively subdivided until each area is
'simple' according to some criteria. The most common
criterion is that all the picture elements in an area be the
same, or at least similar, colour. A tree data structure
can be constructed such that each of its nodes
corresponds to some portion of the picture. A node is a
leaf if the portion which it represents is 'simple'.
Non-terminal nodes have sons each of which
corresponds to some smaller portion of the area which
their father represents. The root of the tree
corresponds to the entire picture. Horowitz and Pavlidis
(4) demonatrate the usefulness of such a data structure in
graphics and image processing.

A different sort of hierarchic structure for graphics is
given by Mallgren and Shaw (8). In their structure nodes
do not represent areas of the scene. Each node is either
a graphic transformation (rotation, scaling, translation,
etc.) or a picture object A picture object consists of a
set of graphic operations which produce a picture of
some scene, and can only be found at a leaf of the tree.
All internal nodes are graphic transformations which are
to be applied to their sons, which may again be transfor­
mations. As the tree is traversed several transformations
may be encountered and applied to the picture objects
found at the leaves.

The best prospect for an image processing hierarchic
structure is a pyramid structure 11. 14). Here, an image is
simplified by averaging regions of pixels over the entire
picture, thus producing a smaller, blurred picture. In (14)
the pixels in a two by two region are averaged, whereas
in (1) the regions are chosen according to some global
criteria. In either case, the 'pyramid' is the complete set
of successive.ly smaller pictures.

The vast majority of the work in the area of tree data
structures has focused upon the two dimensional case.

- 156 -

with four-space, where the fourth dimension is time.
Each successive data structure is developed as an
extension of the previous structure through the added
dimension. Section 2 deals with the one dimensional
case. Section 3 the two dimensional case, Section 4 the
three dimensional case, Section 5 the four dimensional
case. and Section 6 draws the conclusions.

2. One Dimension - Bitrees

Consider a one dimensional picture, say the projection
of a two dimensional picture onto an axis. For
convenience, assume that the picture consists of k=2**n
'units' (where '**' denotes exponentiation). Objects in the
picture are drawn with only one colour, BLt\CK, and the
rest of the picture is filled with EMPTY spaces. A binary
tree (bitree) may be constructed to represent this picture
as follows:

1) every node in the bitree represents a linear
region of the picture whose size is 2-(n-d)
units, where d is the depth of the node (the root
is at depth 0);

2) every node n in the bitree either is a leaf or has
exactly two sons. One son represents the left.
or Western, half of the region which n
represents. The second son represents the
right, or Eastern, half.

3) every node n in the bitree. has a colour
associated with it. If every pOint In the region
represented by n is BLACK, then n is coloured
BLACK. If every point in the region is EMPTY,
then n is coloured EMPTY. In both cases n is a
leaf. Otherwise, the region is a mixture of
BLACKs and EMPTYs, so n is coloured MIXED
and is given two sons to represent the two
halves of the region.

Note that no node will have two sons that are leaves and
both coloured the same, since this is more compactly
represented by colouring the father node and removing
the sons from the tree. See Fig. 1 for a linear picture
and the corresponding bitree.

It should be apparent from Fig. 1 that the bitree rep­
resentation of a linear picture is not economical. A
picture can be represented much more efficiently by
vector end-points, or even, in some cases, as an array of
colour values. Since the bitree representation reqUires
more space than other representations,. it is of .Iittle
practical use. This, plus the minimal utility for linear
pictures, accounts for the lack of Interest In the bltree
representation. Bitrees are of theoretical Interest, how­
ever, as a simple basis for the other, higher dimensional
tree structures.

3. Two Dimensions - Quadtrees

Now, consider two dimensional pictures The basic
unit of a two dimensional picture is a unit square area
called a pixel. Again, assume that each dimension is k
'units' in size and that pixels are either BLACK or EMPTY.

More recent interest has been shown for three There are several ways to represent such a two
dimensional extensions of two dimensional structures. dimensional picture, the simplest being a two dimensional
The remainder of this paper will develop tree data struc- array of colours. A raster display on a mOnitor IS such
tures to represent images in various spaces. The an array. Unfortunately, such arrays tend to be sparse
discussion starts with linear pictures (one-space). and waste a great deal of space. A tree representation,
proceeds through two- and three-space, and finishes the quadtree, is more space-effiCient, as well as being

CMCCS '81 I ACCHO '81

- 157 -

I I I I I I I I I ! t I I I

(~) One dimensional picture Cb) Recursjve subdivision of (~)

0
I

0 0
I

I I
I

I
0 0 0

rI rI rI
0 0 0 0

rl rl rl 9 rl
a • • tI a • • a
2 3 567 8 a b

(c) SI tree constructed from (b)

Ftg.1 A one dimensional picture and the bitree which
represents It. The vertical bars In (b) Indicate
the recursive subdivision points. The higher the
bar is. the closer to the root the representative
bltree node Is. The numbers on \b) and (c) are
labels Indicating quadtree terminal nodes.

relatively easy to manipulate. A quadtree is defined by:
1) every node n in the quadtree represents a

square area of the picture whose sides are of
length 2**(n-d). where d is the depth of n;

2) every node n either is a leaf. or has four sons
each of which represents one quadrant of the
are.a . n r~presents. The area of n is split up by
diViding In half along each axis;

3) every node n has a colour associated with it If
every pixel in the area represented is BLACK.
then n IS a leaf a.nd is coloured BLACK. If every
plxel In the area IS EMPTY then n is a leaf and is
coloured EMPTY. Otherwise. if the area is a
mixture of BLACKs and EMPTYs. then n is
coloured MIXED and is given four sons to rep­
resent the four quadrants of the area.

Note that the introduction of an additional dimension
means that the internal. nodes in the tree have twice as
many sons as in the one dimensional case. Fig. 2 shows
the relationship between the subquadrants (labelled NW.
NE. SW. SE). and t.he sons. of a quadtree node. Fig. 3
shows a two dimensional picture and the corresponding
quadtree. .

From Fig. 3 it can be seen that the quadtree represen­
tation can be more space efficient than a matrix of
colour values. Recall that in the one dimensional case the
tree representation was .Iess space efficient than an array
representation. By moving to two dimensions the array
representation has grown exponentially. If the picture
being represented conSists of a few regions of
contiguous .. same-colour pixels then the quadtree repre­
sentation Will not grow nearly as fast. This difference
becomes even more significant in the higher dimensional
cases.

Of course. there are representations of two
dimensional pictures other than pixel matrices and
quadtrees. e.g.. boundary codes and polygon edges.
Since anyone representation has its own advantages. it is
useful to be able convert from one representation to an­
other.

Samet 11 2) gives an algorithm for constructing a
qU!ldtree from the pixel array representation of a picture.
ThiS algOrithm has a running time which is linear in the
number of pixels in the picture. The reverse process.
from a quadtree to a pixel array. is equally
straightforward. The conversion of a quadtree to a pixel
array IS necessary for producing the display of a
quadtree.

In [11) Samet gives an algorithm for converting from
boundary code representations to quadtrees in time O(p *
log dl. where p is the perimeter and d the diameter of the
object being represented Dyer. Rosenfeld and Samet [3)
give a complementary algorithm for converting a
quadtree representation of a picture to a boundary code
representation in time O(p).

A two-dimensional polygonal object may be repre­
sented by a sequence of vectors which describe. the
polygon boundary. Usually such vectors are stored as
vector end-points. In 16) Hunter and Steiglitz present an
algorithm for constructing a quadtree from such a
polygon-vertex description of the boundary of a region
In time O(v+p+ql. where v is the number of vertices. p
the perimeter of the region. and q is a resolution param­
eter. In 15) an algorithm is presented to perform a
general linear transformation of a picture represented by
a quadtree In time O(n + s*P + mql. where m is the

CMCCS '81 / ACCHO '81

- 157 -

I I I I I I I I I ! t I I I

(~) One dimensional picture Cb) Recursjve subdivision of (~)

0
I

0 0
I

I I
I

I
0 0 0

rI rI rI
0 0 0 0

rl rl rl 9 rl
a • • tI a • • a
2 3 567 8 a b

(c) SI tree constructed from (b)

Ftg.1 A one dimensional picture and the bitree which
represents It. The vertical bars In (b) Indicate
the recursive subdivision points. The higher the
bar is. the closer to the root the representative
bltree node Is. The numbers on \b) and (c) are
labels Indicating quadtree terminal nodes.

relatively easy to manipulate. A quadtree is defined by:
1) every node n in the quadtree represents a

square area of the picture whose sides are of
length 2**(n-d). where d is the depth of n;

2) every node n either is a leaf. or has four sons
each of which represents one quadrant of the
are.a . n r~presents. The area of n is split up by
diViding In half along each axis;

3) every node n has a colour associated with it If
every pixel in the area represented is BLACK.
then n IS a leaf a.nd is coloured BLACK. If every
plxel In the area IS EMPTY then n is a leaf and is
coloured EMPTY. Otherwise. if the area is a
mixture of BLACKs and EMPTYs. then n is
coloured MIXED and is given four sons to rep­
resent the four quadrants of the area.

Note that the introduction of an additional dimension
means that the internal. nodes in the tree have twice as
many sons as in the one dimensional case. Fig. 2 shows
the relationship between the subquadrants (labelled NW.
NE. SW. SE). and t.he sons. of a quadtree node. Fig. 3
shows a two dimensional picture and the corresponding
quadtree. .

From Fig. 3 it can be seen that the quadtree represen­
tation can be more space efficient than a matrix of
colour values. Recall that in the one dimensional case the
tree representation was .Iess space efficient than an array
representation. By moving to two dimensions the array
representation has grown exponentially. If the picture
being represented conSists of a few regions of
contiguous .. same-colour pixels then the quadtree repre­
sentation Will not grow nearly as fast. This difference
becomes even more significant in the higher dimensional
cases.

Of course. there are representations of two
dimensional pictures other than pixel matrices and
quadtrees. e.g.. boundary codes and polygon edges.
Since anyone representation has its own advantages. it is
useful to be able convert from one representation to an­
other.

Samet 11 2) gives an algorithm for constructing a
qU!ldtree from the pixel array representation of a picture.
ThiS algOrithm has a running time which is linear in the
number of pixels in the picture. The reverse process.
from a quadtree to a pixel array. is equally
straightforward. The conversion of a quadtree to a pixel
array IS necessary for producing the display of a
quadtree.

In [11) Samet gives an algorithm for converting from
boundary code representations to quadtrees in time O(p *
log dl. where p is the perimeter and d the diameter of the
object being represented Dyer. Rosenfeld and Samet [3)
give a complementary algorithm for converting a
quadtree representation of a picture to a boundary code
representation in time O(p).

A two-dimensional polygonal object may be repre­
sented by a sequence of vectors which describe. the
polygon boundary. Usually such vectors are stored as
vector end-points. In 16) Hunter and Steiglitz present an
algorithm for constructing a quadtree from such a
polygon-vertex description of the boundary of a region
In time O(v+p+ql. where v is the number of vertices. p
the perimeter of the region. and q is a resolution param­
eter. In 15) an algorithm is presented to perform a
general linear transformation of a picture represented by
a quadtree In time O(n + s*P + mql. where m is the

CMCCS '81 / ACCHO '81

- 158 -

m rn
(a) Quadr~nt labels (b) Quadtree node labels

fig. 2 The labels of quadrants of a square area,
and the corresponding quadtree node sons.

number polygon edges in the picture. n is the number of
nodes in the quadtree. and s is a 'scaling factor'. The
resolution factor in both algorithms is a fixed constant
for any particular application. but it is useful to know
what the effect of changing the resolution is.

Dyer 12) presents an image processing application for
quadtrees. The Euler number of an image region is the
number of connected components minus the number of
holes. Dyer gives an algorithm to find the Euler number
of a region represented by a quadtree. The the running
time of the algorithm proportional to the number of
leaves of the quadtree.

As a means for storing two dimensional pictures
quadtrees are both space- and time-efficient. The
efficiency of tree structures is even more apparent in
three dimensions.

4. Three Dimensions - Octrees

The transition from two to three dimensions is
analogous to the transition from one to two dimensions.
A unit cube is called a voxel (for volume element). The
additional dimension is divided in two by recursive
subdivision. and so cubes are subdivided into eight equal
octants. One face of the universe cube is arbitrarily
chosen to be the front. and the four octants adjacent to
this face are labelled Front Similarly. the other four
octants are labelled Back. Fig. 4 shows the subdivision of
a cube. the labelling of the eight octants. and the
correspondence of octants to the sons of a tree node.

The definition of a tree, the octree. to represent three
dimensional scenes is also analogous to the one and two
dimensional cases. Assume that the voxels in the picture
are either BLACK or EMPTY. Each node of the octree is
either a leaf, or has eight sons each of which represents
an octant of the father. A node is a leaf if all the voxels
in the cube of space represented are the same colour.
Fig. 5 shows a simple three dimensional picture and the
octree which represents it.

A cube of three-space can be viewed as the various
instances of a square frame of two-space in an interval
of the third dimension, depth. As the frame moves
through the third dimension, each pixel of the square will
create several voxels. The colours of the voxels created
will be independent of the colour of the original pixel.
Although this view of three-space is unorthodox, it will
be helpful when dealing with four dimensions.

Relatively little research has
octrees. Jackins and Tanimoto

been conducted on
(7) discuss simple

rotations of octrees (by multiples of 90 degrees). and an
algorithm for the translation of octrees. Both algorithms
are roughly linear in the number of nodes in the octree.
Srihari 113) discusses various hierarchIcal representations
of three dimensional pictures. including octrees. In addi­
tion, he discusses a structure similar to the octree except
that the recursive subdivision need not divide a volume
into cubes but may divide into rectangular parallelpipeds
of unequal size. A similar approach is also discussed by
Rubin and Whitted 110).

Regardless of the representation used for a three
dimensional picture, it is still necessary to produce two
dimensional images on a display screen. The primary
problem in displaying three dimensional ob jects is the
elimination of hidden surfaces. Many algorithms for the
removal of hidden surfaces need to sort the surfaces of
a scene by depth. Then 'rays' are extended from the
viewpoint to find the closest surface at each pixel.
Newman and Sproull 19) give examples of such
algorithms. For most conventional picture representa­
tions. the sorting of surfaces is non-trivial. and the time
required grows exponentially as the complexity of the
scene increases 19). An octree. on the other hand, does
not suffer from this combinatorial explosion. Due to the
organization of an octree the surface sorting is inherent
in the structure of the tree. The surfaces which are
hidden can be easily removed by a 'ray tracing' algorithm
which traverses the octree from front to back. An
algorithm follOWS which produces the quadtree repre­
sented by projecting an octree onto a plane coincident
with its front face. A display of the quadtree can then be
generated easily.

4.1. Octree to Quadtree Projection Algorithm

This algorithm begins with an octree, 0, and constructs
a quadtree. q. which is the orthogonal projection of 0
onto the front face plane. In any octree a BLACK front
sub-octant will obscure any equal or smaller sized
sub-octants behind it. for instance. BLACKs in the FNE
octant will obscure any octants behind them in the BNE
octant. If the octree 0 is traversed from front to back
the hidden cubes can be discovered quickly and
discarded.

A quadtree node will have 6 fields associated with it a
pointer to the father node, a colour (which can be BLACK.
EMPTY. or MIXED)' and four son pointers !labelled NW.
NE. SW. SE). An octree node will have 10 fields
associated with it: a pointer to the father node. a colour.
and eight son pointers !labelled FNW. FNE. FSW, FSE,
BNW. BNE. BSW, BSE). These are defined in Pascal as
follows:

type
Octants = (FNW. FNE, FSW, FSE,

BNW, BNE, BSW, BSE);
Quadrants = (NW. NE, SW, SE);
Colours = (BLACK. EMPTY. MIXED);
Oref = 1Octree;
Qref = 1Quadtree;
Octree =

record
colour: Colours;
father: Oref;
son: array(Octants) of Oret.

end;
Quadtree =

record
colour; Colours;

CMCCS '81 I ACCHO '81

- 158 -

m rn
(a) Quadr~nt labels (b) Quadtree node labels

fig. 2 The labels of quadrants of a square area,
and the corresponding quadtree node sons.

number polygon edges in the picture. n is the number of
nodes in the quadtree. and s is a 'scaling factor'. The
resolution factor in both algorithms is a fixed constant
for any particular application. but it is useful to know
what the effect of changing the resolution is.

Dyer 12) presents an image processing application for
quadtrees. The Euler number of an image region is the
number of connected components minus the number of
holes. Dyer gives an algorithm to find the Euler number
of a region represented by a quadtree. The the running
time of the algorithm proportional to the number of
leaves of the quadtree.

As a means for storing two dimensional pictures
quadtrees are both space- and time-efficient. The
efficiency of tree structures is even more apparent in
three dimensions.

4. Three Dimensions - Octrees

The transition from two to three dimensions is
analogous to the transition from one to two dimensions.
A unit cube is called a voxel (for volume element). The
additional dimension is divided in two by recursive
subdivision. and so cubes are subdivided into eight equal
octants. One face of the universe cube is arbitrarily
chosen to be the front. and the four octants adjacent to
this face are labelled Front Similarly. the other four
octants are labelled Back. Fig. 4 shows the subdivision of
a cube. the labelling of the eight octants. and the
correspondence of octants to the sons of a tree node.

The definition of a tree, the octree. to represent three
dimensional scenes is also analogous to the one and two
dimensional cases. Assume that the voxels in the picture
are either BLACK or EMPTY. Each node of the octree is
either a leaf, or has eight sons each of which represents
an octant of the father. A node is a leaf if all the voxels
in the cube of space represented are the same colour.
Fig. 5 shows a simple three dimensional picture and the
octree which represents it.

A cube of three-space can be viewed as the various
instances of a square frame of two-space in an interval
of the third dimension, depth. As the frame moves
through the third dimension, each pixel of the square will
create several voxels. The colours of the voxels created
will be independent of the colour of the original pixel.
Although this view of three-space is unorthodox, it will
be helpful when dealing with four dimensions.

Relatively little research has
octrees. Jackins and Tanimoto

been conducted on
(7) discuss simple

rotations of octrees (by multiples of 90 degrees). and an
algorithm for the translation of octrees. Both algorithms
are roughly linear in the number of nodes in the octree.
Srihari 113) discusses various hierarchIcal representations
of three dimensional pictures. including octrees. In addi­
tion, he discusses a structure similar to the octree except
that the recursive subdivision need not divide a volume
into cubes but may divide into rectangular parallelpipeds
of unequal size. A similar approach is also discussed by
Rubin and Whitted 110).

Regardless of the representation used for a three
dimensional picture, it is still necessary to produce two
dimensional images on a display screen. The primary
problem in displaying three dimensional ob jects is the
elimination of hidden surfaces. Many algorithms for the
removal of hidden surfaces need to sort the surfaces of
a scene by depth. Then 'rays' are extended from the
viewpoint to find the closest surface at each pixel.
Newman and Sproull 19) give examples of such
algorithms. For most conventional picture representa­
tions. the sorting of surfaces is non-trivial. and the time
required grows exponentially as the complexity of the
scene increases 19). An octree. on the other hand, does
not suffer from this combinatorial explosion. Due to the
organization of an octree the surface sorting is inherent
in the structure of the tree. The surfaces which are
hidden can be easily removed by a 'ray tracing' algorithm
which traverses the octree from front to back. An
algorithm follOWS which produces the quadtree repre­
sented by projecting an octree onto a plane coincident
with its front face. A display of the quadtree can then be
generated easily.

4.1. Octree to Quadtree Projection Algorithm

This algorithm begins with an octree, 0, and constructs
a quadtree. q. which is the orthogonal projection of 0
onto the front face plane. In any octree a BLACK front
sub-octant will obscure any equal or smaller sized
sub-octants behind it. for instance. BLACKs in the FNE
octant will obscure any octants behind them in the BNE
octant. If the octree 0 is traversed from front to back
the hidden cubes can be discovered quickly and
discarded.

A quadtree node will have 6 fields associated with it a
pointer to the father node, a colour (which can be BLACK.
EMPTY. or MIXED)' and four son pointers !labelled NW.
NE. SW. SE). An octree node will have 10 fields
associated with it: a pointer to the father node. a colour.
and eight son pointers !labelled FNW. FNE. FSW, FSE,
BNW. BNE. BSW, BSE). These are defined in Pascal as
follows:

type
Octants = (FNW. FNE, FSW, FSE,

BNW, BNE, BSW, BSE);
Quadrants = (NW. NE, SW, SE);
Colours = (BLACK. EMPTY. MIXED);
Oref = 1Octree;
Qref = 1Quadtree;
Octree =

record
colour: Colours;
father: Oref;
son: array(Octants) of Oret.

end;
Quadtree =

record
colour; Colours;

CMCCS '81 I ACCHO '81

- 159 -

'.' •• <
• ~'..l _.

(a) A two dimensional picture

I
o
I

a" 0

I I
I

o 0

rill nil

o
I

o
I

o
I

I "."
-I-

1'--+----1 -.
. _. .

. -.:.
,".-,. 1-1-. .' -, .. -.. .

(b) Recursive subdivision of (a)

o
I

I I I
tI 0 tI

nil

0
I

I
tI D 0

I

I
tI 0

nil
" D " tI

0
I

tI

I
0

nil
" tI " tI

tI tI

(c) Quadtree constructed from (b)

Fig 3. A two dimensional picture and the corr­
esponding quadtree. The plxel array in
(a) has 256 entries, while the quadtree
In (b) has just 57 nodes. However, the
quadtree nodes do take more space to
store.

father: Qref;
son: array(Quadrants) of Qref;

end;

The recursive traversal of the octree to produce the
quadtree proceeds as follows. If the original octree ~s
one solid colour (BLACK or EMPTY) then the quadtree will
be one node of that same colour. However, if the octree
is not a solid colour then the front sons are recursively
projected towards their fronts, which is also the frontof
the top level octree. Any EMPTYs left after proJectmg
the front sons can then be filled in by the back sons.
Note that BLACKs created by the front sons will obscure
anything behind them.

The projection algorithm' is implemented by a
procedure Project, which takes two parameters. The
first parameter, 0, is an octree which is being projected
towards its front face. 0 is either the original octree or
some descendant of the original. The second parameter,
q, is a pointer to a quadtree which is to be constructed
from o. Since 0 can be a 'backwards' son of the original
picture it is possible that at least part of it may be
obscured. q is used to pass such information along during
the construction process. If q arrives as a nil pointer,
then that quadrant of the quadtree has not been
constructed yet, so a node is created for q and coloured
EMPTY. However, if q isn't nil and the colour of q is
MIXED or EMPTY then at least part of q remains which
may be coloured BLACK. Finally, if q iSrTt nil and is
coloured BLACK, then q has already been completely

CMCCS '81 / ACCHO '81

- 159 -

'.' •• <
• ~'..l _.

(a) A two dimensional picture

I
o
I

a" 0

I I
I

o 0

rill nil

o
I

o
I

o
I

I "."
-I-

1'--+----1 -.
. _. .

. -.:.
,".-,. 1-1-. .' -, .. -.. .

(b) Recursive subdivision of (a)

o
I

I I I
tI 0 tI

nil

0
I

I
tI D 0

I

I
tI 0

nil
" D " tI

0
I

tI

I
0

nil
" tI " tI

tI tI

(c) Quadtree constructed from (b)

Fig 3. A two dimensional picture and the corr­
esponding quadtree. The plxel array in
(a) has 256 entries, while the quadtree
In (b) has just 57 nodes. However, the
quadtree nodes do take more space to
store.

father: Qref;
son: array(Quadrants) of Qref;

end;

The recursive traversal of the octree to produce the
quadtree proceeds as follows. If the original octree ~s
one solid colour (BLACK or EMPTY) then the quadtree will
be one node of that same colour. However, if the octree
is not a solid colour then the front sons are recursively
projected towards their fronts, which is also the frontof
the top level octree. Any EMPTYs left after proJectmg
the front sons can then be filled in by the back sons.
Note that BLACKs created by the front sons will obscure
anything behind them.

The projection algorithm' is implemented by a
procedure Project, which takes two parameters. The
first parameter, 0, is an octree which is being projected
towards its front face. 0 is either the original octree or
some descendant of the original. The second parameter,
q, is a pointer to a quadtree which is to be constructed
from o. Since 0 can be a 'backwards' son of the original
picture it is possible that at least part of it may be
obscured. q is used to pass such information along during
the construction process. If q arrives as a nil pointer,
then that quadrant of the quadtree has not been
constructed yet, so a node is created for q and coloured
EMPTY. However, if q isn't nil and the colour of q is
MIXED or EMPTY then at least part of q remains which
may be coloured BLACK. Finally, if q iSrTt nil and is
coloured BLACK, then q has already been completely

CMCCS '81 / ACCHO '81

I
FNW
I

I
FNE
I

(a) Octant labels

I
FSW
I

I
FSE
I

o
I

I
BNW
I

I
BNE
I

I
BSW
I

(b) Octree node son labels

I
BSE
I

Fig. 4 Labels of the octants of a cube, and the
corresponding labels of the sons of an
octree node. Note that octant BSW Is
hidden In (a).

coloured by octants which were further towards the
front of the father octree. and so sub-octree 0 is com­
pletely obscured.

Now assume that q has not been previously filled (i.e. it
is currently EMPTY or MIXED). If 0 is completely BLACK
then the EMPTY quadrants of q are filled in with BLACK.
If 0 is completely EMPTY then q is not changed at all. If
o is MIXED (all sons are not the same colour), then the
projection algorithm proceeds recursively by calling
Project to project the sons of 0 onto the sons of q.
starting with the front octants and proceeding to the
back octants. The following is an algorithm for the
procedure:

procedure Project(0 : Octree. var q : Qref);
if q is nil then

create a new node for q, and colour it EMPTY;
else

if c(T' is coloured BLACK then
return;

endif
end if

(*
* now. q is not nil, and if we reach this point
* then q has quadrants (or sub-quadrants) which
* have not been filled yet.
*)
if 0 is not coloured MIXED then

if q'I' is coloured MIXED then
project 0 onto the sons of ql;

else
colour q1' the same as 0;

- 160 -

(a) Three dimensional picture

o

I I I III I I I

o
I

(b) Octree representation of (a)

Fig. 5 A simple three dimensional picture and
the corresponding octree.

endif
else

project the front sons of 0 onto sons of ~
project the back sons of 0 onto sons of qT:
if all sons of q'I' are same colour. not MIXED then

merge the sons into one node in q1:
endif

endif
end

It should be clear that since this algorithm is merely a
traversal of the octree 0, the algorithm is linear in the
number of nodes in the octree. However. not all nodes
of the octree need be traversed since traversal occurs
only if the corresponding area of the quad tree q has not
been filled yet. Thus. in the average case. w~en the~e are
back volumes which are occluded. the algorithm will not
need to traverse the entire octree.

4.2. Applicability of Octrees

Octrees are quite suitable for use in three dimensional
graphics. Usually they use less space than other repre­
sentations of the same scene. AlgOrithms to manipulate
octrees should be forth-coming in the near future as
more people investigate tree data structures. . In
particular, if octrees are to become usable for graphics
users and programmers algorithms must be developed to
convert existing picture data bases from polygon repre-
sentations to octrees.

However, some questions remain. For instance, it is
not clear, at present, what effect applying linear trans­
formations to octrees will have on the accuracy of the
representation. Since an octree is an approximation to

CMCCS '81 / ACCHO '81

I
FNW
I

I
FNE
I

(a) Octant labels

I
FSW
I

I
FSE
I

o
I

I
BNW
I

I
BNE
I

I
BSW
I

(b) Octree node son labels

I
BSE
I

Fig. 4 Labels of the octants of a cube, and the
corresponding labels of the sons of an
octree node. Note that octant BSW Is
hidden In (a).

coloured by octants which were further towards the
front of the father octree. and so sub-octree 0 is com­
pletely obscured.

Now assume that q has not been previously filled (i.e. it
is currently EMPTY or MIXED). If 0 is completely BLACK
then the EMPTY quadrants of q are filled in with BLACK.
If 0 is completely EMPTY then q is not changed at all. If
o is MIXED (all sons are not the same colour), then the
projection algorithm proceeds recursively by calling
Project to project the sons of 0 onto the sons of q.
starting with the front octants and proceeding to the
back octants. The following is an algorithm for the
procedure:

procedure Project(0 : Octree. var q : Qref);
if q is nil then

create a new node for q, and colour it EMPTY;
else

if c(T' is coloured BLACK then
return;

endif
end if

(*
* now. q is not nil, and if we reach this point
* then q has quadrants (or sub-quadrants) which
* have not been filled yet.
*)
if 0 is not coloured MIXED then

if q'I' is coloured MIXED then
project 0 onto the sons of ql;

else
colour q1' the same as 0;

- 160 -

(a) Three dimensional picture

o

I I I III I I I

o
I

(b) Octree representation of (a)

Fig. 5 A simple three dimensional picture and
the corresponding octree.

endif
else

project the front sons of 0 onto sons of ~
project the back sons of 0 onto sons of qT:
if all sons of q'I' are same colour. not MIXED then

merge the sons into one node in q1:
endif

endif
end

It should be clear that since this algorithm is merely a
traversal of the octree 0, the algorithm is linear in the
number of nodes in the octree. However. not all nodes
of the octree need be traversed since traversal occurs
only if the corresponding area of the quad tree q has not
been filled yet. Thus. in the average case. w~en the~e are
back volumes which are occluded. the algorithm will not
need to traverse the entire octree.

4.2. Applicability of Octrees

Octrees are quite suitable for use in three dimensional
graphics. Usually they use less space than other repre­
sentations of the same scene. AlgOrithms to manipulate
octrees should be forth-coming in the near future as
more people investigate tree data structures. . In
particular, if octrees are to become usable for graphics
users and programmers algorithms must be developed to
convert existing picture data bases from polygon repre-
sentations to octrees.

However, some questions remain. For instance, it is
not clear, at present, what effect applying linear trans­
formations to octrees will have on the accuracy of the
representation. Since an octree is an approximation to

CMCCS '81 / ACCHO '81

the ob Ject being represented, there may be information
Jost (due to rounding errors) if several transformations
applied

5. Four Dimensions

The final extension, to the fourth dimension, is not as
simple as the previous cases. To begin with, the fourth
dimension, time. is not measured In the same Units as the
other three dimensions. As well, people have trouble
conceiving what a four dimensional picture is.

A picture in four dimensions may be. thought of as the
various instances of a three dimensional scene as It
changes, continuously, through time .. However, for the
purposes of storage time .must be, dlvl~ed Into arb!trary
discrete steps. Time IS split Into k units to be conSistent
with the other three dimensions, although time IS
measured in different units. The basic unit of four-space
is called a tixel (time element) and consists of a unit of
time and a voxel of three-space (during that unit of time).

The recursive subdivision for the tree representation
divides the time dimension in half at each step. The 'ear­
lier' half of the four-space will be referred as Past, and
the 'later' half will be referred to as Future (in the same
way that three space was divided into Front and Back). A
hyper-volume of four-space is divided into 16. equal
sized sections, hence the tree structure name IS the
hextree. The hextree is defined much like the lower
dimensional trees: a node represents a hyper-volume of
tixels and is a leaf if all the tixels of that volume are the
same colour.

The meaning of 'all the tixels being the same colour'
should be clarified A tixel is a unit hyper-volume of
four-space, i.e. a unit cube of . three-space during a unit
time interval. Thus, for all the tlxe)s In a hyper-volume to
be the same colour, the voxe)s of that section of
three-space must remain the same colour throughout that
interval of time. For example, If the voxels In a 4 by 4
by 4 volume of three-space remain the same colour for
4 time steps, then that volume of four-space need not
be divided by the recursive subdivi.sion. This is analogous
to the three dimensional case discussed In section 4,
when a voxel was considered to be the instances of a
pixel through an interval of depth.

Real-time computer animation requires that several
image frames be displayed in rapid. succession.
Generally, the difference between successive frames IS
small. Thus, if the frames are stored as a sequence of
two- or three-dimensional scenes then there will be a
great deal of redundant information, and wasted space,
between consecutive frames. The hextree representa­
tion, on the other hand, takes advantage of any voxels
which remain constant for more than one unit of time by
merging them into one node. And so, a hextree will save
space

To generate a display of a hextree at an instant of
time it is necessary to select the hyper plane of that
particular time. Such a selection requires only to traverse
the hextree constructing an octree which represents. the
three-dimensional scene at that time. Such an algOrithm
is similar to the octree projection algorithm given in
Section 4.

- 161 -

Hextrees may provide an effective, structured
approach to computer animation. They are particularly
more efficient than producing a series of pictures for
display and discarding each after it has been displayed.

6. Conclusions

. This paper has presented a sequence of hierarchical
data structures for use in computer graphics and image
processing. Each structure was shown to be directly
related to other structures, and that the space-efficiency
of the structures increased with the number of
dimensions.

In order for these tree data structures to become
Wide-spread there will have to be changes made to the
programming techniques in current use by graphics
programmers. The computer language most widely used
at present is FORTRAN. It is well known that FORTRAN
suffers from various flaws. The most serious flaws, for
the purposes of implementing trees, is the lack of data
structuring and recursion. And so, FORTRAN needs to be
abandoned if tree data structures are to gain acceptance.
The language that replaces FORTRAN will need data
structuring capabilities, recursion, 'number crunching', and
various graphic instructions to make picture displaYing
easy.

The gains from using tree data structures are several.
The tree structures save storage space and execution
time over other representations. As well there is the gain
of portability of picture data bases if the common imple­
mentations are used.

[1)

References

Alexandris, N. and Klinger, A. Picture Decomposition,
Tree Data Structures, and Identifying Directional
Symmetries as Node Combinations. Computer
Graphics and Image Processing 8 (1978),43-77.

[2) Dyer, C.R. Computing the Euler Number of an Image
from Its Quadtree. Computer Graphics and Image
Processing 13 (19801. 270-276.

[3) Dyer, C.R, Rosenfeld, A. and Samet, H. Region
Representation: Boundary Codes from Quadtrees.
Communications of the ACM 23 3 (1980).

[4) Horowitz, S.L. and Pavlidis, T. Picture Segmentation
by a Tree Traversal Algorithm, Journal of the ACM
232(1976)

[5) Hunter, G.M. and Steiglitz. K Linear Transformations
of Pictures Represented by QuadTrees. Computer
Graphics and Image Processing 10 (19791.
289-296.

[6) Hunter. GM and Steiglitz, K Operations on Images
Using QuadTrees. IEEE Transactions on Pattern
Analysis and Machine I nte/l igence PAMI-1 2
(19791. 145-153.

CMCCS '81 I ACCHO '81

the ob Ject being represented, there may be information
Jost (due to rounding errors) if several transformations
applied

5. Four Dimensions

The final extension, to the fourth dimension, is not as
simple as the previous cases. To begin with, the fourth
dimension, time. is not measured In the same Units as the
other three dimensions. As well, people have trouble
conceiving what a four dimensional picture is.

A picture in four dimensions may be. thought of as the
various instances of a three dimensional scene as It
changes, continuously, through time .. However, for the
purposes of storage time .must be, dlvl~ed Into arb!trary
discrete steps. Time IS split Into k units to be conSistent
with the other three dimensions, although time IS
measured in different units. The basic unit of four-space
is called a tixel (time element) and consists of a unit of
time and a voxel of three-space (during that unit of time).

The recursive subdivision for the tree representation
divides the time dimension in half at each step. The 'ear­
lier' half of the four-space will be referred as Past, and
the 'later' half will be referred to as Future (in the same
way that three space was divided into Front and Back). A
hyper-volume of four-space is divided into 16. equal
sized sections, hence the tree structure name IS the
hextree. The hextree is defined much like the lower
dimensional trees: a node represents a hyper-volume of
tixels and is a leaf if all the tixels of that volume are the
same colour.

The meaning of 'all the tixels being the same colour'
should be clarified A tixel is a unit hyper-volume of
four-space, i.e. a unit cube of . three-space during a unit
time interval. Thus, for all the tlxe)s In a hyper-volume to
be the same colour, the voxe)s of that section of
three-space must remain the same colour throughout that
interval of time. For example, If the voxels In a 4 by 4
by 4 volume of three-space remain the same colour for
4 time steps, then that volume of four-space need not
be divided by the recursive subdivi.sion. This is analogous
to the three dimensional case discussed In section 4,
when a voxel was considered to be the instances of a
pixel through an interval of depth.

Real-time computer animation requires that several
image frames be displayed in rapid. succession.
Generally, the difference between successive frames IS
small. Thus, if the frames are stored as a sequence of
two- or three-dimensional scenes then there will be a
great deal of redundant information, and wasted space,
between consecutive frames. The hextree representa­
tion, on the other hand, takes advantage of any voxels
which remain constant for more than one unit of time by
merging them into one node. And so, a hextree will save
space

To generate a display of a hextree at an instant of
time it is necessary to select the hyper plane of that
particular time. Such a selection requires only to traverse
the hextree constructing an octree which represents. the
three-dimensional scene at that time. Such an algOrithm
is similar to the octree projection algorithm given in
Section 4.

- 161 -

Hextrees may provide an effective, structured
approach to computer animation. They are particularly
more efficient than producing a series of pictures for
display and discarding each after it has been displayed.

6. Conclusions

. This paper has presented a sequence of hierarchical
data structures for use in computer graphics and image
processing. Each structure was shown to be directly
related to other structures, and that the space-efficiency
of the structures increased with the number of
dimensions.

In order for these tree data structures to become
Wide-spread there will have to be changes made to the
programming techniques in current use by graphics
programmers. The computer language most widely used
at present is FORTRAN. It is well known that FORTRAN
suffers from various flaws. The most serious flaws, for
the purposes of implementing trees, is the lack of data
structuring and recursion. And so, FORTRAN needs to be
abandoned if tree data structures are to gain acceptance.
The language that replaces FORTRAN will need data
structuring capabilities, recursion, 'number crunching', and
various graphic instructions to make picture displaYing
easy.

The gains from using tree data structures are several.
The tree structures save storage space and execution
time over other representations. As well there is the gain
of portability of picture data bases if the common imple­
mentations are used.

[1)

References

Alexandris, N. and Klinger, A. Picture Decomposition,
Tree Data Structures, and Identifying Directional
Symmetries as Node Combinations. Computer
Graphics and Image Processing 8 (1978),43-77.

[2) Dyer, C.R. Computing the Euler Number of an Image
from Its Quadtree. Computer Graphics and Image
Processing 13 (19801. 270-276.

[3) Dyer, C.R, Rosenfeld, A. and Samet, H. Region
Representation: Boundary Codes from Quadtrees.
Communications of the ACM 23 3 (1980).

[4) Horowitz, S.L. and Pavlidis, T. Picture Segmentation
by a Tree Traversal Algorithm, Journal of the ACM
232(1976)

[5) Hunter, G.M. and Steiglitz. K Linear Transformations
of Pictures Represented by QuadTrees. Computer
Graphics and Image Processing 10 (19791.
289-296.

[6) Hunter. GM and Steiglitz, K Operations on Images
Using QuadTrees. IEEE Transactions on Pattern
Analysis and Machine I nte/l igence PAMI-1 2
(19791. 145-153.

CMCCS '81 I ACCHO '81

- 162 -

17} Jackins. CL and Tanimoto. S.L. Oct-Trees and Their
Use in Representing Three-Dimensional Objects.
Computer Graphics and Image Processing 14
11980). 249-270.

18} Mallgren. WR and Shaw. AC. Graphical
Transformations and Hierarchic Picture Structures.
Computer Graphics and Image Processing 811978).
237-258.

19} Newman. WM and Sproull. RF. Principles of
I nteractive Computer Graphics.
McGraw-Hill. 1979

New York:

11 O} Rubin. S.M and Whitted. 1. A 3-Dimensional
Representation for Fast Rendering of Complex
Scenes. SIGGRAPH '80 Conference Proceedings
(1980). 110-116.

I 1 1} Samet. H. Region Representation: Quadtrees from
Boundary Codes. Communications of the ACM 23 3
(1980)

11 2} Samet. H. Region Representation: Quadtrees from
Binary Arrays. Computer Graphics and Image
Processing 13 (1980). 88-93.

I 1 3} Srihari, SN. Hierarchical Representations for Serial
Section Images. Proc. 5th ICPR Vol2 Miami Beach
(1980). 1075- 1080.

114} Tanimoto. S. and Pavlidis. 1. Hierarchical Picture Data
Structures. Computer Graphics and Image
Processing 4 (1975). 104-119.

CMCCS '81 / ACCHO '81

- 162 -

17} Jackins. CL and Tanimoto. S.L. Oct-Trees and Their
Use in Representing Three-Dimensional Objects.
Computer Graphics and Image Processing 14
11980). 249-270.

18} Mallgren. WR and Shaw. AC. Graphical
Transformations and Hierarchic Picture Structures.
Computer Graphics and Image Processing 811978).
237-258.

19} Newman. WM and Sproull. RF. Principles of
I nteractive Computer Graphics.
McGraw-Hill. 1979

New York:

11 O} Rubin. S.M and Whitted. 1. A 3-Dimensional
Representation for Fast Rendering of Complex
Scenes. SIGGRAPH '80 Conference Proceedings
(1980). 110-116.

I 1 1} Samet. H. Region Representation: Quadtrees from
Boundary Codes. Communications of the ACM 23 3
(1980)

11 2} Samet. H. Region Representation: Quadtrees from
Binary Arrays. Computer Graphics and Image
Processing 13 (1980). 88-93.

I 1 3} Srihari, SN. Hierarchical Representations for Serial
Section Images. Proc. 5th ICPR Vol2 Miami Beach
(1980). 1075- 1080.

114} Tanimoto. S. and Pavlidis. 1. Hierarchical Picture Data
Structures. Computer Graphics and Image
Processing 4 (1975). 104-119.

CMCCS '81 / ACCHO '81

