
- 173 -

3-D GEOMETRIC DATABASES USING HIERARCHIES OF INSCRIBING BOXES 

W.R. Franklin 

Electrical, Computer, and Systems Engineering Dept. 
Rensselaer Polytechnic Institute, Tray, N.Y. 

ABSTRACT 

Hierarchical tree structured databases 
are an efficient way of representing scenes 
with elaborate detail of varying scales. 
Storing a circumscribing box (CIRCUMBOX) around 
each object is a well known method of testing 
whether the object intersects or obstructs any 
other objects. This paper proposes another 
aid: an inscribing box (INBOX). The inbox is 
a polyhedron that is completely contained in 
the object. It should be as large as is easy 
to determjne. If the object is reasonably 
smooth, but has a lot of surface detail, such 
as a building, then the inbox will have most of 
the volume of the object. Each object will now 
contain: a circumbox, an inbox, possibly 
subobjects, and possibly primitive elements 
such as faces. The inbox speeds up visibility 
tests thus: If the inbox of object A hides the 
circumbox of object B, then A hides B. If the 
circumbox of A does not intersect (in projec­
tion) the circumbox of B, then A and Bare 
disjoint in projection. Only in the remaining 
case do we need to consider the subobjects of A 
and B to determine what is visible. The proba­
bility of this happening is determined by the 
relative volumes of the inbox and circumbox. 
By combining in boxes and circumboxes, it is 
possible to calculate the visible surfaces of a 
hierarchical scene in time linear in the visi­
ble complexity of the scene. This is much less 
than linear in the complexity of the scene 
(since most of it is hidden), with the 
difference becoming more pronounced as the 
scenes get more realistic. The output is 
calculated exactly to the arithmetic precision 
of the computer, not just to the ~ccuracy of a 
pixel. 

RESUME 

Les bases de donnees a arborescence 
hierarchique constituent un moyen efficace de 
representer des scenes avec des details elabo­
res sur diverses echelles. Le stockage d'une 
boite circonscrite (CIRCUMBOX) autour de cha­
que objet est une methode d'essai bien connue 
pour determiner si l'objet coupe ou obstrue 
tout autre objet. Le present document propose 
un autre moyen: la. boite inscrite (1NBOX). La 
boite inscrite est un polyedre qui est comple­
tement contenu dans l'objet. Le polyedre devra 
etre aussi grand que possible. Si l'objet est 
relativement uniforme, mais qu'il presente 
beaucoup de details superficiels, comme dans le 
cas d'un edifice, alors la boite inscrite co m­
prendra la quasi totalite du volume de l'objet. 
Chaque objet contiendra donc: une boite cir­
conscrite, une boite inscrite, possiblement 
des sous-objets, et possiblement des elements 
de base. La boite inscrite permet d'accelerer 
les essais de visibilite et par consequent: si 
la boite inscrite d'un objet A cache la boite 
circonscrite d'un objet B, alors A cache B. Si 
la boite circonscrite de A n'intercepte pas (en 
projection) la boite circonscrite de Il, alors A 
et B sont separes en projection. 11 n'y a que 
dans ce dernier cas qu'il faut considerer les 
objets de A et B pour determiner ce qui. est 
visible. La probabilite que cela se produise 
est determinee par les volumes relatifs de la 
boite inscrite et de la boite circonscrite. En 
combinant les boites inscrites et les boites 
circonscrites, il est possible de calculer les 
surfaces visibles d'une scene hierarchique en 
temps lineaire dans la complexite visible de la 
scene. Ceci est loin d'etre linea ire dans la 
complexite de la scene (etant donne que presque 
tout est cache) avec la difference qui devient 
plus prononcee e mesureque les scenes 
deviennent plus realistes. La sortie est 
calculee exactement selon la precision 
arithmetique de l'ordinateur, et non simplement 
en fonction de la precision d'un pixel. 

CMCCS 'S1 I ACCHO 'S1 

- 173 -

3-D GEOMETRIC DATABASES USING HIERARCHIES OF INSCRIBING BOXES 

W.R. Franklin 

Electrical, Computer, and Systems Engineering Dept. 
Rensselaer Polytechnic Institute, Tray, N.Y. 

ABSTRACT 

Hierarchical tree structured databases 
are an efficient way of representing scenes 
with elaborate detail of varying scales. 
Storing a circumscribing box (CIRCUMBOX) around 
each object is a well known method of testing 
whether the object intersects or obstructs any 
other objects. This paper proposes another 
aid: an inscribing box (INBOX). The inbox is 
a polyhedron that is completely contained in 
the object. It should be as large as is easy 
to determjne. If the object is reasonably 
smooth, but has a lot of surface detail, such 
as a building, then the inbox will have most of 
the volume of the object. Each object will now 
contain: a circumbox, an inbox, possibly 
subobjects, and possibly primitive elements 
such as faces. The inbox speeds up visibility 
tests thus: If the inbox of object A hides the 
circumbox of object B, then A hides B. If the 
circumbox of A does not intersect (in projec­
tion) the circumbox of B, then A and Bare 
disjoint in projection. Only in the remaining 
case do we need to consider the subobjects of A 
and B to determine what is visible. The proba­
bility of this happening is determined by the 
relative volumes of the inbox and circumbox. 
By combining in boxes and circumboxes, it is 
possible to calculate the visible surfaces of a 
hierarchical scene in time linear in the visi­
ble complexity of the scene. This is much less 
than linear in the complexity of the scene 
(since most of it is hidden), with the 
difference becoming more pronounced as the 
scenes get more realistic. The output is 
calculated exactly to the arithmetic precision 
of the computer, not just to the ~ccuracy of a 
pixel. 

RESUME 

Les bases de donnees a arborescence 
hierarchique constituent un moyen efficace de 
representer des scenes avec des details elabo­
res sur diverses echelles. Le stockage d'une 
boite circonscrite (CIRCUMBOX) autour de cha­
que objet est une methode d'essai bien connue 
pour determiner si l'objet coupe ou obstrue 
tout autre objet. Le present document propose 
un autre moyen: la. boite inscrite (1NBOX). La 
boite inscrite est un polyedre qui est comple­
tement contenu dans l'objet. Le polyedre devra 
etre aussi grand que possible. Si l'objet est 
relativement uniforme, mais qu'il presente 
beaucoup de details superficiels, comme dans le 
cas d'un edifice, alors la boite inscrite co m­
prendra la quasi totalite du volume de l'objet. 
Chaque objet contiendra donc: une boite cir­
conscrite, une boite inscrite, possiblement 
des sous-objets, et possiblement des elements 
de base. La boite inscrite permet d'accelerer 
les essais de visibilite et par consequent: si 
la boite inscrite d'un objet A cache la boite 
circonscrite d'un objet B, alors A cache B. Si 
la boite circonscrite de A n'intercepte pas (en 
projection) la boite circonscrite de Il, alors A 
et B sont separes en projection. 11 n'y a que 
dans ce dernier cas qu'il faut considerer les 
objets de A et B pour determiner ce qui. est 
visible. La probabilite que cela se produise 
est determinee par les volumes relatifs de la 
boite inscrite et de la boite circonscrite. En 
combinant les boites inscrites et les boites 
circonscrites, il est possible de calculer les 
surfaces visibles d'une scene hierarchique en 
temps lineaire dans la complexite visible de la 
scene. Ceci est loin d'etre linea ire dans la 
complexite de la scene (etant donne que presque 
tout est cache) avec la difference qui devient 
plus prononcee e mesureque les scenes 
deviennent plus realistes. La sortie est 
calculee exactement selon la precision 
arithmetique de l'ordinateur, et non simplement 
en fonction de la precision d'un pixel. 

CMCCS 'S1 I ACCHO 'S1 



- 174 -

INTRODUCTION 

This paper describes one aspect of a solid 
modelling system, KEPLER, now being implemented 
at RPI. It will be useful both for realistic 
scene portrayal in computer graphics, and 
object modelling in CAD/CAM. 

KEPLER has the following design principles: 

1. It is intended to handle large complex 
scenes with thousands of faces. 

2. It builds on recent results in computation­
al geometry that are not widely used in comput­
er graphics since they are so recent, even 
though they are very powerful. 

3. It produces output accurate to the arithme­
tic precision of the machine. This means that 
when it calculates the visible surfaces of an 
object, they are to a precision of one part of 
10', not just to one pixel . This is important 
since algorithms that calculate the results to 
only pixel accuracy require quadruple the time 
as the linear resolution is doubled. Typical 
CAD/CAM applications require quite high resolu­
tion. 

This also means that hierarchical decom­
position approximation methods are not adequate 
since they would require too many levels to 
achieve that accuracy. A solid modelling 
system that divides by two in each coordinate 

20. 

15. 

10. 

5. 

POPUL AT ION, o . 
_ O_Y_Sf!M I nEG I DI'L ____ _ • 106 

Figure 1 : Prism Plot 

at each level would require 23 levels to 
achieve an accuracy of one part in 10 7 • The 
final level would hav e at least 10 15 nodes. Of 
course , if only 0.001 accuracy is needed, then 
that method is excellent. 

4 . KEPLER uses techniques fo r manipulating 
large numbers of elements that have been 
refined in the design of the following algo­
rithms: 

a) PRISM [4], which has handled base maps of 
13,000 edges (not counting duplica ti ons). 
Other data structures whi ch define each 
polygon separately and then count all the 
3-D edges would count the same scene as 
having 78,000 edges . A 4,000 edge bas e map 
takes about 4 minutes on a PDP KA-10. A 
sample prism plot i s shown in Figure 1. It 
shows the population in various marketing 
regions (d i fferent urban areas) in the USA. 

b) SPHERES [5, 6], which can process 10,000 
spheres, overlaid to an average depth of 10 , 
in 383 seconds on a Prime 500. This case is 
shown in Figure 2 . The input scene i s so 
complicated that most of the spheres are 
completely hidden . SPHERES ' algorithm 
quickly detects and deletes them . The 
output is exact to single precision 
accuracy , and independent of the depth 
complexity of the scene , in contrast to many 
algorithms whose time gr ows quadratically 
with the depth complexity, since the y 

Figure 2 : Hi dden Spheres Plot 

CMCCS '81 / ACCHO '81 

- 174 -

INTRODUCTION 

This paper describes one aspect of a solid 
modelling system, KEPLER, now being implemented 
at RPI. It will be useful both for realistic 
scene portrayal in computer graphics, and 
object modelling in CAD/CAM. 

KEPLER has the following design principles: 

1. It is intended to handle large complex 
scenes with thousands of faces. 

2. It builds on recent results in computation­
al geometry that are not widely used in comput­
er graphics since they are so recent, even 
though they are very powerful. 

3. It produces output accurate to the arithme­
tic precision of the machine. This means that 
when it calculates the visible surfaces of an 
object, they are to a precision of one part of 
10', not just to one pixel . This is important 
since algorithms that calculate the results to 
only pixel accuracy require quadruple the time 
as the linear resolution is doubled. Typical 
CAD/CAM applications require quite high resolu­
tion. 

This also means that hierarchical decom­
position approximation methods are not adequate 
since they would require too many levels to 
achieve that accuracy. A solid modelling 
system that divides by two in each coordinate 

20. 

15. 

10. 

5. 

POPUL AT ION, o . 
_ O_Y_Sf!M I nEG I DI'L ____ _ • 106 

Figure 1 : Prism Plot 

at each level would require 23 levels to 
achieve an accuracy of one part in 10 7 • The 
final level would hav e at least 10 15 nodes. Of 
course , if only 0.001 accuracy is needed, then 
that method is excellent. 

4 . KEPLER uses techniques fo r manipulating 
large numbers of elements that have been 
refined in the design of the following algo­
rithms: 

a) PRISM [4], which has handled base maps of 
13,000 edges (not counting duplica ti ons). 
Other data structures whi ch define each 
polygon separately and then count all the 
3-D edges would count the same scene as 
having 78,000 edges . A 4,000 edge bas e map 
takes about 4 minutes on a PDP KA-10. A 
sample prism plot i s shown in Figure 1. It 
shows the population in various marketing 
regions (d i fferent urban areas) in the USA. 

b) SPHERES [5, 6], which can process 10,000 
spheres, overlaid to an average depth of 10 , 
in 383 seconds on a Prime 500. This case is 
shown in Figure 2 . The input scene i s so 
complicated that most of the spheres are 
completely hidden . SPHERES ' algorithm 
quickly detects and deletes them . The 
output is exact to single precision 
accuracy , and independent of the depth 
complexity of the scene , in contrast to many 
algorithms whose time gr ows quadratically 
with the depth complexity, since the y 

Figure 2 : Hi dden Spheres Plot 

CMCCS '81 / ACCHO '81 



- 175 -

compare pairwiae all objects that cross each 
scan line. The algorithm has no essential 
dependence on spheres: they just happen to 
be easy to work with. Varol Akman is now 
implementing it for general polyhedra. 

c) Intersecting edge detection [8], which 
when given 50,000 random edges, each 0.01 of 
the screen size long, can find all inter­
sections in 364 seconds on a Prime 500. 
Figure 3 showl a scene with 1000 edges where 
the program drew a cross at every inter­
section that it detected. 

The algorithm works by calculating a grid 
size from the number and length of the 
edges, and then overlaying the grid on the 
scene. For each edge, the grid cells it 
passes throuah are determined. This infor­
mation is sorted by cell to produce a list 
of the edaes passina through each cell. For 
each cell, the edges that pass through it 
are combined pair by pair to see which in­
tersoct. Since the arid size was chosen to 
keep the average number of edaoa per cell 
constant regardless of the input, the 
execution time is linear in the number of 
edses plul the numbor of intersections. In 
realiltic scenes, as the number of edgos 
increases, their averago length decreases 
since details are beins represented more 
accurately. Thus the number of inter­
sections in practice rises much slower than 
quadratically in the number of edges, so 

Fiaure 3: Detectina Edse Intersections 

this algorithm is much faster than the 
simple pairwise comparison of all edges. 

d) HALO [8], being implemented by Varol 
Akman, which can calculate the haloed edge 
effect for a 9408 edge scene in 5 minutes on 
a Prime 750. Figure 4 shows l5~ of this 
plot. The entire plot is too complex to 
reproduce here. What makes HALO efficient 
is its use of the edge intersection algo­
rithm described above to find which edges 
pass in front of which other edges. 

5. KEPLER is a surface modelling system; that 
is, the surfaces are explicitly stored, and can 
be shaded and textured easily. This also makes 
operations such as intersection simpler. Given 
the surfaces, solid functions such as volume 
and moments of inertia can also be quickly cal­
culated. In contrast, with a volume modelling 
system, it can be difficult to add texture to 
the surfaces, or even to determine which parts 
of the surfaces are on the outside of the 
object. 

6. KEPLER currently works with only flat-faced 
polyhedra. This means that there are fewer 
details to consider in implementing the effi­
cient algorithms. Once flat objects can be 
handled fast, and given the routines to inter­
sect and combine curved faces, which must be 
developed anyway, it is easy to add modules to 
handle curved surfaces. 

i/ ~F 

'/ 

" ~P= 

'/ ~= ~ ~F" 

1/ " ~F= I ~ 
11: 

'/ I ~P 

L 
... ~ ... ~= ~= 

1/ ~"'" 

If ~ ~= 

'/' IlF 

i/ I ~i= I 

/ ~ [1- 11-11' ~ I ~ 11 If 11 

Figure 4: Haloed Line Plot 

CMCCS '81 / ACCHO '81 

- 175 -

compare pairwiae all objects that cross each 
scan line. The algorithm has no essential 
dependence on spheres: they just happen to 
be easy to work with. Varol Akman is now 
implementing it for general polyhedra. 

c) Intersecting edge detection [8], which 
when given 50,000 random edges, each 0.01 of 
the screen size long, can find all inter­
sections in 364 seconds on a Prime 500. 
Figure 3 showl a scene with 1000 edges where 
the program drew a cross at every inter­
section that it detected. 

The algorithm works by calculating a grid 
size from the number and length of the 
edges, and then overlaying the grid on the 
scene. For each edge, the grid cells it 
passes throuah are determined. This infor­
mation is sorted by cell to produce a list 
of the edaes passina through each cell. For 
each cell, the edges that pass through it 
are combined pair by pair to see which in­
tersoct. Since the arid size was chosen to 
keep the average number of edaoa per cell 
constant regardless of the input, the 
execution time is linear in the number of 
edses plul the numbor of intersections. In 
realiltic scenes, as the number of edgos 
increases, their averago length decreases 
since details are beins represented more 
accurately. Thus the number of inter­
sections in practice rises much slower than 
quadratically in the number of edges, so 

Fiaure 3: Detectina Edse Intersections 

this algorithm is much faster than the 
simple pairwise comparison of all edges. 

d) HALO [8], being implemented by Varol 
Akman, which can calculate the haloed edge 
effect for a 9408 edge scene in 5 minutes on 
a Prime 750. Figure 4 shows l5~ of this 
plot. The entire plot is too complex to 
reproduce here. What makes HALO efficient 
is its use of the edge intersection algo­
rithm described above to find which edges 
pass in front of which other edges. 

5. KEPLER is a surface modelling system; that 
is, the surfaces are explicitly stored, and can 
be shaded and textured easily. This also makes 
operations such as intersection simpler. Given 
the surfaces, solid functions such as volume 
and moments of inertia can also be quickly cal­
culated. In contrast, with a volume modelling 
system, it can be difficult to add texture to 
the surfaces, or even to determine which parts 
of the surfaces are on the outside of the 
object. 

6. KEPLER currently works with only flat-faced 
polyhedra. This means that there are fewer 
details to consider in implementing the effi­
cient algorithms. Once flat objects can be 
handled fast, and given the routines to inter­
sect and combine curved faces, which must be 
developed anyway, it is easy to add modules to 
handle curved surfaces. 

i/ ~F 

'/ 

" ~P= 

'/ ~= ~ ~F" 

1/ " ~F= I ~ 
11: 

'/ I ~P 

L 
... ~ ... ~= ~= 

1/ ~"'" 

If ~ ~= 

'/' IlF 

i/ I ~i= I 

/ ~ [1- 11-11' ~ I ~ 11 If 11 

Figure 4: Haloed Line Plot 

CMCCS '81 / ACCHO '81 



- 176 -

7. KEPLER is being implemented in Ratfor and 
Ratmac [9, 10] on a Prime 750. These are pre­
processors that accept block structured code 
with macros and emit Fortran. This is a neces­
sity since Fortran is the only language 
available. Ratfor is a much better imple­
mentation tool than Fortran, though of course 
much poorer than Lisp. The core of the system, 
implemented by Bruce Giese, is up and working. 
It already has over two dozen commands, a data­
base of all the semiregular polyhedra, and 
extensive documentation. 

Thus KEPLER aims to use these techniques to 
perform operations such as polyhedron inter­
section, union [7], and hidden surface calcul-
ation on big objects quickly. The polyhedron 
combination algorithms are being implemented by 
Bruce Giese. They operate by superimposing a 
grid on the scene, and using it to find all in­
tersections of faces of one polyhedron with the 
faces of the other. The cut-l~ resulting 
from this are sorted and combined to produce a 
list of facets with tags. For the desired 
boolean combination (intersection, union, 
either difference, or exclusive-or), the facets 
with the appropriate tags are selected. Thus 
all the boolean combinations are found at the 
same time at no increased cost. This algorithm 
uses no complicated data structures and does . 
not perform complex traversals around the· poly­
hedra. It merely makes successive linear 
passes through sets of data, calculating new 
sets which are sorted, combined, and passed 
through again. Thus it is both efficient and 
easy to program. 

Bowever, for very complex scenes, even tech­
niques such as these may be too slow to calcul­
ate the visible surfaces since they require 
examining each component (edge, face, etc.) of 
the object at least once, if only to reject it 
from further consideration. 

This paper describes a hierarchical tech­
nique that can consider edges and faces in 
batches. Now hierarchical techniques where 
each object is composed of subobjects have been 
described before in many places, such as' Clark 
[2] and Eastman [3]. Enclosing each subobject 
with a circumscribing box (circumbox) is 
obvious; then if two objects' circumboxes 
don't intersect, the objects themselves 
certsinly don't. 

Bowever, circumscribing boxes are not 
adequate for hidden surface calculations. 
Consider the case where object A is completely 
hidden by object B. Since A's circumbox is 
behind B's circumbox, we know that A is 
probably (not certainly) at least partly hid-

den. Bowever, to show that A is completely 
hidden, we must test each face of A against B 
to show that it is hidden. It would be 
sufficient if A's circumbox were hidden, since 
then we would not need to consider any 
individual faces of A. Even if we couldn't 
show anything about A's circumbox, we might 
show somethina about the circumboxes of A's 
components. Nevertheless, we must compare 
these abstractions of A against all the faces 
of B. We cannot just test A against B's 
circumbox because the fact that B's circumbox 
hides something does not mean that B does. 

This paper introduces a means of abstracting 
B, an inscribing box, and presents some algo-

-----------rithms for manipulating it. An inscribing box 
(inbo!) is a rectangular solid that is com­
pletely inside the object. Thus if B's inbox 
hides something, B must hide it. Object B, 
together with its two boxes, partitions 3-space 
into 4 regions: 

1. Outside B's circumbox, 
2. Inside B's inbox, 
3. Outside B but inside its circumbox, and 
4. Inside B but outside its inbox. 

Figure 5 shows the four regions for a simple 
2-D object. Thus if we are testing a point P 
for inclusion in B (which is a necessary step 
in determining whether object A is hidden), 
cases 1 and 4 above are easy to determine. We 
only need to look at B's faces and subcompo­
nents in cases 2 and 3. If B is smooth but has 
a lot of surface detail, the inbox will be 
almost as big as the circumbox, so cases 2 and 
3 will be infrequent. Of course, other 
circumscribing and inscribing approximating 
shapes are possible, and may be appropriate in 
certain c ircumstanc'e s. Boxe s are mere ly the 
simplest to manipulate. 

Instead of vertices and faces, an object may 
have subobjects. Each subobject may have 
either vertices and faces, or subobjects of its 
own. The previous use of this tree structure, 
as in Eastman's GLIDE, has been to use multiple 
copies of a given object, but with certain pa­
rameters, such as location, orientation, and 
size different in each instantiation. This 
paper uses circumscribing boxes, and adds the 
inscribing box, to aid the visibility calcul­
ations. It is obvious that the well-estab­
lished features can be added, so it will not be 
mentioned again. 

If desired, this tree data structure may be 
flatt~~~ into a simple object with faces and 
vertices but no subobjects. The steps to 
flatten object A are: 

CMCCS 'Sl I ACCHO 'Sl 

- 176 -

7. KEPLER is being implemented in Ratfor and 
Ratmac [9, 10] on a Prime 750. These are pre­
processors that accept block structured code 
with macros and emit Fortran. This is a neces­
sity since Fortran is the only language 
available. Ratfor is a much better imple­
mentation tool than Fortran, though of course 
much poorer than Lisp. The core of the system, 
implemented by Bruce Giese, is up and working. 
It already has over two dozen commands, a data­
base of all the semiregular polyhedra, and 
extensive documentation. 

Thus KEPLER aims to use these techniques to 
perform operations such as polyhedron inter­
section, union [7], and hidden surface calcul-
ation on big objects quickly. The polyhedron 
combination algorithms are being implemented by 
Bruce Giese. They operate by superimposing a 
grid on the scene, and using it to find all in­
tersections of faces of one polyhedron with the 
faces of the other. The cut-l~ resulting 
from this are sorted and combined to produce a 
list of facets with tags. For the desired 
boolean combination (intersection, union, 
either difference, or exclusive-or), the facets 
with the appropriate tags are selected. Thus 
all the boolean combinations are found at the 
same time at no increased cost. This algorithm 
uses no complicated data structures and does . 
not perform complex traversals around the· poly­
hedra. It merely makes successive linear 
passes through sets of data, calculating new 
sets which are sorted, combined, and passed 
through again. Thus it is both efficient and 
easy to program. 

Bowever, for very complex scenes, even tech­
niques such as these may be too slow to calcul­
ate the visible surfaces since they require 
examining each component (edge, face, etc.) of 
the object at least once, if only to reject it 
from further consideration. 

This paper describes a hierarchical tech­
nique that can consider edges and faces in 
batches. Now hierarchical techniques where 
each object is composed of subobjects have been 
described before in many places, such as' Clark 
[2] and Eastman [3]. Enclosing each subobject 
with a circumscribing box (circumbox) is 
obvious; then if two objects' circumboxes 
don't intersect, the objects themselves 
certsinly don't. 

Bowever, circumscribing boxes are not 
adequate for hidden surface calculations. 
Consider the case where object A is completely 
hidden by object B. Since A's circumbox is 
behind B's circumbox, we know that A is 
probably (not certainly) at least partly hid-

den. Bowever, to show that A is completely 
hidden, we must test each face of A against B 
to show that it is hidden. It would be 
sufficient if A's circumbox were hidden, since 
then we would not need to consider any 
individual faces of A. Even if we couldn't 
show anything about A's circumbox, we might 
show somethina about the circumboxes of A's 
components. Nevertheless, we must compare 
these abstractions of A against all the faces 
of B. We cannot just test A against B's 
circumbox because the fact that B's circumbox 
hides something does not mean that B does. 

This paper introduces a means of abstracting 
B, an inscribing box, and presents some algo-

-----------rithms for manipulating it. An inscribing box 
(inbo!) is a rectangular solid that is com­
pletely inside the object. Thus if B's inbox 
hides something, B must hide it. Object B, 
together with its two boxes, partitions 3-space 
into 4 regions: 

1. Outside B's circumbox, 
2. Inside B's inbox, 
3. Outside B but inside its circumbox, and 
4. Inside B but outside its inbox. 

Figure 5 shows the four regions for a simple 
2-D object. Thus if we are testing a point P 
for inclusion in B (which is a necessary step 
in determining whether object A is hidden), 
cases 1 and 4 above are easy to determine. We 
only need to look at B's faces and subcompo­
nents in cases 2 and 3. If B is smooth but has 
a lot of surface detail, the inbox will be 
almost as big as the circumbox, so cases 2 and 
3 will be infrequent. Of course, other 
circumscribing and inscribing approximating 
shapes are possible, and may be appropriate in 
certain c ircumstanc'e s. Boxe s are mere ly the 
simplest to manipulate. 

Instead of vertices and faces, an object may 
have subobjects. Each subobject may have 
either vertices and faces, or subobjects of its 
own. The previous use of this tree structure, 
as in Eastman's GLIDE, has been to use multiple 
copies of a given object, but with certain pa­
rameters, such as location, orientation, and 
size different in each instantiation. This 
paper uses circumscribing boxes, and adds the 
inscribing box, to aid the visibility calcul­
ations. It is obvious that the well-estab­
lished features can be added, so it will not be 
mentioned again. 

If desired, this tree data structure may be 
flatt~~~ into a simple object with faces and 
vertices but no subobjects. The steps to 
flatten object A are: 

CMCCS 'Sl I ACCHO 'Sl 



- 177 -

1. Flatten any subobject of A that itself 
has subobjects. 

2. Pass through the subobjects of A. and 
uniquely number the vertices throughout A. 

3. Append all the vertex lists and combine 
all the face sets. 

4. Sort the vertex list to find dupli­
cations. and- combine and renumber them. 
Update the face set. 

This hierarchical structure is explicit. 
unlike PADL's implicit structure [11. 12]. The 
implicit structure makes it simpler to build up 
complicated objects from a small set of primi­
tives, but makes it difficult to determine even 
such simple operations as the volume or surface 
area of an object. 

In order to efficiently manage the hier­
archical scheme of subcomponents and boxes. the 
technique of surface texture. as described in 
Atherton and Weiler [1. 13] is used. Texturing 
involves drawing 2-D points. lines. and poly­
gons on the surfaces of faces. 

Texture has at least two uses: 

1. It can record surface markings. such as 
labels. This use is orthogonal to the hid­
den surface calculations. and so will not be 
mentioned again. 

2. It can record system generated infor­
mation. such as the visible parts of a face. 
This capability is necessary in the 
following algorithms. 

It is possible for a subobject to have an 
ideosraph. or a simpler representation that 
replaces it when the object after scaling is 
too small. For example. an object which is a 
tree with every leaf defined might have an 
ideograph which is just a triangle on a stick. 
The use of ideographs would require assorted 
minor changes throughout the following algo­
ri thms. 

DEFINITIONS AND DATA STRUCTURE 

Box: A rectangular solid whose sides are 
parallel to the axes. A box is defined by six 
numbers: XL. YL. ZL. XH. YH. ZH. . 

Ci!cums£!ibinR-~2! (of an object): A smallest 
box th~t completely contains the object. 

Ins£!ibinR-box: A largest box that is com­
pletely contained by an object. An object may 
have many inscribing boxes; they may even be 
diSjoint. If the object has no interior 
points. then every inscribing box is a point. 

Obje£!: A component of the scene under 
consideration. such as a building or a vehicle. 
that we are manipulating as a unit. An object 
contains the following components: 

1. CBOX. a circumscribing box. 

2. INBOX. an inscribing box. 

3. (SUBi). a possibly empty set of sub­
objects. 

4. (VERTi). a possibly empty ordered list 
of pOints defined by their Cartesian coordi­
nates. Vertices may not be duplicated; 
that is. no two vertices may have the same 
coordinates. However. a vertex of one sub­
object may have the same coordinates as a 
vertex of another subobject of the same 
object. 

S. (FACEi). a possibly empty set of faces. 
Each face is a planar polygon. No two faces 
of an object. no matter how many levels 
deep. may intersect. though they may abut on 
an edge. Thus when two objects that may 
overlap are combined. a cleanup routine must 
be run. Each face has the following compo­
nents: 

a) The ordered list of the vertices from 
(VERTi) that are its vertices. Thus if 
there are faces. there must be vertices. 

b) A possibly empty set of texture. The 
texture is described below. 

If an object has subobjects. then it cannot 
also have vertices or faces. This implies no 
loss of generality. since if it had vertices 
and faces. they could be combined into another 
subobject of that object. 

The components of an object. A. can be 
accessed by the functions CBOX(A). INBOX(A). 
NSUB(A). SUB(A.i). NVERT(A). VERT(A.i). 

CMCCS '81 / ACCHO '81 

- 177 -

1. Flatten any subobject of A that itself 
has subobjects. 

2. Pass through the subobjects of A. and 
uniquely number the vertices throughout A. 

3. Append all the vertex lists and combine 
all the face sets. 

4. Sort the vertex list to find dupli­
cations. and- combine and renumber them. 
Update the face set. 

This hierarchical structure is explicit. 
unlike PADL's implicit structure [11. 12]. The 
implicit structure makes it simpler to build up 
complicated objects from a small set of primi­
tives, but makes it difficult to determine even 
such simple operations as the volume or surface 
area of an object. 

In order to efficiently manage the hier­
archical scheme of subcomponents and boxes. the 
technique of surface texture. as described in 
Atherton and Weiler [1. 13] is used. Texturing 
involves drawing 2-D points. lines. and poly­
gons on the surfaces of faces. 

Texture has at least two uses: 

1. It can record surface markings. such as 
labels. This use is orthogonal to the hid­
den surface calculations. and so will not be 
mentioned again. 

2. It can record system generated infor­
mation. such as the visible parts of a face. 
This capability is necessary in the 
following algorithms. 

It is possible for a subobject to have an 
ideosraph. or a simpler representation that 
replaces it when the object after scaling is 
too small. For example. an object which is a 
tree with every leaf defined might have an 
ideograph which is just a triangle on a stick. 
The use of ideographs would require assorted 
minor changes throughout the following algo­
ri thms. 

DEFINITIONS AND DATA STRUCTURE 

Box: A rectangular solid whose sides are 
parallel to the axes. A box is defined by six 
numbers: XL. YL. ZL. XH. YH. ZH. . 

Ci!cums£!ibinR-~2! (of an object): A smallest 
box th~t completely contains the object. 

Ins£!ibinR-box: A largest box that is com­
pletely contained by an object. An object may 
have many inscribing boxes; they may even be 
diSjoint. If the object has no interior 
points. then every inscribing box is a point. 

Obje£!: A component of the scene under 
consideration. such as a building or a vehicle. 
that we are manipulating as a unit. An object 
contains the following components: 

1. CBOX. a circumscribing box. 

2. INBOX. an inscribing box. 

3. (SUBi). a possibly empty set of sub­
objects. 

4. (VERTi). a possibly empty ordered list 
of pOints defined by their Cartesian coordi­
nates. Vertices may not be duplicated; 
that is. no two vertices may have the same 
coordinates. However. a vertex of one sub­
object may have the same coordinates as a 
vertex of another subobject of the same 
object. 

S. (FACEi). a possibly empty set of faces. 
Each face is a planar polygon. No two faces 
of an object. no matter how many levels 
deep. may intersect. though they may abut on 
an edge. Thus when two objects that may 
overlap are combined. a cleanup routine must 
be run. Each face has the following compo­
nents: 

a) The ordered list of the vertices from 
(VERTi) that are its vertices. Thus if 
there are faces. there must be vertices. 

b) A possibly empty set of texture. The 
texture is described below. 

If an object has subobjects. then it cannot 
also have vertices or faces. This implies no 
loss of generality. since if it had vertices 
and faces. they could be combined into another 
subobject of that object. 

The components of an object. A. can be 
accessed by the functions CBOX(A). INBOX(A). 
NSUB(A). SUB(A.i). NVERT(A). VERT(A.i). 

CMCCS '81 / ACCHO '81 



- 178 -

NFACE(A), NVF(A,i), FACE(A,i), and VF(A,i,j). 
NSUB, NVERT, NFACE, and NVF return the number 
of subobjects, vertices, faces, and vertices in 
the i-th face, respectively. FACE(A, i) is the 
i-th face as a unit, and VF(A,i,j) is the j-th 
vertex of the i-th face. 

The texture of a face contains: 

1. A local 2-D coordinate system, 
2. A set of points defined in it, 
3. A set of lines with endpoints from that 
set, and 
4. A set of polygons with vertices from the 
pOint set. 

It is possible for the texture to extend 
outside the face itself, so it need not be 
clipped when the face is clipped. However, it 
must be clipped before it is displayed. 

The coordinate system is defined by an 
origin, a unit x-vector, and a parity. The 
origin is that point of the face plane closest 
to the 3-D origin. This pOint is always 
unambiguously defined. The unit x-vector in 
the texture coordinate system is in the plane 
of the face and is defined to be a vector which 
in 3-space has no z component. If the face is 
horizontal, the unit x-vector is the (1,0,0) in 
3-space. This fixes the unit y-vector to be 
one of two possibilities. The parity is chosen 
to make the z component (in 3-space) of the 
unit y-vector to be positive, unless the face 
is horizontal, in which case the unit y-vector 
is (0,1,0). 

The above definition makes the face coordi­
nate system independent of the actual face 
vertices, but dependent on the face plane. An 
alternative system could be defined that would 
make the local system dependent on the face 
vertices but independent of the plane equation. 
This could have the unit x-vector parallel to 
the vector from the first to the second vertex, 
and the unit y-vector at right angles to this 
such that their cross product was in the same 
direction as the vector face area. The former 
method means that local coordinates remain 
fixed as the face is clipped, while the latter 
means that they stay 'the same as the face is 
rotated. 

When the local coordinate system for each 
face is established, the transformation 
matrices between the local system and global 
3-space are calculated. Note that this trans­
formation does not always change continuously 
as the orientation of the face changes. This 
is inherent in 3-D spherical geometry. 

ALGORITHMS 

This section presents some algorithms that 
operate on the hierarchical data structure 
described above. They are chosen to illustrate 
operations that are much more efficient when an 
inbox is used. In some of them, the order of 
certain tests can be interchanged without 
affecting the result. The order that is used 
has the least expected execution time for many 
objects, since it tries tests that are most 
likely to terminate the algorithm first. 
Certain low level operations, such as deter­
mining whether a point is inside a box are 
assumed to be available. 

A. INCLUDE (A,P) 

Input: An object, A, and a point, P. 

Output: One of (IN, OUT}, depending on whether 
P is contained in A. 

1. If P s INBOX(A), then return IN. 

2. Else, if P i CBOX(A), then return OUT. 

3. Else, if NSUB(A)=O, then apply a standard 
point inclusion in polyhedron' test and return 
IN or OUT. This takes time linear in the 
number of faces if no preprocessing is done. 
If many points are to be tested against a given 
polyhedron, it can be projected onto a 2-D grid 
in such a way that each point can be tested in 
time proportional to the depth complexity of 
the polyhedron, which is usually very small. 

4. Else, if INCLUDE(SUB(A,i),P) = IN for any 
SUB(A,i), then return IN. 

5. Else, return OUT. 

B. VISP (A,P) 

Inpu!: An object, A, and a point, P. 

OutpU!: One of (VISIBLE, HIDDEN}, depending on 
whether P is visible or is hidden by A when 
observed from a standard viewpoint, (O,O,m). 

1. If P is not hidden by CBOX(A), then return 
VISIBLE. 

CMCCS '81 / ACCHO '81 

- 178 -

NFACE(A), NVF(A,i), FACE(A,i), and VF(A,i,j). 
NSUB, NVERT, NFACE, and NVF return the number 
of subobjects, vertices, faces, and vertices in 
the i-th face, respectively. FACE(A, i) is the 
i-th face as a unit, and VF(A,i,j) is the j-th 
vertex of the i-th face. 

The texture of a face contains: 

1. A local 2-D coordinate system, 
2. A set of points defined in it, 
3. A set of lines with endpoints from that 
set, and 
4. A set of polygons with vertices from the 
pOint set. 

It is possible for the texture to extend 
outside the face itself, so it need not be 
clipped when the face is clipped. However, it 
must be clipped before it is displayed. 

The coordinate system is defined by an 
origin, a unit x-vector, and a parity. The 
origin is that point of the face plane closest 
to the 3-D origin. This pOint is always 
unambiguously defined. The unit x-vector in 
the texture coordinate system is in the plane 
of the face and is defined to be a vector which 
in 3-space has no z component. If the face is 
horizontal, the unit x-vector is the (1,0,0) in 
3-space. This fixes the unit y-vector to be 
one of two possibilities. The parity is chosen 
to make the z component (in 3-space) of the 
unit y-vector to be positive, unless the face 
is horizontal, in which case the unit y-vector 
is (0,1,0). 

The above definition makes the face coordi­
nate system independent of the actual face 
vertices, but dependent on the face plane. An 
alternative system could be defined that would 
make the local system dependent on the face 
vertices but independent of the plane equation. 
This could have the unit x-vector parallel to 
the vector from the first to the second vertex, 
and the unit y-vector at right angles to this 
such that their cross product was in the same 
direction as the vector face area. The former 
method means that local coordinates remain 
fixed as the face is clipped, while the latter 
means that they stay 'the same as the face is 
rotated. 

When the local coordinate system for each 
face is established, the transformation 
matrices between the local system and global 
3-space are calculated. Note that this trans­
formation does not always change continuously 
as the orientation of the face changes. This 
is inherent in 3-D spherical geometry. 

ALGORITHMS 

This section presents some algorithms that 
operate on the hierarchical data structure 
described above. They are chosen to illustrate 
operations that are much more efficient when an 
inbox is used. In some of them, the order of 
certain tests can be interchanged without 
affecting the result. The order that is used 
has the least expected execution time for many 
objects, since it tries tests that are most 
likely to terminate the algorithm first. 
Certain low level operations, such as deter­
mining whether a point is inside a box are 
assumed to be available. 

A. INCLUDE (A,P) 

Input: An object, A, and a point, P. 

Output: One of (IN, OUT}, depending on whether 
P is contained in A. 

1. If P s INBOX(A), then return IN. 

2. Else, if P i CBOX(A), then return OUT. 

3. Else, if NSUB(A)=O, then apply a standard 
point inclusion in polyhedron' test and return 
IN or OUT. This takes time linear in the 
number of faces if no preprocessing is done. 
If many points are to be tested against a given 
polyhedron, it can be projected onto a 2-D grid 
in such a way that each point can be tested in 
time proportional to the depth complexity of 
the polyhedron, which is usually very small. 

4. Else, if INCLUDE(SUB(A,i),P) = IN for any 
SUB(A,i), then return IN. 

5. Else, return OUT. 

B. VISP (A,P) 

Inpu!: An object, A, and a point, P. 

OutpU!: One of (VISIBLE, HIDDEN}, depending on 
whether P is visible or is hidden by A when 
observed from a standard viewpoint, (O,O,m). 

1. If P is not hidden by CBOX(A), then return 
VISIBLE. 

CMCCS '81 / ACCHO '81 



- 179-

2. Else. if P is hidden by INBOX(A). then 
return HIDDEN. 

3. Else. if P is hidden by any face of A. then 
return HIDDEN. 

P is hidden by a face if two conditions are 
true: P is behind the infinite plane of the 
face. and P projected onto the X-Y plane is 
inside the face projected onto the X-Yplane. 
Testing the first condition is fast if the face 
equations have been precalculated since which 
side ofaX+bY+cZ+d=O (x.y.z) is on. depends on 
whether ax+by+cz+d is negative or positive. 
Projecting P and the face onto the X-Y plane 
consists of ignoring the Z-coordinates. Any 
face that projects to a line is edge-on to the 
line of sight. and cannot hide P. 

4. Else. if VISP(SUB(A.i).P) = HIDDEN for any 
SUB(A.i). then return HIDDEN. 

5. Else. return VISIBLE. 

C. VISOBJ (A.B) 

Inpu!: Two objects. A and B. 

Output: One of (VISIBLE. HIDDEN. MIXED). 
·depending on whether A does not hide B at all. 
A completely hides B. or A partly hides B. 

1. If NSUB(B) > O. then do: 

a) If VISOBJ(A.SUB(B.i» = VISIBLE for all 
SUB(B.i). then return VISIBLE. 

b) Else. if VISOBJ(A.SUB(B.i» = HIDDEN for 
all SUB(B.i). then return HIDDEN. 

c) Else. return MIXED. 

2. (B has no subobjects.) Else do: 

a) If VISFAC(A.FACE(B.i» = VISIBLE for all 
FACE(B.i). then return VISIBLE. 

D. VISFAC (A. F) 

Input: An object. A. and a face. F. of another 
object. 

OutpU!: One of (VISIBLE. HIDDEN. MIXED}. 
depending on whether A does not hide F at all. 
A completely hides F. or A partially hides F. 

(This algorithm proceeds by keeping trsck of 
how much of F has been covered so far as it 
processes A.) 

1. Initialize a visibility texture polygon on 
F. VTP(F). that exactly covers F. This is the 
area of F that is not known to be hidden. 

2. Execute VISFAC2(A.F). 

3. Return VISIBLE. HIDDEN. or MIXED. respec­
tively as VTP(F) is equal to F. is empty. or is 
neither. 

E. VISFAC2 (A.F) 

This is the body of VISFAC. 

!!l!!!!: 
object. 
VTP(F) . 

An object. A. and a face. F. of another 
F has a visibility texture polygon. 

Output: There is no directly returned value. 
VISFAC2 operates by the side-effect of modi­
fying VTP(F). 

1. If NFACE(A) > O. then do: 

a) For each FACE(A.i). calculate the polygon 
which represents how much of F is visible 
relative to FACE(A.i). intersect it with 
VTP(F). and store the result back in VTP(F). 
If VTP(F) should become empty when executing. 
this loop. return. through any intervening 
levels of VISFAC2. back to VISFAC. 

b) Else. if VISFAC(A.FACE(B.i» = HIDDEN for b) Return. 
all FACE(B.i>. then return HIDDEN. 

c) Else. return MIXED. 
2. Else. for each SUB(A.i). do: 

a) If CBOX(SUB(A. i» does not hide F at all. 
then proceed to the next iteration of the 
loop. 

CMCCS '81 I ACCHO '81 

- 179-

2. Else. if P is hidden by INBOX(A). then 
return HIDDEN. 

3. Else. if P is hidden by any face of A. then 
return HIDDEN. 

P is hidden by a face if two conditions are 
true: P is behind the infinite plane of the 
face. and P projected onto the X-Y plane is 
inside the face projected onto the X-Yplane. 
Testing the first condition is fast if the face 
equations have been precalculated since which 
side ofaX+bY+cZ+d=O (x.y.z) is on. depends on 
whether ax+by+cz+d is negative or positive. 
Projecting P and the face onto the X-Y plane 
consists of ignoring the Z-coordinates. Any 
face that projects to a line is edge-on to the 
line of sight. and cannot hide P. 

4. Else. if VISP(SUB(A.i).P) = HIDDEN for any 
SUB(A.i). then return HIDDEN. 

5. Else. return VISIBLE. 

C. VISOBJ (A.B) 

Inpu!: Two objects. A and B. 

Output: One of (VISIBLE. HIDDEN. MIXED). 
·depending on whether A does not hide B at all. 
A completely hides B. or A partly hides B. 

1. If NSUB(B) > O. then do: 

a) If VISOBJ(A.SUB(B.i» = VISIBLE for all 
SUB(B.i). then return VISIBLE. 

b) Else. if VISOBJ(A.SUB(B.i» = HIDDEN for 
all SUB(B.i). then return HIDDEN. 

c) Else. return MIXED. 

2. (B has no subobjects.) Else do: 

a) If VISFAC(A.FACE(B.i» = VISIBLE for all 
FACE(B.i). then return VISIBLE. 

D. VISFAC (A. F) 

Input: An object. A. and a face. F. of another 
object. 

OutpU!: One of (VISIBLE. HIDDEN. MIXED}. 
depending on whether A does not hide F at all. 
A completely hides F. or A partially hides F. 

(This algorithm proceeds by keeping trsck of 
how much of F has been covered so far as it 
processes A.) 

1. Initialize a visibility texture polygon on 
F. VTP(F). that exactly covers F. This is the 
area of F that is not known to be hidden. 

2. Execute VISFAC2(A.F). 

3. Return VISIBLE. HIDDEN. or MIXED. respec­
tively as VTP(F) is equal to F. is empty. or is 
neither. 

E. VISFAC2 (A.F) 

This is the body of VISFAC. 

!!l!!!!: 
object. 
VTP(F) . 

An object. A. and a face. F. of another 
F has a visibility texture polygon. 

Output: There is no directly returned value. 
VISFAC2 operates by the side-effect of modi­
fying VTP(F). 

1. If NFACE(A) > O. then do: 

a) For each FACE(A.i). calculate the polygon 
which represents how much of F is visible 
relative to FACE(A.i). intersect it with 
VTP(F). and store the result back in VTP(F). 
If VTP(F) should become empty when executing. 
this loop. return. through any intervening 
levels of VISFAC2. back to VISFAC. 

b) Else. if VISFAC(A.FACE(B.i» = HIDDEN for b) Return. 
all FACE(B.i>. then return HIDDEN. 

c) Else. return MIXED. 
2. Else. for each SUB(A.i). do: 

a) If CBOX(SUB(A. i» does not hide F at all. 
then proceed to the next iteration of the 
loop. 

CMCCS '81 I ACCHO '81 



- 180 -

b) Else, if INBOX(SUB(A,i» completely hides 
F, then set VTP(F) to empty, and return, 
through any intervening levels of VISFAC2, 
back to VISFAC. 

c) Else, execute VISFAC2(SUB(A,i),F). 

SUMMARY 

It is possible to manipulate efficiently 
large objects with complex surface detail and 
substructures. By using inscribing boxes of 
subobjects, in addition to circumscribing 
boxes, this extra detail can be encapsulated so 
that it does not slow the execution time 
unduly. 

ACKNOWLEDGEMENT 

This material is based upon work supported 
by the National Science Foundation under grants 
no. ENG79-08139 and ISP79-20240. 

Varol Akman and Bruce Giese, who are gradu­
ate students in Computer and Systems Engineer­
ing at RPI, have made excellent implementations 
of parts of IEPLER. 

REFERENCES 

[1] P. Atherton, K. Weiler, and D. 
Greenberg, 'Polygon Shadow Generation', 
Compute! Graphics-1~, 3 (August 1978), 275-281. 

[2] I.H. Clark, 'Hierarchical Geometric Models 
for Visible Surface Algorithms', Comm. ACM 19, 
10 (Oct. 1976), 547-554. 

[3] C. Eastman and M. Henrion, 'GLIDE: A 
Language for a Design Information System', 
Compu~aph!~!., 2 (Summer 1977). 

[4] W.R. Franklin, 'PRISM - A Prism Plotting 
Program' in Mapping Software and Cartographic 
Data Bases, Harvard Library of Computer 
Mappini:~979 Collection, edited by Allan H. 
Schmidt. 

[5] W.R. Franklin, 'A Linear Time Exact Hidden 
Surface Algorithm', Computer Graphics 
iA&M-SIGGRAPB) I!, 3 (luly 1980), 117-123. 

(April 1981), 364ff. 

[7] W.R. Frsnklin, Ef!~ci!nt_~~!~~!~!~~. 
Intersection and Union, Rensselaer Polytechnic 
Institute:-!;&ge-Proc;ssing Lab, IPL-TR-81-001 
(J an. 1981) . 

[8] W.R. Franklin, Effici!t!!!ll_ CO!!!l!uti!!JL!h!t 
Haloe~Line Effec!-f2!-~idd!t!!_~i!!~_~!i~i!!~!i2!!, 
Rensselaer Polytechnic Institute, Image 
Processing Lab, IPL-TR-81-004 (Dec. 1980). 

[9] B.W. Kernighan and P.l. Plauger, So!!!!!!! 
Tools, Addison-Wesley (1976). 

[10] R.l. Munn and I.M. Stewart, RATMAf 
Primer, University of Maryland Division of 
Agricultural and Life Sciences, TR-804 (August 
1979). 

[11] R.B. Tilove, 'Set Membership 
Classification: A Unified Approach to 
Geometric Intersection Problems', IEEE T. 
Comp_. _f=~2, 10 (Oct. 1980), 874-883:---

[12] B. Voelcker, et aI., 'The PADL-1.0/2 
System for Defining and Displaying Solid 
Objects', Compu!~!_~rap~i£!-1~, 3 (August 
1978), 257-263. 

[13] K. Weiler and P. Atherton, 'Hidden 
Surface Removal Using Polygon Area Sorting', 
Compute!_~!!R~i£!_!!, 2 (Summer 1977), 214-222. 

/ 

/ 

[6] W.R. Franklin, 'An Exact Hidden Sphere Figure 5: 
Algorithm That Operates in Linear Time', 
Computer Graphics and Image Proc!ssing 14, 4 

Circumscribing and Inscribing Boxes 

CMCCS '81 I ACCHO '81 

- 180 -

b) Else, if INBOX(SUB(A,i» completely hides 
F, then set VTP(F) to empty, and return, 
through any intervening levels of VISFAC2, 
back to VISFAC. 

c) Else, execute VISFAC2(SUB(A,i),F). 

SUMMARY 

It is possible to manipulate efficiently 
large objects with complex surface detail and 
substructures. By using inscribing boxes of 
subobjects, in addition to circumscribing 
boxes, this extra detail can be encapsulated so 
that it does not slow the execution time 
unduly. 

ACKNOWLEDGEMENT 

This material is based upon work supported 
by the National Science Foundation under grants 
no. ENG79-08139 and ISP79-20240. 

Varol Akman and Bruce Giese, who are gradu­
ate students in Computer and Systems Engineer­
ing at RPI, have made excellent implementations 
of parts of IEPLER. 

REFERENCES 

[1] P. Atherton, K. Weiler, and D. 
Greenberg, 'Polygon Shadow Generation', 
Compute! Graphics-1~, 3 (August 1978), 275-281. 

[2] I.H. Clark, 'Hierarchical Geometric Models 
for Visible Surface Algorithms', Comm. ACM 19, 
10 (Oct. 1976), 547-554. 

[3] C. Eastman and M. Henrion, 'GLIDE: A 
Language for a Design Information System', 
Compu~aph!~!., 2 (Summer 1977). 

[4] W.R. Franklin, 'PRISM - A Prism Plotting 
Program' in Mapping Software and Cartographic 
Data Bases, Harvard Library of Computer 
Mappini:~979 Collection, edited by Allan H. 
Schmidt. 

[5] W.R. Franklin, 'A Linear Time Exact Hidden 
Surface Algorithm', Computer Graphics 
iA&M-SIGGRAPB) I!, 3 (luly 1980), 117-123. 

(April 1981), 364ff. 

[7] W.R. Frsnklin, Ef!~ci!nt_~~!~~!~!~~. 
Intersection and Union, Rensselaer Polytechnic 
Institute:-!;&ge-Proc;ssing Lab, IPL-TR-81-001 
(J an. 1981) . 

[8] W.R. Franklin, Effici!t!!!ll_ CO!!!l!uti!!JL!h!t 
Haloe~Line Effec!-f2!-~idd!t!!_~i!!~_~!i~i!!~!i2!!, 
Rensselaer Polytechnic Institute, Image 
Processing Lab, IPL-TR-81-004 (Dec. 1980). 

[9] B.W. Kernighan and P.l. Plauger, So!!!!!!! 
Tools, Addison-Wesley (1976). 

[10] R.l. Munn and I.M. Stewart, RATMAf 
Primer, University of Maryland Division of 
Agricultural and Life Sciences, TR-804 (August 
1979). 

[11] R.B. Tilove, 'Set Membership 
Classification: A Unified Approach to 
Geometric Intersection Problems', IEEE T. 
Comp_. _f=~2, 10 (Oct. 1980), 874-883:---

[12] B. Voelcker, et aI., 'The PADL-1.0/2 
System for Defining and Displaying Solid 
Objects', Compu!~!_~rap~i£!-1~, 3 (August 
1978), 257-263. 

[13] K. Weiler and P. Atherton, 'Hidden 
Surface Removal Using Polygon Area Sorting', 
Compute!_~!!R~i£!_!!, 2 (Summer 1977), 214-222. 

/ 

/ 

[6] W.R. Franklin, 'An Exact Hidden Sphere Figure 5: 
Algorithm That Operates in Linear Time', 
Computer Graphics and Image Proc!ssing 14, 4 

Circumscribing and Inscribing Boxes 

CMCCS '81 I ACCHO '81 


