
- 181 -

AN INTERACTIVE MICROCOMPUTER BASED 3-0 ANIMATION SYSTEM

R. Hackathorn, R. Parent, B. Marshall, and M. Howard

. Ohio State University

ABSTRACT

A recent effort at the Ohio State
University has been to implement a subset of
our current animation system, called 'ANTS', on
a OEC POP 11/23 microcomputer. ANTS (Animated
Things Through Space) is a high performance,
interactive, 3-0 color shaded animation system
currently running on a OEC VAX 11/780. Its
simple but flexible command structure, combined
with its ability to procedurally model objects,
allows a non-computer oriented user to generate,
animate and display very complex animation
sequences.

The new microcomputer based animation
system using the 11/23 costs considerably less
than the cost of the VAX system. Further, the
POP 11/23 could be replaced with a lower per
formance POP family CPU that will run slower
than the 11/23 but perform the same tasks with
little or no code modifications.

A discussion. of the design possibilities
considered during the planning stage of the
11/23 ANTS system is presented. A comparison
between the VAX's and the 11/23's CPU archit
ecture, operating systems, and system periphe
rals is made. An explanation of what decisions
were finally incorporated into the 11/23 based
ANTS system is given. A comparison of cost/
performance characteristics between the VAX
11/780 ANTS system and the POP 11/23 ANTS
system is included.

Un des services de recherches de
l'Universite de l'Etat d'Ohio a recemment mis
au point un sous-ensemble du systeme d'anima
tion actuel "ANTS" (Animated Things Through
Space) sur un micro-ordinateur DEC PDP 11/23.
Le systeme ANTS est un systeme d'animation
interactif a 3-D, a rendement eleve et a
couleur ombree pilote par le OEC VAX 11/780.
Ses commandes simples et souples, jointes a sa
capacite de former des objets· par traitement
permet a l'utilisateur qui n'est pas familier
avec les ordinateurs de produire, animer et
afficher des sequences d'animation tres
complexes.

Le nouveau systeme d'animation pilote par
le micro-ordinateur 11/23 coute beaucoup moins
cher que le systeme VAX. De plus, le PDP 11/23
peut etre remplace par un CPU du groupe PDP de
rendement inferieur qui fonctionne plus lente-

. ment que le 11/23 mais qui peut effectuer les
memes taches avec peu ou pas de modification de
code.

L'expose porte sur les capacites de l'appa
reil qui ont ete considerees pendant la plani
fication du systeme ANTS 11/23. Le document
fait egalement une comparaison entre la struc
ture, les systemes d'exploitation et les peri
pheriques du VAX et du CPU 11/23. 11 donne
egalement des explications sur ce qui a finale
ment ete incorpore dans le systeme ANTS pilote
par le 11/23. Enfin, il comprend une comparai
son des caracteristiques couts/rendement entre
le systeme ANTS VAX 11/780 et le systeme ANTS
PDP 11/23.

CMCCS '81 / ACCHO '81

- 181 -

AN INTERACTIVE MICROCOMPUTER BASED 3-0 ANIMATION SYSTEM

R. Hackathorn, R. Parent, B. Marshall, and M. Howard

. Ohio State University

ABSTRACT

A recent effort at the Ohio State
University has been to implement a subset of
our current animation system, called 'ANTS', on
a OEC POP 11/23 microcomputer. ANTS (Animated
Things Through Space) is a high performance,
interactive, 3-0 color shaded animation system
currently running on a OEC VAX 11/780. Its
simple but flexible command structure, combined
with its ability to procedurally model objects,
allows a non-computer oriented user to generate,
animate and display very complex animation
sequences.

The new microcomputer based animation
system using the 11/23 costs considerably less
than the cost of the VAX system. Further, the
POP 11/23 could be replaced with a lower per
formance POP family CPU that will run slower
than the 11/23 but perform the same tasks with
little or no code modifications.

A discussion. of the design possibilities
considered during the planning stage of the
11/23 ANTS system is presented. A comparison
between the VAX's and the 11/23's CPU archit
ecture, operating systems, and system periphe
rals is made. An explanation of what decisions
were finally incorporated into the 11/23 based
ANTS system is given. A comparison of cost/
performance characteristics between the VAX
11/780 ANTS system and the POP 11/23 ANTS
system is included.

Un des services de recherches de
l'Universite de l'Etat d'Ohio a recemment mis
au point un sous-ensemble du systeme d'anima
tion actuel "ANTS" (Animated Things Through
Space) sur un micro-ordinateur DEC PDP 11/23.
Le systeme ANTS est un systeme d'animation
interactif a 3-D, a rendement eleve et a
couleur ombree pilote par le OEC VAX 11/780.
Ses commandes simples et souples, jointes a sa
capacite de former des objets· par traitement
permet a l'utilisateur qui n'est pas familier
avec les ordinateurs de produire, animer et
afficher des sequences d'animation tres
complexes.

Le nouveau systeme d'animation pilote par
le micro-ordinateur 11/23 coute beaucoup moins
cher que le systeme VAX. De plus, le PDP 11/23
peut etre remplace par un CPU du groupe PDP de
rendement inferieur qui fonctionne plus lente-

. ment que le 11/23 mais qui peut effectuer les
memes taches avec peu ou pas de modification de
code.

L'expose porte sur les capacites de l'appa
reil qui ont ete considerees pendant la plani
fication du systeme ANTS 11/23. Le document
fait egalement une comparaison entre la struc
ture, les systemes d'exploitation et les peri
pheriques du VAX et du CPU 11/23. 11 donne
egalement des explications sur ce qui a finale
ment ete incorpore dans le systeme ANTS pilote
par le 11/23. Enfin, il comprend une comparai
son des caracteristiques couts/rendement entre
le systeme ANTS VAX 11/780 et le systeme ANTS
PDP 11/23.

CMCCS '81 / ACCHO '81

- 182 -

INTRODUCTION

Three dimensional computer generated ani
mation might well prove to be the most versa
tile and crea tive new medium developed since
the motion picture camera was first used to
make films over 100 years ago. Current
graphics research has turned the computer into
a sophisticated and unique tool for producing
high quality color animation. With convention
al animation, an animator can draw imaginary
worlds that can defy or obey the laws of natural
physics. Realistic scenes can be animated,
but most animators are not prone to draw and
redraw the complex images on each separa te
frame. In 'real world' cinematography, the
filmmaker does not have to worry about the
complexity of his subject matter, but must
obey the laws of physics. Computer aniri1~tion
combines the bes t of both these mediums by
genera ting highly complex imagery from Simple
object descriptions, and allows the user to
selectively obey or defy whatever physical
laws that have been coded into the animation
system. Moreover, it has the ability to move
the ca mera 's 'eye' throug hou t a cons tructed
environment with a degree of freedom found in
no other art form. Unfortunately, animation
of this sort requires enormous computer re
sources and exotic display devices, all of
which are very expensive to purchase and
maintain. Because of this artists, filmmakers,
and students usually find only limited access
at best to facilities with the necessary eqUip
ment.

Microcomputer technology has long held
hope as a possible cost effective solution to
producing computer animation. Microcomputers
are small, energy efficient, inexpensive, and
require little maintainance outside of good
sense. They have also been slow, memory
limited, and have provided poor software sup
port when compared to mini or 'maxi' compu
ters. Newer microcomputers, however, have
overcome these disadvantages, making a low
cost powerful 3-D animation system pOSSible,
when combined with the right software and
peri phera Is.

This work was supported in part by the Nation
al Science Foundation Grant Number MCS
7923670.

The Computer Graphics Research Group
(CGRG) at The Ohio State University has
recently implemented such a sys tem using a
PDP 11/23 microcomputer running the ANTS
animation software designed by Hackathorn
and Parent (1). ANTS is the current version of
at least six generations of animation systems
dating back to 1965. One of ANTS key features
is its ability to procedurally generate highly
complex data models such as trees and cities,
which can contain millions of surface triangles,
if necessary. (Marsha 11, Wilson, Carlson- 2)

THE ANTS ANIMATION SYSTEM

ANTS (Animated Things in Space) is a 3-D
computer-based animation system designed for
artists and students. It is intended to facili
tate the prodUction of a series of computer
generated images which can be stored on disk
or magnetic tape, digitally edited and re
assembled for recording on 16 mm film or 1"
video tape.

The first complete ANTS system has been
implemented on a VAX 11/780 minicomputer with
a 32-bit word length. The display hardware
currently consists of a 512 x 512 frame buffer
with lO-bit pixel pointers into a 24-bit color
palette. A new 32-bit color pixel frame buffer
is being developed by Crow, Howard (3). The
final image is displayed on a RGB color monitor.

In order to give the user a powerful and
blexib le tool for anima tion tha t is still und er
standable to non-computer types, ANTS, as
implemen ted on the VAX incorpora tes s ev era 1
significant features into one integrated system.
1) The animation system processes 3-D

surface descriptions of objects as well as
point and line data descriptions.

2) A very large number of object 'instances'
can be created and animated with a unique
two level internal control structure.

3) All commands in ANTS are optionally exe
cuted in a manner which permits the
writing of animation scripts in a structured
programming environment.

4) ANTS can be used for many graphical and
non-graphical user tasks that would
normally be programmed with an advanced
high level language such as PASCAL
or 'C'.

The system allows the user to concisely
control the animation of complex imagery and

CMCCS '81 / ACCHO '81

- 182 -

INTRODUCTION

Three dimensional computer generated ani
mation might well prove to be the most versa
tile and crea tive new medium developed since
the motion picture camera was first used to
make films over 100 years ago. Current
graphics research has turned the computer into
a sophisticated and unique tool for producing
high quality color animation. With convention
al animation, an animator can draw imaginary
worlds that can defy or obey the laws of natural
physics. Realistic scenes can be animated,
but most animators are not prone to draw and
redraw the complex images on each separa te
frame. In 'real world' cinematography, the
filmmaker does not have to worry about the
complexity of his subject matter, but must
obey the laws of physics. Computer aniri1~tion
combines the bes t of both these mediums by
genera ting highly complex imagery from Simple
object descriptions, and allows the user to
selectively obey or defy whatever physical
laws that have been coded into the animation
system. Moreover, it has the ability to move
the ca mera 's 'eye' throug hou t a cons tructed
environment with a degree of freedom found in
no other art form. Unfortunately, animation
of this sort requires enormous computer re
sources and exotic display devices, all of
which are very expensive to purchase and
maintain. Because of this artists, filmmakers,
and students usually find only limited access
at best to facilities with the necessary eqUip
ment.

Microcomputer technology has long held
hope as a possible cost effective solution to
producing computer animation. Microcomputers
are small, energy efficient, inexpensive, and
require little maintainance outside of good
sense. They have also been slow, memory
limited, and have provided poor software sup
port when compared to mini or 'maxi' compu
ters. Newer microcomputers, however, have
overcome these disadvantages, making a low
cost powerful 3-D animation system pOSSible,
when combined with the right software and
peri phera Is.

This work was supported in part by the Nation
al Science Foundation Grant Number MCS
7923670.

The Computer Graphics Research Group
(CGRG) at The Ohio State University has
recently implemented such a sys tem using a
PDP 11/23 microcomputer running the ANTS
animation software designed by Hackathorn
and Parent (1). ANTS is the current version of
at least six generations of animation systems
dating back to 1965. One of ANTS key features
is its ability to procedurally generate highly
complex data models such as trees and cities,
which can contain millions of surface triangles,
if necessary. (Marsha 11, Wilson, Carlson- 2)

THE ANTS ANIMATION SYSTEM

ANTS (Animated Things in Space) is a 3-D
computer-based animation system designed for
artists and students. It is intended to facili
tate the prodUction of a series of computer
generated images which can be stored on disk
or magnetic tape, digitally edited and re
assembled for recording on 16 mm film or 1"
video tape.

The first complete ANTS system has been
implemented on a VAX 11/780 minicomputer with
a 32-bit word length. The display hardware
currently consists of a 512 x 512 frame buffer
with lO-bit pixel pointers into a 24-bit color
palette. A new 32-bit color pixel frame buffer
is being developed by Crow, Howard (3). The
final image is displayed on a RGB color monitor.

In order to give the user a powerful and
blexib le tool for anima tion tha t is still und er
standable to non-computer types, ANTS, as
implemen ted on the VAX incorpora tes s ev era 1
significant features into one integrated system.
1) The animation system processes 3-D

surface descriptions of objects as well as
point and line data descriptions.

2) A very large number of object 'instances'
can be created and animated with a unique
two level internal control structure.

3) All commands in ANTS are optionally exe
cuted in a manner which permits the
writing of animation scripts in a structured
programming environment.

4) ANTS can be used for many graphical and
non-graphical user tasks that would
normally be programmed with an advanced
high level language such as PASCAL
or 'C'.

The system allows the user to concisely
control the animation of complex imagery and

CMCCS '81 / ACCHO '81

- 183 -

specify complex movement.
The system is interactively controlled by

commands written in a special high-level lan
guage. In this language, the user specifies
the viewing parameters, sets up object
definitions, and orchestrates the spatial
temporal relationships between objects.

To help provide an interactive environment,
the system allows the user to request the cal
culation and display of an arbitrary frame in an
animation sequence or to specify the calcu
lation of an arbitrary sequence of frames.
Further, a variety of scanning algorithms exist
which range from a quick rough scan to a slow
er high resolution, anti-aliased image. The
ANTS system was deSigned with several spe
cific capabilities in mind for a 3-D computer
animation environment. The desire for these
capabilities has evolved from several years
experience in computer animation.

We are very concerned about the user
interface Simplifying motion specifica tion with
a need for relatively fast feedback. Fast
display algorithms have been emphasized, at
the expense of image quality. ANTS represents
the latest in our attempt to improve on both
the animation environment provided for the
user and the quality of the images in the
sequence.

In order to minimize the effects of any
culture shock encountered by users of our
system who come from non-computer science
backgrounds, an added general consideration
is tha t the language be easy to learn and the
system easy to use by non-programmers. Our
group has traditionally been interdisciplinary
in nature with a heavy emphasis on users with
an artistic background. We have always been
interested in developing friendly and' habit
able' animation systems rather than graphical
subroutine "add-on 's" for extant computer
languages.

The main purpose in developing a new
animation system was to include in the deSign
of the system a number of advanced techniques
for handling complex graphical da ta. One of
the most important of these was a facility for
setting up procedure models for building
graphical data bases. These procedures can
be used to either simplify alterations to a large
data base by altering parameters to the pro
cedure, or to efficiently store a compact
description of the da ta base.

Another major improvement over our past
animation systems was sought in terms of the
complexity of the anima tion which could be
handled practically by this system. One facet
of this objective was to include mechanisms
to handle a large number of ins tances of an
object concisely. For example, if one
thousand identical leaves on a tree were desired
in an animation, the requirement that each
instance be animated with a separate set of
commands would be laborious and time-con
suming. By including a suitable mechanism in
the language we can allow the user to establish
algorithmic control over a large number of
ins tances with rela tively few anima tion
commands. (See PIa te #1).

Plate #1
Bush

THE ANIMATION ENVIRONMENT

CGRG is an interdisciplinary university
based facility which currently supports an
active graduate research program with the
Computer Science Department at OSU, and an
equally active animation program with the
Art Ed uc a tion Depa rtmen t •

What we desired were relatively inexpen
sive work s ta tions where students could learn
to use the ANTS animation system and prepare
animation scripts off-line from the VAX. These
scripts could then later be run on the VAX to
produce a final high quality animation sequence.
The basic work station would consist of a fast
16 bit microcomputer, 128 KB of memory, a
video terminal, dual noppies, a data tablet

CMCCS '81 I ACCHO'81

- 183 -

specify complex movement.
The system is interactively controlled by

commands written in a special high-level lan
guage. In this language, the user specifies
the viewing parameters, sets up object
definitions, and orchestrates the spatial
temporal relationships between objects.

To help provide an interactive environment,
the system allows the user to request the cal
culation and display of an arbitrary frame in an
animation sequence or to specify the calcu
lation of an arbitrary sequence of frames.
Further, a variety of scanning algorithms exist
which range from a quick rough scan to a slow
er high resolution, anti-aliased image. The
ANTS system was deSigned with several spe
cific capabilities in mind for a 3-D computer
animation environment. The desire for these
capabilities has evolved from several years
experience in computer animation.

We are very concerned about the user
interface Simplifying motion specifica tion with
a need for relatively fast feedback. Fast
display algorithms have been emphasized, at
the expense of image quality. ANTS represents
the latest in our attempt to improve on both
the animation environment provided for the
user and the quality of the images in the
sequence.

In order to minimize the effects of any
culture shock encountered by users of our
system who come from non-computer science
backgrounds, an added general consideration
is tha t the language be easy to learn and the
system easy to use by non-programmers. Our
group has traditionally been interdisciplinary
in nature with a heavy emphasis on users with
an artistic background. We have always been
interested in developing friendly and' habit
able' animation systems rather than graphical
subroutine "add-on 's" for extant computer
languages.

The main purpose in developing a new
animation system was to include in the deSign
of the system a number of advanced techniques
for handling complex graphical da ta. One of
the most important of these was a facility for
setting up procedure models for building
graphical data bases. These procedures can
be used to either simplify alterations to a large
data base by altering parameters to the pro
cedure, or to efficiently store a compact
description of the da ta base.

Another major improvement over our past
animation systems was sought in terms of the
complexity of the anima tion which could be
handled practically by this system. One facet
of this objective was to include mechanisms
to handle a large number of ins tances of an
object concisely. For example, if one
thousand identical leaves on a tree were desired
in an animation, the requirement that each
instance be animated with a separate set of
commands would be laborious and time-con
suming. By including a suitable mechanism in
the language we can allow the user to establish
algorithmic control over a large number of
ins tances with rela tively few anima tion
commands. (See PIa te #1).

Plate #1
Bush

THE ANIMATION ENVIRONMENT

CGRG is an interdisciplinary university
based facility which currently supports an
active graduate research program with the
Computer Science Department at OSU, and an
equally active animation program with the
Art Ed uc a tion Depa rtmen t •

What we desired were relatively inexpen
sive work s ta tions where students could learn
to use the ANTS animation system and prepare
animation scripts off-line from the VAX. These
scripts could then later be run on the VAX to
produce a final high quality animation sequence.
The basic work station would consist of a fast
16 bit microcomputer, 128 KB of memory, a
video terminal, dual noppies, a data tablet

CMCCS '81 I ACCHO'81

- 184 -

digitizer, a 256 x 256 bit color frame buffer and
a standard color 1V monitor (See Figure #1) •
An improved version would include a multi
megabyte "Winchester" c;lisk and also a 512 x
512 x 8 bit color frame buffer which could
double as a 256 x 256 x 32 bit depth buffer for
doing hardwired 'z' compares for the surface
calculation.

The first major decision was the choice of
microcomputer for the work station. We first
considered a home computer type micro, since
many are available and tend to be rela tively
inexpensive. Though this is a very new field,
many impre!ssive products are being offered, such
as the APPLE computer or Cromenco system.
These systems offer minimal software support
with the exception of the Bally home computer
which runs a version of the GRASS language
developed by Tom Defanti (4) called ZGRASS.
Unfortunately all these systems use 8 bit
microprocessors with very limited display
capabilities. We finally decided that they
would not be appropriate because of limited
arithmetic ability and slow data throughput.

A custom made 16 bit microprocessor is at
the heart of the XEROX 'SMALLTALK' system
based on Baecker's GENISIS design (5). Thi s
would certainly be an ideal solution in terms
of a cost effective system, but we do not have
the resources for a major research and develop
ment task such as this. Several powerful 16
bit micro's were currently available from the·
big integrated circuit manufacturers. Un
fortunately, microprocessors such as the Zilog
Z8000 or the Motorola 68000, two chips which
show the most promise in the desired cost/
performance tradeoff, have yet to be bundled
into a full-blown microcomputer system with
adequate support software and peripherals. At
the time we began development, the two
readily available choices were the Texas
Instruments 990 family and the DEC LSI-ll
family. We finally chose the 11/23 because of
our previous experience with DEC equipment
and because of its software compatability with
both the VAX and our 11/45. BeSides, we had
a big investment in assembler level software
on both previous machines, and intended to
modify existing code as much as possible to
get the initial animation system up and running
quickly.

Further, the 11/23 has many desired
features: fast 16 bit cpu, memory expansion up

'-----1
I 10 I'i 'O~1"€. I \1/1-? r<x DJ., I

I
I wINtl1bl(;(I P"OC \::- J? 0«. ~V~[, H.DPr--!
; ~\?k f--- (J1-q K ~\11"~5) ~ DISK vRlv~~
• I il
J _______ !

[\ '\.

0 Ik"
SIt. ~. 5/1 x 1 NI?~~
Ilyl-r fRAM~ -tr<.~D J . lo~

9;VfHR ~~t.J VI~D 1"f,fZ M \
';'-- -~

V5'i-~

Figure #1
System Configuration

to 256 kilobytes, powerful assembler in
struction set, and an excellent range of off
the-shelf peripherals a t competitive prices.
Also, the 11/23 is part of a family of computers
which permit slower, less expensive CPUs to
be substituted for possible home use or faster,
more expensive versions for a possible stand
alone production animation system.

Once we chose the 11/23 a deciSion had to
be made about which operating system, if any,
to use. The most direct approach would have
been to develop all the necessary software on
the VAX 1l/780 and then download it to the
11/23. It would have the advantage of being
the most memory efficient solution since there
would be no operating system cluttering up
precious addressing space. The approach
would, however, require considerable extra
software for file I/O editing and ha nd ling.
Also, device drivers for a 11 the periphera Is .
would have to be written. Thus downloading
without an operating system was decided not
to be the best solution.

UNIX was another likely choice since we
are currently using it along with the VMS
operating system on the VAX 11/780. UNIX
has an advantage of being a machi ne-:
independent operating system. Theoretically
software which we develop for the DEC 11/23
could also be used on other families of micro
computers running UNIX with only minor

CMCCS 'S1 I ACCHO 'S1

- 184 -

digitizer, a 256 x 256 bit color frame buffer and
a standard color 1V monitor (See Figure #1) •
An improved version would include a multi
megabyte "Winchester" c;lisk and also a 512 x
512 x 8 bit color frame buffer which could
double as a 256 x 256 x 32 bit depth buffer for
doing hardwired 'z' compares for the surface
calculation.

The first major decision was the choice of
microcomputer for the work station. We first
considered a home computer type micro, since
many are available and tend to be rela tively
inexpensive. Though this is a very new field,
many impre!ssive products are being offered, such
as the APPLE computer or Cromenco system.
These systems offer minimal software support
with the exception of the Bally home computer
which runs a version of the GRASS language
developed by Tom Defanti (4) called ZGRASS.
Unfortunately all these systems use 8 bit
microprocessors with very limited display
capabilities. We finally decided that they
would not be appropriate because of limited
arithmetic ability and slow data throughput.

A custom made 16 bit microprocessor is at
the heart of the XEROX 'SMALLTALK' system
based on Baecker's GENISIS design (5). Thi s
would certainly be an ideal solution in terms
of a cost effective system, but we do not have
the resources for a major research and develop
ment task such as this. Several powerful 16
bit micro's were currently available from the·
big integrated circuit manufacturers. Un
fortunately, microprocessors such as the Zilog
Z8000 or the Motorola 68000, two chips which
show the most promise in the desired cost/
performance tradeoff, have yet to be bundled
into a full-blown microcomputer system with
adequate support software and peripherals. At
the time we began development, the two
readily available choices were the Texas
Instruments 990 family and the DEC LSI-ll
family. We finally chose the 11/23 because of
our previous experience with DEC equipment
and because of its software compatability with
both the VAX and our 11/45. BeSides, we had
a big investment in assembler level software
on both previous machines, and intended to
modify existing code as much as possible to
get the initial animation system up and running
quickly.

Further, the 11/23 has many desired
features: fast 16 bit cpu, memory expansion up

'-----1
I 10 I'i 'O~1"€. I \1/1-? r<x DJ., I

I
I wINtl1bl(;(I P"OC \::- J? 0«. ~V~[, H.DPr--!
; ~\?k f--- (J1-q K ~\11"~5) ~ DISK vRlv~~
• I il
J _______ !

[\ '\.

0 Ik"
SIt. ~. 5/1 x 1 NI?~~
Ilyl-r fRAM~ -tr<.~D J . lo~

9;VfHR ~~t.J VI~D 1"f,fZ M \
';'-- -~

V5'i-~

Figure #1
System Configuration

to 256 kilobytes, powerful assembler in
struction set, and an excellent range of off
the-shelf peripherals a t competitive prices.
Also, the 11/23 is part of a family of computers
which permit slower, less expensive CPUs to
be substituted for possible home use or faster,
more expensive versions for a possible stand
alone production animation system.

Once we chose the 11/23 a deciSion had to
be made about which operating system, if any,
to use. The most direct approach would have
been to develop all the necessary software on
the VAX 1l/780 and then download it to the
11/23. It would have the advantage of being
the most memory efficient solution since there
would be no operating system cluttering up
precious addressing space. The approach
would, however, require considerable extra
software for file I/O editing and ha nd ling.
Also, device drivers for a 11 the periphera Is .
would have to be written. Thus downloading
without an operating system was decided not
to be the best solution.

UNIX was another likely choice since we
are currently using it along with the VMS
operating system on the VAX 11/780. UNIX
has an advantage of being a machi ne-:
independent operating system. Theoretically
software which we develop for the DEC 11/23
could also be used on other families of micro
computers running UNIX with only minor

CMCCS 'S1 I ACCHO 'S1

- 185 -

cha nges • Unfortuna tely, a version of UNIX
which could run on the U/23 was not yet
available.

Our choices were thus narrowed to a pair
of DEC-supplied operating systems: RSX ll-M
and RT-ll. Both these systems would work
well for the jobs required, but RT-ll was
chosen, primarily because it is a simpler,
more memory efficient system designed primar
ily to run one task at a time, which is exactly
what we wanted. In addition, we were able
to get a 'c' compiler to run under RT-ll tha t
gave us compatibility with UNIX, as well as
a powerful high level language.

ANIMATION SOFTWARE IMPLEMENTATION
CONSIDERATIONS

Our next decisions were about the re
quirements for new software and the choice of
a computer language. We decided that the
work station animation system would be at
least upward compatible with the VAX-based
ANTS animation system. Therefore the first
issue of which software to implement was
already answered by our demands.

ANTS is neatly divided into three sections:
control, anima tion, and display. At the
highest level is the ANTS control section.
This section needs tasks for script flow control,
script parsing, and script execution.

ANTS control has two primary jobs:
1) system services, consisting of invoking a
control or animation script, symbolic expres
sion eva lua tion, lis ting of files or variables,
help messages, status information, printing
user messages, and prompting for user input.
2) scene setup, consisting of object identi
fica tion, pa lette setup, frame buffer manipu
la tion, observer eye position, center of
interest, and light source point positioning.
Also, it includes the setting of parameters for
light source, color and observer qua lities
such as 'field of view'.

The animation section requires the same
basic script handling routines as the ANTS
control section. These include flow of
control, script parsing, and animation command
execution, as well as many of the same
fea tures a s the ANTS control section, such
as variable manipulation and messages. The
animation section is generally concerned
with controlling object transforma tions over

The third ANTS section is the display
section, which is invoked after finishing the
animation choirs. This section is responsible
for turning a triangle into a blob of colored
pixels on a TV screen. It ha s two major parts,
a set of object to image space tasks, and also
a set of tasks for scanning and displaying
colored surfaces.

The object to image space tasks include
clipping to the screen area, calculating the
color for a face, and performing perspective.
The typical Z-buffer scanning routines consist
of orienting the triangle, converting it into
pixels (tHer), and Z-comparing each pixel with
a stored frame image to determine the highest
surface pixel.

Naturally, the features from the large VAX
ANTS system which control access to the mass
memory devices and special display devices
could not be transported to the microcomputer.
However, a significant subset was still
possible which could do all the baSic animation
tasks.

Which computer language to use on the
micro was more a consideration for east of
coding than for performance. In our experience
we have found that the performance differences
between a high level language and assembler
are all but equalized when the tasks perform
heavy I/O to a secondary storage device. In
fact, considering the slow speed of the floppy
disks, we could probably have written the
1l/23 version of ANTS in COBOL or SNOBOL
and hardly have noticed a difference. To allow
for easier future expansion, the low overhead
tasks such as the language pars er were written
in the 'c' programming language by Marshall,
while the highly repetitive transformation and
display routines were written in assembler by
Hackathorn and Parent. The decision to use
assembler was based largely on the fact that
we had much of the code needed for the 11/23
already running on our 11/45 or VAX. We
intend, however, to rewrite this section in to
the 'c' language at some future time.

SCANNING ALGORITHMS

Which scanning algorithm to use was by
far the most critical software deciSion that
was made for the microcomputer based ANTS
project, because of the extreme slowness of

CMCCS '81 I ACCHO '81

- 185 -

cha nges • Unfortuna tely, a version of UNIX
which could run on the U/23 was not yet
available.

Our choices were thus narrowed to a pair
of DEC-supplied operating systems: RSX ll-M
and RT-ll. Both these systems would work
well for the jobs required, but RT-ll was
chosen, primarily because it is a simpler,
more memory efficient system designed primar
ily to run one task at a time, which is exactly
what we wanted. In addition, we were able
to get a 'c' compiler to run under RT-ll tha t
gave us compatibility with UNIX, as well as
a powerful high level language.

ANIMATION SOFTWARE IMPLEMENTATION
CONSIDERATIONS

Our next decisions were about the re
quirements for new software and the choice of
a computer language. We decided that the
work station animation system would be at
least upward compatible with the VAX-based
ANTS animation system. Therefore the first
issue of which software to implement was
already answered by our demands.

ANTS is neatly divided into three sections:
control, anima tion, and display. At the
highest level is the ANTS control section.
This section needs tasks for script flow control,
script parsing, and script execution.

ANTS control has two primary jobs:
1) system services, consisting of invoking a
control or animation script, symbolic expres
sion eva lua tion, lis ting of files or variables,
help messages, status information, printing
user messages, and prompting for user input.
2) scene setup, consisting of object identi
fica tion, pa lette setup, frame buffer manipu
la tion, observer eye position, center of
interest, and light source point positioning.
Also, it includes the setting of parameters for
light source, color and observer qua lities
such as 'field of view'.

The animation section requires the same
basic script handling routines as the ANTS
control section. These include flow of
control, script parsing, and animation command
execution, as well as many of the same
fea tures a s the ANTS control section, such
as variable manipulation and messages. The
animation section is generally concerned
with controlling object transforma tions over

The third ANTS section is the display
section, which is invoked after finishing the
animation choirs. This section is responsible
for turning a triangle into a blob of colored
pixels on a TV screen. It ha s two major parts,
a set of object to image space tasks, and also
a set of tasks for scanning and displaying
colored surfaces.

The object to image space tasks include
clipping to the screen area, calculating the
color for a face, and performing perspective.
The typical Z-buffer scanning routines consist
of orienting the triangle, converting it into
pixels (tHer), and Z-comparing each pixel with
a stored frame image to determine the highest
surface pixel.

Naturally, the features from the large VAX
ANTS system which control access to the mass
memory devices and special display devices
could not be transported to the microcomputer.
However, a significant subset was still
possible which could do all the baSic animation
tasks.

Which computer language to use on the
micro was more a consideration for east of
coding than for performance. In our experience
we have found that the performance differences
between a high level language and assembler
are all but equalized when the tasks perform
heavy I/O to a secondary storage device. In
fact, considering the slow speed of the floppy
disks, we could probably have written the
1l/23 version of ANTS in COBOL or SNOBOL
and hardly have noticed a difference. To allow
for easier future expansion, the low overhead
tasks such as the language pars er were written
in the 'c' programming language by Marshall,
while the highly repetitive transformation and
display routines were written in assembler by
Hackathorn and Parent. The decision to use
assembler was based largely on the fact that
we had much of the code needed for the 11/23
already running on our 11/45 or VAX. We
intend, however, to rewrite this section in to
the 'c' language at some future time.

SCANNING ALGORITHMS

Which scanning algorithm to use was by
far the most critical software deciSion that
was made for the microcomputer based ANTS
project, because of the extreme slowness of

CMCCS '81 I ACCHO '81

- 186 -

the floppy disk units. A major consideration
was to develop an algorithm that was both
computationally efficient and I/O efficient.
For our purposes, there were basically two
types of scanning algorithms available for us
to choose from: list ordering and 'z' compare.
list ordering algorithms, such as those
developed by Wa tkins (6) or Newell (7) fit
the requirement of being I/O efficient since
neither make use of a disk resident frame buffer
in their visible surface calculations.

The Watkins algorithms sorts a list of
'span' segments along both the 'X' and 'z'
axes for each 'y' scan line with the output going
directly to a color frame buffer display. The
Newell algorithm sorts a list of faces in 'X'
and 'Z', breaking up any faces that overlap into
smaller non conflicting faces. The new list
is written into a calor frame buffer last face
first, with faces closer to the observer simply
overwriting old faces.

These algorithms would work quickly on
a mod era te number of faces, but genera lly
they have two drawbacks. First, since they
require a sorting step (or several as the case
may be) their execution time will grow non
linearly as the data count~increases. The
second drawback is that these algorithms re
quire internal storage of pre-sorted, semi
sorted and fully sorted lists of object data.
All these lisss become memory and time limiting
factors in data complexity on a small micro
computer system.

The drawbacks of these two algorithms
bring up a second and equally important design
consideration in the choice of a scanning
algorithm. Our VAX ANTS animation system
was designed to handle highly complex images.
By 'stream processing' a single list of the
original object data directly into a stored frame
image, using a 'z' compare algorithm, the VAX
system has no theoretical limit to the quantity
of da ta pumped through it.

Crow (8) has demonstrated that list sorting
algori thms such as the two described can be
carefully designed to minimize non-linear time
growth rates and increases complexity handling
capabilities to make possible pictures of
100,000 faces and more. The simples solution
to higher complexity with these algorithms is
to store the required data lists on a disk and
swap them into available memory. Unfortunat
ely, this solution tends to nullify much of

their advantage of not using the disk for the
visible surface ca lcula tions in the firs t place.
This left us with the 'z' compare class of
algorithm such as the one we used on our VAX
ANTS animation system.

The 'z' compare or 'z' depth buffer
algorithms are the simplest type of visible sur
face algorithms available. The closest surface
to the observer can be easily found by comparing
the depths of all the object image pixels with
each other, keeping only the highest ones. As
a pixel comes out of the tiler, another pixel
corresponding to the same relative 'X-Y'
location is retrieved from a stored frame buffer
image. Since a depth or 'z' value is stored
with each pixel color in the frame buffer, it
becomes an easy matter to compare the two
depths and update the stored frame image with
the color and 'z' of the closest pixel to the
observer. The combined effect of both high
computing costs and huge memory requirements
has mostly been relieved by current fast mini
computers and ever dropping memory costs.
However, on a micro computer s ys tern, these
issues can still be a big problem, largely
because of limited direct addressability of main
memory and the use of floppy disks for second
ary storage.

One 'z' compare algorithm, firs t imple
mented by Myers (9) attempted to solve the
problem of a disk resident frame image by
processing all the object faces one scan line
at a time into a Single, memory resident scan
line 'z' buffer. But because all the faces must
be in memory a t once, there becomes a very
definite upper limit to the data complexity of
an object, determined by the size of available
memory. Of course, this limit can be extended
by reloading data to and from the disks, but
again, this defea ts the algorithm's principle
advantage to a microcomputer system, which
was to use the floppy disks as little as possi
ble for the visible surface calcula tions.

The VAX ANTS system used a direct brute
force 'z' compare approach that we felt would
be inappropriate to our micro environment. On
the VAX, for each tiled pixel, the display
algorithm would directly access a disk resi
dent 'z' buffered image. This was possible
becuase of the VAX's very efficient virtual
memory mapping capability that allowed us to
treat the disk frame buffer file as though it
were part of our internal program address

CMCCS 'S1 / ACCHO 'S1

- 186 -

the floppy disk units. A major consideration
was to develop an algorithm that was both
computationally efficient and I/O efficient.
For our purposes, there were basically two
types of scanning algorithms available for us
to choose from: list ordering and 'z' compare.
list ordering algorithms, such as those
developed by Wa tkins (6) or Newell (7) fit
the requirement of being I/O efficient since
neither make use of a disk resident frame buffer
in their visible surface calculations.

The Watkins algorithms sorts a list of
'span' segments along both the 'X' and 'z'
axes for each 'y' scan line with the output going
directly to a color frame buffer display. The
Newell algorithm sorts a list of faces in 'X'
and 'Z', breaking up any faces that overlap into
smaller non conflicting faces. The new list
is written into a calor frame buffer last face
first, with faces closer to the observer simply
overwriting old faces.

These algorithms would work quickly on
a mod era te number of faces, but genera lly
they have two drawbacks. First, since they
require a sorting step (or several as the case
may be) their execution time will grow non
linearly as the data count~increases. The
second drawback is that these algorithms re
quire internal storage of pre-sorted, semi
sorted and fully sorted lists of object data.
All these lisss become memory and time limiting
factors in data complexity on a small micro
computer system.

The drawbacks of these two algorithms
bring up a second and equally important design
consideration in the choice of a scanning
algorithm. Our VAX ANTS animation system
was designed to handle highly complex images.
By 'stream processing' a single list of the
original object data directly into a stored frame
image, using a 'z' compare algorithm, the VAX
system has no theoretical limit to the quantity
of da ta pumped through it.

Crow (8) has demonstrated that list sorting
algori thms such as the two described can be
carefully designed to minimize non-linear time
growth rates and increases complexity handling
capabilities to make possible pictures of
100,000 faces and more. The simples solution
to higher complexity with these algorithms is
to store the required data lists on a disk and
swap them into available memory. Unfortunat
ely, this solution tends to nullify much of

their advantage of not using the disk for the
visible surface ca lcula tions in the firs t place.
This left us with the 'z' compare class of
algorithm such as the one we used on our VAX
ANTS animation system.

The 'z' compare or 'z' depth buffer
algorithms are the simplest type of visible sur
face algorithms available. The closest surface
to the observer can be easily found by comparing
the depths of all the object image pixels with
each other, keeping only the highest ones. As
a pixel comes out of the tiler, another pixel
corresponding to the same relative 'X-Y'
location is retrieved from a stored frame buffer
image. Since a depth or 'z' value is stored
with each pixel color in the frame buffer, it
becomes an easy matter to compare the two
depths and update the stored frame image with
the color and 'z' of the closest pixel to the
observer. The combined effect of both high
computing costs and huge memory requirements
has mostly been relieved by current fast mini
computers and ever dropping memory costs.
However, on a micro computer s ys tern, these
issues can still be a big problem, largely
because of limited direct addressability of main
memory and the use of floppy disks for second
ary storage.

One 'z' compare algorithm, firs t imple
mented by Myers (9) attempted to solve the
problem of a disk resident frame image by
processing all the object faces one scan line
at a time into a Single, memory resident scan
line 'z' buffer. But because all the faces must
be in memory a t once, there becomes a very
definite upper limit to the data complexity of
an object, determined by the size of available
memory. Of course, this limit can be extended
by reloading data to and from the disks, but
again, this defea ts the algorithm's principle
advantage to a microcomputer system, which
was to use the floppy disks as little as possi
ble for the visible surface calcula tions.

The VAX ANTS system used a direct brute
force 'z' compare approach that we felt would
be inappropriate to our micro environment. On
the VAX, for each tiled pixel, the display
algorithm would directly access a disk resi
dent 'z' buffered image. This was possible
becuase of the VAX's very efficient virtual
memory mapping capability that allowed us to
treat the disk frame buffer file as though it
were part of our internal program address

CMCCS 'S1 / ACCHO 'S1

- 187 -

space. Since it is unlikely that we will see a
microcomputer system in the near future with
the virtual memory efficiency of the VAX, this
approach could not be considered practical
because of the algorithm's excessively heavy
disk usage.

One possible approach to using a full disk
based frame buffer was to keep a kind of
'expandable' combination pixel!runlength frame
buffer in main memory In this scheme, the
memory resident frame image would begin as a
single very long runlength of background color.
This run length would represent all the pixels
contained from pixel #"1 of the first scan line to
the last pixel of the last scan line. As pixels
come from the tiler, new pixel loca tions would
be created in the frame buffer image to describe
only those pixels which indicate the highest
surface element at that pixel location. All
other pixels would remain compressed in the
background colored runlength format. When
the frame buffer image expands to the limits
of internal memory, the disk based frame image
would be upda ted with new informa tion from
the memory based frame buffer. Then the
memory buffer would begin being filled up once
again. While this approach does minimize the
access to the secondary storage devices, it
also is a much more complicated algorithm
tha n we desired on the micro. One big problem
to overcome would be the ability to randomly
access the memory buffer. Because of its
expandable nature, a particular location

. within the buffer would probably require a
different offset address each time after the
buffer expanded.

Perhaps a more preferable approach was
to explore efficient buffering methods for the
object data instead of trying to buffer only the
frame image. One algorithm considered used
a run length buffer scheme developed by
Hacka thorn (10). In this algorithm, run lengths
are created in the tiler as usual, but instead of
trying to compare the run's pixel 'Z's immedi
ately, they are stored in a run length buffer
firs t. The run lengths are stored ordered in 'y'
using a simple radix sort, but are not ordered
in 'X'. The runlength buffer was a list of
fixed memory arrays, one array for each scan
line of the display. As a runlength was
created, the corresponding memory array was
indexed within the runlength buffer and the
runlength itself stored as the last element of

that array. A list of "runs per array" was kept
with the buffer to indicate where a run should
be thrown and also when a buffer was full.
When a buffer wa s filled, a fra me buffer sec lion
was brought in from the disk resident frame
image and as many scan line arrays as possible
were mptied into the buffer section by com
paring the 'Z's of each pixel in each runlength.
Once the scan line arrays are empty, the
memory buffer section was written back to disk
and the runlength buffers were ready to be
refilled.

This algorithm wa s our firs t a ttempt at
developing the 'stream processing' capability
that ANTS makes use of to create high complex
ity images and generate procedural models.
The algorithm was quite efficient and displayed
linear growth rates as the data complexity
increased even up to several million trinagles.
However, memory had to be equally shared
between all the scan lines which meant that
each scan line could store only a small number
of unordered runs before filling up and having
to be emptied onto the disk.

A better way we felt was to buffer the runs
unordered in both a scan line (or several as
memory permits) from the disk resident frame
buffer and search for any runlengths that fall
within the memory resident 'z' depth scan line
buffer, comparing 'Z's and updating as we go
along. Once the entire disk frame buffer has
been cycled through, the unordered run length
would be empty and could be restarted. This
method would be straight forward to implement
and fairly quick provided that faces being
scanned were rela tively sma 11. Large faces
would, however, cause the run buffer to fill
up quickly, because of the increased number
of scan lines a larger face would cover. The
way to get around this problem would be to
store the faces in their compact 'ready to
tile' form in the buffer instead of the faces'
individual runs. This way, no ma tter how big
or little a face is, it will always take up the
same amount of buffer memory. Once the 'tile
block' buffer is full, then it mus t be emptied in
a manner Similar to the run buffer just mentioned.
To prevent access to a frame buffer scan line
on the floppy which is not needed in the visible
surface calculation, the actua I read from the
disk should not be performed until a bonified
face is found which covers the scan line in
question.

CMCCS '81 / ACCHO '81

- 187 -

space. Since it is unlikely that we will see a
microcomputer system in the near future with
the virtual memory efficiency of the VAX, this
approach could not be considered practical
because of the algorithm's excessively heavy
disk usage.

One possible approach to using a full disk
based frame buffer was to keep a kind of
'expandable' combination pixel!runlength frame
buffer in main memory In this scheme, the
memory resident frame image would begin as a
single very long runlength of background color.
This run length would represent all the pixels
contained from pixel #"1 of the first scan line to
the last pixel of the last scan line. As pixels
come from the tiler, new pixel loca tions would
be created in the frame buffer image to describe
only those pixels which indicate the highest
surface element at that pixel location. All
other pixels would remain compressed in the
background colored runlength format. When
the frame buffer image expands to the limits
of internal memory, the disk based frame image
would be upda ted with new informa tion from
the memory based frame buffer. Then the
memory buffer would begin being filled up once
again. While this approach does minimize the
access to the secondary storage devices, it
also is a much more complicated algorithm
tha n we desired on the micro. One big problem
to overcome would be the ability to randomly
access the memory buffer. Because of its
expandable nature, a particular location

. within the buffer would probably require a
different offset address each time after the
buffer expanded.

Perhaps a more preferable approach was
to explore efficient buffering methods for the
object data instead of trying to buffer only the
frame image. One algorithm considered used
a run length buffer scheme developed by
Hacka thorn (10). In this algorithm, run lengths
are created in the tiler as usual, but instead of
trying to compare the run's pixel 'Z's immedi
ately, they are stored in a run length buffer
firs t. The run lengths are stored ordered in 'y'
using a simple radix sort, but are not ordered
in 'X'. The runlength buffer was a list of
fixed memory arrays, one array for each scan
line of the display. As a runlength was
created, the corresponding memory array was
indexed within the runlength buffer and the
runlength itself stored as the last element of

that array. A list of "runs per array" was kept
with the buffer to indicate where a run should
be thrown and also when a buffer was full.
When a buffer wa s filled, a fra me buffer sec lion
was brought in from the disk resident frame
image and as many scan line arrays as possible
were mptied into the buffer section by com
paring the 'Z's of each pixel in each runlength.
Once the scan line arrays are empty, the
memory buffer section was written back to disk
and the runlength buffers were ready to be
refilled.

This algorithm wa s our firs t a ttempt at
developing the 'stream processing' capability
that ANTS makes use of to create high complex
ity images and generate procedural models.
The algorithm was quite efficient and displayed
linear growth rates as the data complexity
increased even up to several million trinagles.
However, memory had to be equally shared
between all the scan lines which meant that
each scan line could store only a small number
of unordered runs before filling up and having
to be emptied onto the disk.

A better way we felt was to buffer the runs
unordered in both a scan line (or several as
memory permits) from the disk resident frame
buffer and search for any runlengths that fall
within the memory resident 'z' depth scan line
buffer, comparing 'Z's and updating as we go
along. Once the entire disk frame buffer has
been cycled through, the unordered run length
would be empty and could be restarted. This
method would be straight forward to implement
and fairly quick provided that faces being
scanned were rela tively sma 11. Large faces
would, however, cause the run buffer to fill
up quickly, because of the increased number
of scan lines a larger face would cover. The
way to get around this problem would be to
store the faces in their compact 'ready to
tile' form in the buffer instead of the faces'
individual runs. This way, no ma tter how big
or little a face is, it will always take up the
same amount of buffer memory. Once the 'tile
block' buffer is full, then it mus t be emptied in
a manner Similar to the run buffer just mentioned.
To prevent access to a frame buffer scan line
on the floppy which is not needed in the visible
surface calculation, the actua I read from the
disk should not be performed until a bonified
face is found which covers the scan line in
question.

CMCCS '81 / ACCHO '81

- 188 -

We chose a buffered 'tile block' scheme as
the method to be implemented. This algorithm
has many advantages to a small microcomputer
environment. First, the buffering arrangement
offers a great deal of flexibility in allocating
memory within the precious micro addressing
space. At the slowest level, the algorithm can
run if there is memory for only 1 'tile block'
(about 14 words each) and only 1 scan line
buffer (about 256 words at 1 word per pixel).for
the disk frame image to swap in and out of.
Of course, this configuration will run very slow
but it does make possible a simple imple
mentation of a visible surface algorithm using
practically no primary memory at all. As more
memory becomes available it is a trivial matter
to increase the size of these two buffers and
dramatically increase the performance of the
micro.

ANTS PERFORMANCE RESULTS

ANTS has been running on the PDP 11/23
for several months. Figure #"2 shows examples
of some of our preliminary results using test
data. The objects were a small ball, the head
from the man's body and 120 procedurally gen
erated squares evenly spaced in 'X' and 'y'.
The information given with the timings shows
the number of faces (given as a triangle count)
and the number of scan lines the object(s)
cover from top of the screen to the bottom.

There were five basic tests conducted on
this set of data. First, ANTS was run with its
internal memory buffers set to their absolute
minimum. In our sys tem this meant tha t 1 tile
block and I scan line could be buffered a t a
time from the stored disk image. This test
was Similar to a direct 'brute-force' 'z' compare
in which the algorithm must access the floppy
disk for each scan line of every face. This
test was naturally the slowest of all five. The
second test increases the number of scan lines
from the disk image that could be buffered in
ternally. This means even though each face is
processed immediately as it comes from the
tiler, the floppy access is slightly more
efficient.

The third test does just the opposite of
test #"2. The tile buffer was increased to hold
up to 200 faces before scanning was performed,
but the internal scan -line buffer could only
hold one scan line at a time from the disk.

Test #"3 shows the importance of buffering the
ready-to-be-scanned faces as opposed to only
buffering the scan lines from the floppy. The
main reason for this difference is that whereas
the floppy must be read sequentially regardless
of how many scan lines are kept internally, the
tiled face buffer determines how many faces can
be scanned at once into each accessed disk
section. The time savings, therefore, come
from making better use of.the scan lines
already read in, rather than trying to read more
scan lines in with each access.

The fourth test shows the normal ANTS
environment as it currently exists. Trial and
error was used to determine the combination of
200 buffered tile blocks and 8 buffered scan
lines as the most efficient time/memory trade
off given our present hardware/software con
figuration. The last test used the memory
buffer limits from Test #"4, .but shows how ANTS
would do if it never had to use the floppy for
storage of its depth frame buffer. Test #"5
performs all the calculations of test #"4,
including transformations, lightsource and all
scanning tasks including the 'z' compares.
Test #"5 does not, however, perform any
accesses to the floppy disk because the ANTS

. program was temporarily modified to think it's
scan line buffer was always current with the
stored disk image. This test dramatically
underlines the point made several times in
this paper that the major bottleneck in producing
efficient computer animation in a microcomputer
environment is not the speed of the micro, but
rather the lack of speed in the floppy disks.

Since 1978 we have developed four
versions of the ANTS animation system at CGRG.
A prototype was first implemented on a PDP U/45
using the RSX ll-D operating system. This
used the 'buffered runlength' 'z' compare
algorithm and a fast 88 megabyte disk for its
stored frame image. The most recent effort
has, of course, been on the 11/23 microcomput
er system running RT-ll. It uses the 'tile
buffered' 'z' compare approach and a floppy
disk for its stored depth buffer. Currently
the most complete version has been on our VAX
11/780 running the VMS operating system, but
all future work is going into a version on the
VAX. using the UNIX operating system. Both
VAX. ANTS versions directly access a 300 mega
byte disk for each pixel using a 'z' buffer
algorithm.

CMCCS '81 / ACCHO '81

- 188 -

We chose a buffered 'tile block' scheme as
the method to be implemented. This algorithm
has many advantages to a small microcomputer
environment. First, the buffering arrangement
offers a great deal of flexibility in allocating
memory within the precious micro addressing
space. At the slowest level, the algorithm can
run if there is memory for only 1 'tile block'
(about 14 words each) and only 1 scan line
buffer (about 256 words at 1 word per pixel).for
the disk frame image to swap in and out of.
Of course, this configuration will run very slow
but it does make possible a simple imple
mentation of a visible surface algorithm using
practically no primary memory at all. As more
memory becomes available it is a trivial matter
to increase the size of these two buffers and
dramatically increase the performance of the
micro.

ANTS PERFORMANCE RESULTS

ANTS has been running on the PDP 11/23
for several months. Figure #"2 shows examples
of some of our preliminary results using test
data. The objects were a small ball, the head
from the man's body and 120 procedurally gen
erated squares evenly spaced in 'X' and 'y'.
The information given with the timings shows
the number of faces (given as a triangle count)
and the number of scan lines the object(s)
cover from top of the screen to the bottom.

There were five basic tests conducted on
this set of data. First, ANTS was run with its
internal memory buffers set to their absolute
minimum. In our sys tem this meant tha t 1 tile
block and I scan line could be buffered a t a
time from the stored disk image. This test
was Similar to a direct 'brute-force' 'z' compare
in which the algorithm must access the floppy
disk for each scan line of every face. This
test was naturally the slowest of all five. The
second test increases the number of scan lines
from the disk image that could be buffered in
ternally. This means even though each face is
processed immediately as it comes from the
tiler, the floppy access is slightly more
efficient.

The third test does just the opposite of
test #"2. The tile buffer was increased to hold
up to 200 faces before scanning was performed,
but the internal scan -line buffer could only
hold one scan line at a time from the disk.

Test #"3 shows the importance of buffering the
ready-to-be-scanned faces as opposed to only
buffering the scan lines from the floppy. The
main reason for this difference is that whereas
the floppy must be read sequentially regardless
of how many scan lines are kept internally, the
tiled face buffer determines how many faces can
be scanned at once into each accessed disk
section. The time savings, therefore, come
from making better use of.the scan lines
already read in, rather than trying to read more
scan lines in with each access.

The fourth test shows the normal ANTS
environment as it currently exists. Trial and
error was used to determine the combination of
200 buffered tile blocks and 8 buffered scan
lines as the most efficient time/memory trade
off given our present hardware/software con
figuration. The last test used the memory
buffer limits from Test #"4, .but shows how ANTS
would do if it never had to use the floppy for
storage of its depth frame buffer. Test #"5
performs all the calculations of test #"4,
including transformations, lightsource and all
scanning tasks including the 'z' compares.
Test #"5 does not, however, perform any
accesses to the floppy disk because the ANTS

. program was temporarily modified to think it's
scan line buffer was always current with the
stored disk image. This test dramatically
underlines the point made several times in
this paper that the major bottleneck in producing
efficient computer animation in a microcomputer
environment is not the speed of the micro, but
rather the lack of speed in the floppy disks.

Since 1978 we have developed four
versions of the ANTS animation system at CGRG.
A prototype was first implemented on a PDP U/45
using the RSX ll-D operating system. This
used the 'buffered runlength' 'z' compare
algorithm and a fast 88 megabyte disk for its
stored frame image. The most recent effort
has, of course, been on the 11/23 microcomput
er system running RT-ll. It uses the 'tile
buffered' 'z' compare approach and a floppy
disk for its stored depth buffer. Currently
the most complete version has been on our VAX
11/780 running the VMS operating system, but
all future work is going into a version on the
VAX. using the UNIX operating system. Both
VAX. ANTS versions directly access a 300 mega
byte disk for each pixel using a 'z' buffer
algorithm.

CMCCS '81 / ACCHO '81

- 189 -

Little 120
Ball Squares

Face count: 60
Scan lines covered: 150

Elapsed time (seconds)
1 tile block +
1 scan line 165

1 tile block +
8 scan lines 74

200 tile blocks +
1 scan line 22

200 tile blocks +
8 scan lines 11

same but without
floppy access 2

Figure 2
ANTS 11/23 Timings

240
200

605

452

164

120

10

Little
Head

220
170

231

137

21

12

5

It is difficult to make an exact compari
son of the ANTS animation system as it is cur
rently implemented on our various computers.
Firs t the actua 1 implementa tion of ANTS differs
from computer to computer. Because of our
commitment to research,we have tried to
modify and improve the system with each imple
mentation. Each version of ANTS has a dif
ferent set of parser and transformation tasks
and more importantly each ha s different
display algorithms.

Another major disimilarity between the
different versions concerns the actual hardware
involved in each system. The VAX is a high
speed 32-bit minicomputer with hardware
features such as a CPU employing ECL inte
grated circuits, a 200 ns. internal SIB bus,
and fast cache memory. The 300 megabyte
disk used by the VAX has an access time of
around 30 milliseconds and a transfer rate of
about one 16-bit word every 2 or 3 microseconds.
The hard disk used by the 11/45, the RP04,
has similar access and transfer timings. These
disk times are in sharp contrast to our poor
little 1l/23 microcomputer system which uses
a floppy disk drive. The floppy disk has an

access time of 165 milliseconds and a transfer

rate of about 82 microseconds per word if the
disk is formatted single density or 51 micro
seconds if it is formatted as double density.
In the future, the addition of a 'Winchester'
type disk drive which has an access time 'of
around 70 milliseconds and transfer rate of 4
microseconds per word, will of course help
enourmously.

The tests on all the three computers were
performed with the same scripts and the same
data. The VAX ANTS versions use 32 bit
floating point numbers throughout their
calculations. Both the 11/45 and the 11/23 use
16 bit integer calculations. Further, the VAX
uses a stored 32 bit floating '2' for each pixel
while the 11/45 uses a 16 bit integer '2' and
the 11/23 ANTS system uses an 8 bit 'Z'. To
help keep the tes ts somewha t comparable, all
tests were run at 256 x 256 resolution. Because
UNIX and VMS share the VAX and its peripherals,
the ANTS timings for each s ys tern are roughly
the same. Therefore, we have included only
one set of timings for the VAX.

11/23 11/45
name faces seconds

Little Ball 60 11 6
Big Ball 168 12 7
Little Head 220 12 8
120 Squares 240 120
Big Head 384 28 14
Goblet 420 24
Man Body 1644 100
6 Big Heads 2304 134 45
Random Balls 3600 210
Tree 1 10098 642
Tree 2 2189 393

Figure 3
Comparative CPU Timings

CONCLUSION

VAX 11/780

3
4
4

65
- 7

13
36
22

124
73

A microcomputer-based ANTS animation
system has recently been implemented at The
Ohio State University. It uses a PDP 11/23
microcomputer with dual floppy disk drives for
secondary storage. The system serves as a
stand along workstation for the development of
animation scripts which can be run either on the
11/23 or on the VAX for higher quality. Several

CMCCS '81 I ACCHO '81

- 189 -

Little 120
Ball Squares

Face count: 60
Scan lines covered: 150

Elapsed time (seconds)
1 tile block +
1 scan line 165

1 tile block +
8 scan lines 74

200 tile blocks +
1 scan line 22

200 tile blocks +
8 scan lines 11

same but without
floppy access 2

Figure 2
ANTS 11/23 Timings

240
200

605

452

164

120

10

Little
Head

220
170

231

137

21

12

5

It is difficult to make an exact compari
son of the ANTS animation system as it is cur
rently implemented on our various computers.
Firs t the actua 1 implementa tion of ANTS differs
from computer to computer. Because of our
commitment to research,we have tried to
modify and improve the system with each imple
mentation. Each version of ANTS has a dif
ferent set of parser and transformation tasks
and more importantly each ha s different
display algorithms.

Another major disimilarity between the
different versions concerns the actual hardware
involved in each system. The VAX is a high
speed 32-bit minicomputer with hardware
features such as a CPU employing ECL inte
grated circuits, a 200 ns. internal SIB bus,
and fast cache memory. The 300 megabyte
disk used by the VAX has an access time of
around 30 milliseconds and a transfer rate of
about one 16-bit word every 2 or 3 microseconds.
The hard disk used by the 11/45, the RP04,
has similar access and transfer timings. These
disk times are in sharp contrast to our poor
little 1l/23 microcomputer system which uses
a floppy disk drive. The floppy disk has an

access time of 165 milliseconds and a transfer

rate of about 82 microseconds per word if the
disk is formatted single density or 51 micro
seconds if it is formatted as double density.
In the future, the addition of a 'Winchester'
type disk drive which has an access time 'of
around 70 milliseconds and transfer rate of 4
microseconds per word, will of course help
enourmously.

The tests on all the three computers were
performed with the same scripts and the same
data. The VAX ANTS versions use 32 bit
floating point numbers throughout their
calculations. Both the 11/45 and the 11/23 use
16 bit integer calculations. Further, the VAX
uses a stored 32 bit floating '2' for each pixel
while the 11/45 uses a 16 bit integer '2' and
the 11/23 ANTS system uses an 8 bit 'Z'. To
help keep the tes ts somewha t comparable, all
tests were run at 256 x 256 resolution. Because
UNIX and VMS share the VAX and its peripherals,
the ANTS timings for each s ys tern are roughly
the same. Therefore, we have included only
one set of timings for the VAX.

11/23 11/45
name faces seconds

Little Ball 60 11 6
Big Ball 168 12 7
Little Head 220 12 8
120 Squares 240 120
Big Head 384 28 14
Goblet 420 24
Man Body 1644 100
6 Big Heads 2304 134 45
Random Balls 3600 210
Tree 1 10098 642
Tree 2 2189 393

Figure 3
Comparative CPU Timings

CONCLUSION

VAX 11/780

3
4
4

65
- 7

13
36
22

124
73

A microcomputer-based ANTS animation
system has recently been implemented at The
Ohio State University. It uses a PDP 11/23
microcomputer with dual floppy disk drives for
secondary storage. The system serves as a
stand along workstation for the development of
animation scripts which can be run either on the
11/23 or on the VAX for higher quality. Several

CMCCS '81 I ACCHO '81

- 190 -

art students including two new students with no
previous computer experience have been work
ing on the micro system. Plans for 8 to 10
students on two stand alone 11/23 systems are
scheduled to begin Summer of 1981. Two
additional 11/23 computers with frame buffers
will also function as workstations for the VAX.
The intended cost of the microcomputer system
will be between $15 to $20 thousand per system
with a full set of peripherals.

A major addition to the microcomputer
ANTS system will be the completion of our new
512 x 512 x 8 bit color frame buffer. The
display device, developed by Howard,
will be used to make the 11/23 a complete
stand-alone animation system. Currently we
are using the 512 x 512 x 10 bit color frame
buffer on the VAX by transporting the stored
binary frame image from the 11/23 to the VAX
via floppy disks. The new frame buffer will
function as a normal 512 x 512 color display,
but it will also have the option to double as a
256 x 256 x 32 bit color and 'z' buffer. In
this mode we will be able to send pixels
directly to the frame buffer and have the 'z'
compares and conditional color updates
performed in hardware ra ther than in software.

Another upcoming addition will be a 10
megabyte Winchester disk drive. Currently
we are using the floppy disks and consequently
we are very limited in the amount of disk
storage space that we can utilize. Because of
the memory restrictions ~ we are presently
using only 8 bits for our 'z' depth value. This
allows a full featured visible surface algorithm
with virtua 1 intersection to be implemented, but
it does limit the amount of spacial movement
that we can accomplish. When the Winchester
disk arrives, it will be a simple ma tter to
increase the 'z' to 16 bit space.

The PDP 11/23 has 256 kilobytes of
addressable memory space. We currently have
128 KB of memory on the micro, but are using
only the first 64 KB for this ANTS version.
This has been primarily done out of concern to
get a version up and running as quickly as
pOSSible, but also has the benefit of being a
version of ANTS that could run directly on the
smaller LSI-ll/03 microcomputer system, which
can only address 64 KB. As soon as possible
we will be directly controlling the 11/23
memory management registers to give us access

to the other 64 KB that we are not using. This
extra memory will be used to increase the size
of the 'tile block' and 'scan line' buffers. We
expect this increase in buffer size to give us
better overall performance calculating anima
tion, since it can be clearly seen by the timing
tests tha t an increase in buffer size translates
into a decrease in calculation cost.

The major advantage of a language parser
written in 'c' was that it could be debugged on
the VAX under our UNIX operating system.
However, it also meant that when we had a
running version for the 11/23, we also had a
running version on the VAX. By rewriting the
display routines in 'c' we now have a version of
ANTS working under UNIX. We intend to
rewrite the assembler display routines on the
new microcomputer system at some future date.

ACKNOWLEDGEMENTS

The authors would like to extend our
appreciation to the members of CGRG for their
helpful suggestions.

BIBLIOGRAPHY

1. Parent, R., Hackathorn, R., "ANTS: A
High Performance 3-D Color Anima tion
System. "

2. Crow, F., Howard, M., "A Frame Buffer
Sys tem With Enhanced Functiona li ty" ,
SIGGRAPH 81.

3. Marshall, B., Wilson, R. ,·Carlson, W.,
"Procedural Models for Generating 3-D
Terrain", SIGGRAPH 80.

4. Defanti, T., ZGRASS Users Manual.
5. Baecker, R., "Interactive Computer

Mediated Automation", Ph. D., 1969.
6. Watkins, G., "A Rea I Time Visible Surface

Algorithm", Univ. of Uta h/Ph. D., 1972.
7. Newell, M., "The Utilization of Procedural

Models in Digital Image Synthesis", Ph.D.
Dissertation, 1975.

8. Crow, F., "Shaded Computer Graphics in
the Entertainment World", IEEE Computer
Magazine, March 1978.

9. Myers, A., "An Efficient Visible Surface
Algorithm", Tech Report OSU, 1974.

10. Csuri, C., Hackathorn, R., Parent, R.,
Carlson, W., Howard, M., "Towa rd s An
Interactive High Visual Complexity Ani
mation System", SIGGRAPH 1979.

CMCCS '81 / ACCHO '81

- 190 -

art students including two new students with no
previous computer experience have been work
ing on the micro system. Plans for 8 to 10
students on two stand alone 11/23 systems are
scheduled to begin Summer of 1981. Two
additional 11/23 computers with frame buffers
will also function as workstations for the VAX.
The intended cost of the microcomputer system
will be between $15 to $20 thousand per system
with a full set of peripherals.

A major addition to the microcomputer
ANTS system will be the completion of our new
512 x 512 x 8 bit color frame buffer. The
display device, developed by Howard,
will be used to make the 11/23 a complete
stand-alone animation system. Currently we
are using the 512 x 512 x 10 bit color frame
buffer on the VAX by transporting the stored
binary frame image from the 11/23 to the VAX
via floppy disks. The new frame buffer will
function as a normal 512 x 512 color display,
but it will also have the option to double as a
256 x 256 x 32 bit color and 'z' buffer. In
this mode we will be able to send pixels
directly to the frame buffer and have the 'z'
compares and conditional color updates
performed in hardware ra ther than in software.

Another upcoming addition will be a 10
megabyte Winchester disk drive. Currently
we are using the floppy disks and consequently
we are very limited in the amount of disk
storage space that we can utilize. Because of
the memory restrictions ~ we are presently
using only 8 bits for our 'z' depth value. This
allows a full featured visible surface algorithm
with virtua 1 intersection to be implemented, but
it does limit the amount of spacial movement
that we can accomplish. When the Winchester
disk arrives, it will be a simple ma tter to
increase the 'z' to 16 bit space.

The PDP 11/23 has 256 kilobytes of
addressable memory space. We currently have
128 KB of memory on the micro, but are using
only the first 64 KB for this ANTS version.
This has been primarily done out of concern to
get a version up and running as quickly as
pOSSible, but also has the benefit of being a
version of ANTS that could run directly on the
smaller LSI-ll/03 microcomputer system, which
can only address 64 KB. As soon as possible
we will be directly controlling the 11/23
memory management registers to give us access

to the other 64 KB that we are not using. This
extra memory will be used to increase the size
of the 'tile block' and 'scan line' buffers. We
expect this increase in buffer size to give us
better overall performance calculating anima
tion, since it can be clearly seen by the timing
tests tha t an increase in buffer size translates
into a decrease in calculation cost.

The major advantage of a language parser
written in 'c' was that it could be debugged on
the VAX under our UNIX operating system.
However, it also meant that when we had a
running version for the 11/23, we also had a
running version on the VAX. By rewriting the
display routines in 'c' we now have a version of
ANTS working under UNIX. We intend to
rewrite the assembler display routines on the
new microcomputer system at some future date.

ACKNOWLEDGEMENTS

The authors would like to extend our
appreciation to the members of CGRG for their
helpful suggestions.

BIBLIOGRAPHY

1. Parent, R., Hackathorn, R., "ANTS: A
High Performance 3-D Color Anima tion
System. "

2. Crow, F., Howard, M., "A Frame Buffer
Sys tem With Enhanced Functiona li ty" ,
SIGGRAPH 81.

3. Marshall, B., Wilson, R. ,·Carlson, W.,
"Procedural Models for Generating 3-D
Terrain", SIGGRAPH 80.

4. Defanti, T., ZGRASS Users Manual.
5. Baecker, R., "Interactive Computer

Mediated Automation", Ph. D., 1969.
6. Watkins, G., "A Rea I Time Visible Surface

Algorithm", Univ. of Uta h/Ph. D., 1972.
7. Newell, M., "The Utilization of Procedural

Models in Digital Image Synthesis", Ph.D.
Dissertation, 1975.

8. Crow, F., "Shaded Computer Graphics in
the Entertainment World", IEEE Computer
Magazine, March 1978.

9. Myers, A., "An Efficient Visible Surface
Algorithm", Tech Report OSU, 1974.

10. Csuri, C., Hackathorn, R., Parent, R.,
Carlson, W., Howard, M., "Towa rd s An
Interactive High Visual Complexity Ani
mation System", SIGGRAPH 1979.

CMCCS '81 / ACCHO '81

- 191 -

Sacrificial Chalice Gamma Globules

Grad Student Fuller Bush

CMCCS '81 / ACCHO ·'81

- 191 -

Sacrificial Chalice Gamma Globules

Grad Student Fuller Bush

CMCCS '81 / ACCHO ·'81

