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ABSTRACT 

Rapid reduction of costs of graphics 
hardware is emphasizing the high cost of 
producing good graphics software. One way of 
reducing these costs is through the development 
and implementation of standards for graphics 
interfaces. 

Three aspects of graphics support 
software are being standardized: 

(a) the view of graphics functions from a 
programming language. 

Cb) a virtual device interface which lies 
between the graphic support package and one of 
several device translators. 

(c) a graphics metafile as a mechanism for 
storage and for transporting graphical data in 
a device-independent form between installations 
and systems. 

Proposals for international standards are 
emerging from the USA and Germany with 
contributions from several countries, including 
a significant one from Canada. 

The Canadian Working Group in Graphics 
wHhin the CSA Committee on Programming 
Languages is participating in the development 
of suitable standards that would benefit the 
Canadian computing community. 

The paper describes the current status in 
development and summarizes the Canadian 
interest in the standards activity. 

La reduction rapide des coGts du materiel 
pour graphiques met en evidence les coGts 
eleves de production de logiciel pour graphi­
ques de bonne qualite. Un des moyens de reduire 
ces coGts est le developpement et l'application 
des normes pour interfaces de graphiques. 

Trois aspects du logiciel pour graphiques 
font l'objet d'une normalisation: 

(a) les fonctions graphiques a partir d'un 
langage de programmation; 

(b) un dispositif d'interface pratique qui se 
situe entre le support graphique et un des 
nombreux dispositifs, traducteurs; 

(c) un metafichier de graphiques comme meca­
nisme de stockage et de transport de donnees 
graphiques sous une forme independante d'un 
dispositif entre les installations et les 
systemes. 

Des projets de normes internationales 
viennent des Etats-Unis et de l'Allemagne avec 
des contributions provenant de plusieurs pays 
dont une importante venant du Canada. 

Le groupe de travail canadien charge des 
graphiques et qui releve du comite des langages 
de programmation de l'ACNOR, participe a 
l'elaboration de normes convenables qui 
seraient utiles aux utilisateurs canadiens. 

Le document decrit l'etat actuel des 
connaissances et resume l'activite canadienne 
en ce qui a trait aux normes. 
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Introduction 

Even though graphics is growing at a fast 
rate, more and more systems are becoming 
available and hardware costs are decreasing 
rapidly, the principal remaining impediment 
to the use of graphics is the increasingly 
high cost of software. 

While computer software costs are high 
generally, the problem is more acute in 
graphics because of the greater portability 
problems. Graphics programs should not only 
be portable from system to system, but also 
be able to make use of the various displays 
and input devices. 

Graphics standards have been developed 
to allow this software portability amongst 
devices and systems as well as a consistency 
of access from the various languages. After 
detailing some of the history of graphics 
standards, this paper describes the general 
nature of the current proposals. These pro­
posals have become quite complex for reasons 
described. An alternative and simpler 
approach towards a lower level standard has 
recently emerged: The Programmer's Minimal 
Interface (PMI). A brief summary of the PMI 
is given. Also work in a related standards 
area - the virtual device interface/metafile 
is summarized. 

History 

Several software support packages had 
emerged prior to the more formal efforts in 
standards. Early days of graphics were domi­
nated by batch plotting, with the defacto low. 
level standard being the "Calcomp format" for 
interchange of graphical data. The emergence 
of the direct view storage tube (DVST) has 
established the "Tektronix compatible" as a 
low level standard. In this "Standard", 
graphical information is encoded in an ASCII 
character string on a communication channel. 
Tektronix has also contributed a "standard" 
at the software level, in the fcrm of the PLOT 
10 software support interface. 

Support packages not bundled to specific 
hardware were developed primarily at univer­
sities, and some of these packages remain in 
use. The better known packages are GCS (1) 
(Graphics Compatibility System) developed by 
R. Puck, then with U.S. Army, GINO and GINO-F 
(2) developed at Cambridge in Great Britain, 
and GPGS written at the Technical University 
of Delft (3). More recently, the GCS has been 

extended to support raster and shading primi­
tives (4). 

The early groundwork for starting a more 
formal process towards graphics standards has 
been set at the Seilliac 1 Workshop held in 
1976 (5) and by the Working Group 5.2 of 
!FIPS. 

Current Proposals 

The Graphics Standards Planning Committee 
(GSPC) was formed at Siggraph 1976 in Phila­
delphia (in the middle of the outbreak of 
Legionnaires' disease) and following a series 
of East / West meetings prepared the first 
report in 1977 (6). Subsequent effort over 
the next two years by several working groups 
with many Canadian participants has led to the 
publication of the final report by the GSPC 
in 1979 (7). The 1979 report defined the 
CORE proposal which has become the baseline 
document. It was the phenomenal growth of 
SIGGRAPH itself that financed the large effort 
needed to produce the CORE report. Defying 
all biological instincts, the Committee then 
dissolved itself with the publication of the 
CORE report and the formation of the ANSI 
Commit tee X3H3. 

The original work on GPGS at Delft had 
migrated to Norway, where GPGS was rewritten 
in Fortran in tune with the move away from 
machine languages and has subsequently led to 
the development of IDIGS at RUNIT in Norway 
and which is described in an impressive and 
extremely readable document (8). 

There was a concurrent effort on stand~ds 
in Germany. Development work there has pro­
duced the Graphics Kernel System at the Uni­
versity of Darmstadt under the leadership of 
J. Encarnacao. This work rapidly progressed 
to becoming a DIN draft and subsequently was 
introduced in ISO (International Standards 
Organization) as a draft proposal (9). While 
GKS draws on much of the earlier work, it 
contains significant differences which will be 
described later (see also Ref 10). 

Complexity of Standards 

The common theme in all of the standards 
proposals is a consensus at the placement of 
the boundary between the standard support and 
the "application program". Typically, the 
standard provides a consistent set of 
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graphical primitives (primarily line, polygon, 
text, marker*), a mechanism for specifying 
primarily graphical attributes (line style, 
line width, polygon interior style, color, 
text precision, text size, orientation) and a 
clear definition and control of the viewing 
transformations that are applied to the gra­
phical primitives. The graphical entities are 
defined at the standard interface in world 
coordinates, the coordinate system used by 

classes: 

the application program. In most proposals, 
the transformation to device coordinates is 
applied in two steps: first, from world co­
ordinates to normalized device coordinates 
(NDC), then from NDC to device specific co­
ordinates. Thus at the NDC point in the 
transformation chain, the image is defined 
such that it is both application-independent 
and device-independent. 

Much of the complexity introduced into a 
generalized graphics support system is there 
to support interactive graphics using either 
refresh or storage tube devices. The first 
area of both capability and complexity is 
segmentation, the ability to define grouping 
of output primitives and attributes and then 
to specify changes to graphical segments. 
The support for segment ion is an important 
capability in interactive graphics but it 
comes with its inherent complexity. The 
complexity is compounded in generalized 
systems that support both refresh and storage 
displays. Segmentation implies buffering of 
the segment data. There are several strate­
gies for updating the visible image, changes 
can be applied immediately and incrementally, 
or they can be collected or "batched" and 
applied all at once. Clearly, the strategy 
and the implementation is necessarily dif­
ferent for a storage display, where the 
screen-erase and rewrite process is far less 
frequent than it would be for a buffered 
refresh display. The graphics support 
standard caters to both types of displays. 

Support of interaction and hence input is 
another important capability offered by a 
standard, but at a considerable expense in 
the complexity. The first step towards stan­
dardization of input has been the formulation 
of device classes, so that a measure of device 
independence for input can be achieved, as 
has been the case with output. The general 
approach follows the work of Foley and 
Wa1lace (11) in proposing input device 

* a symbol used to label points in a graph 

Locator - a mechanism for specifying an 
xy coordinate (or xyz in 3D) 

Valuator - - a device for specifying a 
value of a scalar function, 
i.e., a virtual knob 

Button - a selection process for 
specifying a choice 

Keyboard a device for entering either 
individual characters or an 
entire string 

Pick - - - - a virtual device, used in 
conjunction with support for 
segmentation, for identifying 
segments and primitives 

Stroke - - - a virtual device for speci­
fying a series of coordinates 
as a path of a locator. 
Stroke is present in CORE but 
not in the GKS proposal. 

The definition of virtual devices in itself 
does not introduce the complexity into a 
graphics support package. Rather, the com­
plexity arises due to the real time aspects of 
communication between the application program 
and the operator. The application program 
usually is active under the control of some 
operating system. It is the o/s that re­
sponds to outside events. It is therefore 
necessary to define a communication model 
that is consistent with the current p~actice 
in operating systems in order to permit a 
reasonable implementation of the input 
channel. 

The interaction model defines both a 
simple and a complex mode for accessing 
input information. In the simple mode, 
the devices are accessed, one at a time in 
the form "AWAIT INPUT". In a typical time­
sharing system, the execution of the appli­
cation program would be suspended until 
operator action of the requested device. 
During the wait period, no other device would 
be enabled. 

A more powerful and hence complex style 
of interaction permits the activation of 
several input devices at the same time. For 
this purpose, the virtual device classes are 
divided into two disjoint groups: those that 
cause events and those that are sampled. By 
implication, the event device implies a 
discrete event caused by the operator action. 
The sampled devices are active continuously 
and the application program can obtain a 
sample at any instant. The event devices ar~ 
BUTTON, KEYBOARD, PICK, STROKE. The 
sampled devices are LOCATOR and VALUATOR. 
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With the division of device classes into 
event type and sample type, it is possible 
to define u logical association between an 
event type and a sampled type. For example, 
the most common association permits the 
sampling of the valuator at the precise in­
stant of an event caused by a button push. 
Such association eliminates the likelihood 
of skew that would otherwise occur if the 
program tried to access the two devices 
sequentially. 

An inherent need in an interactive 
system is the timely response to the operator 
of the input actions. Input device echoing 
is the generalized capability for the appli­
cation program and the support package 
jointly to respond to the operator action. 
Echoing, in particular good echoing, is an 
essential component of an interactive system. 
Examples of echoing are (a) the cursor on 
the screen indicating the (xy) coordinate 
being returned by the locator, or (b) a 
text string appearing on the CRT screen at a 
specified screen area, echoing the keyboard. 

The standards designer is faced with 
trade-offs in defining echoing mechanisms. 
Echoing could be relegated entirely above 
the standard and left to the application 
programs. Alternately, echoing could be 
defined rigidly and simply within the 
standard. In fact, both GKS and GSPC Core 
include echoing with several options in 
their drafts because of the time critical 
nature of effective user-feedback. 

The basic approach taken is to define a 
number of echo types for each device class 
including mandated type 0 - no echo, and 
type 1 - implementation-dependent echo. 

In the case of sampled devices (locator 
and valuator), the echoing process is 
optionally extensible upwards at the cost of 
portability, in order to provide additional 
capability, such as rubberband echoing, 
segment dragging, etc., with the valuator 
and a similar variety of echo types for the 
valuator. In particular, the facility permits 
coupling of valuators to segment trans­
formations - e.g. coupling a knob to control 
segment size. 

are: 
1. 

2. 

The advantages of structured echoing 

Time critical input/output coupling is 
kept at a low level in the system. 

Structure in the echo definition 

encourages good program design practice, 
on till' p.1rt of till' :11'1'1 i(,;lt ion pro­

grammer. 

3. Echo functions could progressively move 
to the graphics device in future 
designs. 

The disadvantages are: 

1. Significant complexity facing the casual 
user. 

2. Will not satisfy all requirements. 

Differences between GKS and GKPC and Impact 
on Canadian Activities 

The GKS concept is strongly rooted in 
the definition of an abstract graphical work 
station. The abstract work station consists 
of one addressable display surface and a 
number of input devices, with at least one 
for each device class (10). The inter­
pretation of graphics primitives - line-width, 
line style, text precision, pen-color is a 
two-stage process, the second stage being 
work station specific. In particular, the 
second stage of interpretation can be bundled 
into a "pen" which is work station specific. 
It is thus possible to generate the same image 
to produce a simplified image on a CRT and 
then use the data to drive a plotter work 
station, to produce a high quality plot. In 
the GSPC CORE the appearance of primitives is 
associated with the primitives themselves. It 
can be argued that CORE is more "device 
independent", however, GKS tries to come to 
grips with the essential differences between 
refresh displays and hard copy plotters in a 
way that does not require multiple generation 
of the image. 

The position taken by the Canadian 
Working Group on Graphics is influenced by 
both the technical evaluation of the different 
approaches and by the practical question 
which of the two (if either) will become a 
defacto dominant standard in North America 
and hence in Canada. 

PMI Small Core 

We have discussed the complexity of the 
current proposals, partly due to the support 
of segmentation, asynchronous input, input 
echoing. There has been a relatively recent 
proposal for an extremely small and simple 
standard, the Programmer's Minimal Interface 
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(PMI), often referred to as the Small Core 
that attempts to limit the level of support 
and to minimize the complexity. Although 
some discussion on this topic has gone on 
for some time, it is only in 1980 that an 
effort was mounted to produce such a draft. 
The draft is in early discussion stage within 
X3H3 and while the meetings are open to 
public, the draft has been circulated only 
within X3H3 and other National Standards 
Working Groups. 

Although the author is not part of the 
group working on the draft, the concept was 
reported to the Canadian Committee on Pro­
gramming Languages and has received enthusi­
astic reception from the chairmen of the 
various language committees as well as in 
the ,Working Group in Graphics. The enthusi­
asm reflects the urgency for making widely 
available a document like the PMI much sooner 
than a full multilevel standard could be 
published. The following description is an 
early view by an observer of what might 
emerge as the PMI and is not a public state­
ment by any group within X3H3 nor does it 
have any approval of X3H3. 

A preliminary view of what a programm~'s 
minimal interface might include is as fol~ws. 
The PMI is a standard supporting 2D graphics 
in which only output functions have been 
included. The standard does not include 
support for segmentation and, therefore, it 
is loosely equivalent to the lowest level 
of the CORE. 

The design philosophy has been to 
minimize redundant functions and to eliminate 
those that can be built easily on top of the 
PMI. 

The following primitives are tentatively 
included in the PMI: 

Polyline, 
Polymarker 
Polygon 
Text 

The following attribute setting 
functions are tentatively included: 

Character size - set by character height 
Character rotation but only one 
orientation 
Text justification 
Marker symbol attribute to permit the 
distinguishable markers 
Color - a single index to a color table. 
The color model will likely be a per­
ceptual one, based on hue, saturation, 
value rather than being RGB. The 

actual model is as yet unspecified. 
Polygon fill - fill with uniform color. 
No fill pattern is included. 

There is no prov1s10n for grouping the 
attribute setting functions into virtual pens, 
such that a single pen function could select 
a number of device dependent attributes. 
Instead, the functions for setting attributes 
are available individually and are kept 
device-independent. 

The PMI draft includes 2D window/viewport 
transformations but does not include clipping. 
Also, there is no provision of setting of 
background color, as might be available in 
hardware on a raster display. 

Since the PMI does not support segmen­
tation, it is possible to define input 
primitives quite separately from PMI without 
introducing any complexity, since it is the 
PICK primitive that tends to couple input 
and output. Without segmentation, there is 
no PICK function hence no coupling. If a 
separate input were defined, echoing of input 
devices could easily be built on top of PMI. 

How does the PMI fit into the overall 
scheme? Both GKS and CORE are levelled 
standards. They define several ~evels of 
capability starting from output - only hard 
copy gmpmcs, through to the fully interactive 
buffered standard with full input capabilities. 
At present, the specific capabilities at 
various levels are being studied, and one is 
in a position to establish Level 0 as a well 
defined proper subset of possibly both GKS 
and CORE. PMI is an autonomous definition 
along the lines of Level O. As such, it 
meets the needs of the vast user community 
using hard copy graphics. 

Virtual Device Interface - Metafiles 

Standardization is progressing along two 
complementary paths. In addition to the work 
described earlier, a significant effort is 
being applied to defining a virtual device 
interface between the support package and 
device-specific translators. Such an inter­
face, which probably will be a data driven 
interface, should facilitate the integration 
of new devices into systems. A development 
closely related to the virtual device inter­
face is the definition of a standard metafile. 
The relationship of the metafiles to Videotex 
is discussed in a paper in this session (12) 
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One overriding motivation in developing 
standards in the area of metafiles is to lay 
the groundwork for being able to store 
graphical information in device independent 
form and to exchange graphical information 
between different systems and installations. 
There are many user communities requiring 
such a facility each with differing require­
ments. A metafile as a storage and transport 
mechanism can exist at any of three levels: 
1. Lowest level at the virtual device inter­
face where the information is captured for 
transmission to different graphics devices 
on the same or another system, 2. A higher 
level metafile which permits reading back 
images for further modification through inter-. 
action or processing, 3. A file exchange 
mechanism of application-dependent data bases. 
One example of the last class is an agreed 
standard for exchanging geocoded polygonal 
data for mapping purposes (13). Another 
example in the area of CAD/CAM is the IGES 
standard and its subsequent reformulations. 

The publication of the Initial Graphics 
Exchange Specification (IGES) in January 1980 
(14) has created much interest in the CAD/CAM 
community by promising a timely mechanism 
for the exchange of product definition data 
in machine readable graphical form. Sub­
sequently, the document has been incorporated 
into a draft by the ANSI Committee on 
standards for machine readable engineering 
drawings - Yl4.26. 

The IGES draft is based on two corporate 
standards for product definition data bases: 
the Boeing CIIN and the General Electric 
Neutral Data Base. Being primarily intended 
for data base exchange, it is not a "graphics" 
standard. The intent of IGES lies clearly 
outside of the intent of graphics standards 
established at Seilliac I (5) that appli­
cation dependent modelling functions are 
beyond the scope. Furthermore, the effort 
is clearly in the mechanical engineering 
community. 

Regardless of any other work in the area 
of strictly graphical metafiles, the IGES 
effort will have a significant impact in that 
sector of graphics devoted to CAD/CAM. 

Conclusion 

The field of graphics standards has 
shj fted from the forum of tEchni~al societies 
to the formal standards developing organi­
zations - CSA, ANSI, ISO, DIN. The proposals 

are now being studied from a broader pOint of 
view than formerly. Clearly no firm con-
clusions can be drawn at this time. However, 
it is expected that by late in 1982, draft 
standards will reach a degree of maturity 
that implementations will appear on the 
market. Actual generality of their use must 
result from the support of the vendor/user 
community which will depend on the soundness 
of the proposals. It certainly will not be 
dictated by any standards writing committee. 
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