
- 261 -

IMPLEMENTING THE CSPC CORE LANGUAGE RECOMMENDATIONS IN AN EXISTING CAL LANGUAGE, NATAL

R.A. Orchard

Electrical Engineering Division
National Research Council of Canada

ABSTRACT

NATAL is a high level programming language
de~igned for the efficient production of
computer-assisted learning (CAL) materials. As
originally designed, it incorporated extensive
facilities for the display of alphanumeric and
monochrome graphic information and for response
processing. It was decided to extend the gra
phics capabilities of NATAL to support recent
developments in low-cost colour graphics ter
minals. Onc major objective of this exercise
was to ensure, insofar as possible, consistency
with commonly accepted computer graphics prac
tices, as recommended in the GSPC Status Report
on the 'core' language.

Since there existed a number of applica
tion programs using the original a1phanumeric/
graphics facilities of NATAL, it was essential
that the changes to the existing structure be
minimal. A further consideration involved the
purpose of NATAL, which is to make course
writing as simple as possible for authors
(while at the same time providing support for a
wide variety of terminals). To this end it was
felt necessary to keep the graphics support
from becoming too complex. The present report
describes the extensions to the NATAL graphics
support based on the 'core' language recommen
dations and the implications of the preceding
considerations.

NATAL est un 1angage de programmation
con~u pour realiser facilement des moyens
d'enseignement assiste par ordinateur (EAO).
Dans sa forme initiale, il contient un grand
nombre de fonctions pour l'affichage monochrome
alphanumerique et infographique, de meme que
pour le traitement des reponses. 11 a ete
decide d'etendre 1es fonctions infographiques
de NATAL afin de l'adapter aUK recents perfec
tionnements de terminaUK infographiques
cou1eurs de faib1e prix. Un des principauK
objectifs de cette entreprise etait de se
conformer, autant que possible, aUK pratiques
infographiques acceptees generalement, telles
que recommandees par le Rapport de situation du
GSPC sur le langage "central".

En raison de programmes rediges en tenant
compte des fonctions a1phanumeriques/infogra
phiques initiales de NATAL, i1 etait essentiel
de changer le moins possible la structure eKis~
tante. Une autre consideration concernait la
raison d'etre du NATAL, c'est-a-dire rendre la
redaction des cours la plus simple possible
pour les auteurs, tout en permettant leur
utilisation par une large gamme de terminaux.
Pour ce faire, on a juge bon de ne pas trop
augmenter la complexite des fonctions infogra
phiques. On trouve dans le present rapport une
description des developpements de la fonction
infographique NATAL realises en se conformant
aux recommandations sur la langage "central",
de meme qu'une description de la mise en oeuvre
des considerations precedentes.

CMCCS '81 / ACCHO '81

- 261 -

IMPLEMENTING THE CSPC CORE LANGUAGE RECOMMENDATIONS IN AN EXISTING CAL LANGUAGE, NATAL

R.A. Orchard

Electrical Engineering Division
National Research Council of Canada

ABSTRACT

NATAL is a high level programming language
de~igned for the efficient production of
computer-assisted learning (CAL) materials. As
originally designed, it incorporated extensive
facilities for the display of alphanumeric and
monochrome graphic information and for response
processing. It was decided to extend the gra
phics capabilities of NATAL to support recent
developments in low-cost colour graphics ter
minals. Onc major objective of this exercise
was to ensure, insofar as possible, consistency
with commonly accepted computer graphics prac
tices, as recommended in the GSPC Status Report
on the 'core' language.

Since there existed a number of applica
tion programs using the original a1phanumeric/
graphics facilities of NATAL, it was essential
that the changes to the existing structure be
minimal. A further consideration involved the
purpose of NATAL, which is to make course
writing as simple as possible for authors
(while at the same time providing support for a
wide variety of terminals). To this end it was
felt necessary to keep the graphics support
from becoming too complex. The present report
describes the extensions to the NATAL graphics
support based on the 'core' language recommen
dations and the implications of the preceding
considerations.

NATAL est un 1angage de programmation
con~u pour realiser facilement des moyens
d'enseignement assiste par ordinateur (EAO).
Dans sa forme initiale, il contient un grand
nombre de fonctions pour l'affichage monochrome
alphanumerique et infographique, de meme que
pour le traitement des reponses. 11 a ete
decide d'etendre 1es fonctions infographiques
de NATAL afin de l'adapter aUK recents perfec
tionnements de terminaUK infographiques
cou1eurs de faib1e prix. Un des principauK
objectifs de cette entreprise etait de se
conformer, autant que possible, aUK pratiques
infographiques acceptees generalement, telles
que recommandees par le Rapport de situation du
GSPC sur le langage "central".

En raison de programmes rediges en tenant
compte des fonctions a1phanumeriques/infogra
phiques initiales de NATAL, i1 etait essentiel
de changer le moins possible la structure eKis~
tante. Une autre consideration concernait la
raison d'etre du NATAL, c'est-a-dire rendre la
redaction des cours la plus simple possible
pour les auteurs, tout en permettant leur
utilisation par une large gamme de terminaux.
Pour ce faire, on a juge bon de ne pas trop
augmenter la complexite des fonctions infogra
phiques. On trouve dans le present rapport une
description des developpements de la fonction
infographique NATAL realises en se conformant
aux recommandations sur la langage "central",
de meme qu'une description de la mise en oeuvre
des considerations precedentes.

CMCCS '81 / ACCHO '81

- 262 -

1. NATAL

NATAL (acronym for NATional ~uthor
~anguage) is a high-level programming language
which was developed specifically to meet the
requirements of course authors for preparing
Computer Aided Learning (CAL) materials. One
of the primary objectives in the development
of NATAL was to produce a standard CAL
language that could be implemented on a
variety of computer equipment [lJ. This
allows CAL materials to be easily transferred
from one centre to another, eliminating much
duplication of effort and cost.

A most. important requirement of any
CAL language is that it provides course
authors with a rich environment in which to
present information to students and to accept
and process their responses. This includes
capabilities for the display of textual
information; the display of graphical infor
mation (both the vector graphic and font
graphic variety); the control of special
display devices such as random access slide
projectors or videodiscs; the control of
random access audio devices; the acceptance
of input from a keyboard; and the acceptance
of input from other input devices such as
touch sensitive panels or digitizing tablets.
While providing these extensive capabilities,
the language should remain easy to learn and
use. Authors should not be burdened with the
need to understand any details concerning the
operation of these specific devices. The
language should contain a simple interface
between the user and the control of input and
output. NATAL provides such an environment
for course authors and facilitates the
efficient production of CAL materials.

The initial implementation of NATAL
provided the means for creating displays on
graphics terminals. It became apparent,
however, that these capabilities were incom
plete, especially with regard to support for
recent developments in low-cost colour
graphics displays. There were several factors
to be considered. In view of the progress
made by the SIGGRAPH Graphics Standards
Planning Committee (GSPC) towards the defini
tion of standards for graphics packages, it
was decided to review the recommendations in
the GSPC report as a guideline for revising
the NATAL graphics support. At the same time,
however, it was important to remember rehat
NATAL was an existing language with an exist
ing graphics component included. Applications
had been developed and had made use of this

support. Therefore, the effects that any
changes to NATAL would have on these programs
had to be considered and were to be kept
minimal. Also, NATAL was designed to provide
facilities for course authors that are simple
to use so that the graphics support was not
to become too complex. NATAL provides a tool
for the development of CAL materials and was
never intended to provide a graphics develop
ment facility. The differences between
NATAL's objectives and those of the Core
System are quite fundamental and this led to
some compromise on the complete implementa
tion of the GSPC recommendations.

The present report describes the
current NATAL graphics facilities and
examines the implications of the preceding
considerations that led to this support.

2 • CORE SYSTEM

The main aim of the Core System is
the promotion of program portability [2J. In
very ideal situations, programs that are
produced at one installation could be taken
to other installations that support the Core
System standard and with no changes to the
programs they could be executed, producing
identical results. In practice this is
extremely difficult to achieve. The imple
mentations of the Core System would have to
be done using a common language, programmers
would.have to restrict themselves to using
standard subsets of this language, and the
implementations would need to use identical
techniques and naming conventions. Varying
degrees of program transportability may
actually be realized short of this ideal.
Many of the changes required to move a
program from one system to another might be
accomplished through an automatic translation
procedure (simple editing such as changing
the names of the graphics routines or re
ordering parameter lists could easily be
done). Other programs may require changes to
their structure before transporting can be
achieved. This may be due to different hard
ware capabilities at the installations that
require different programming techniques to
produce similar results. Some programs could
even require such extensive modification that
a complete rewriting of the application would
prove more cost effective. Foley suggests
that a program can be called portable if the
cost of moving the program is less than ·the
cost of rewriting the program [3J and refers
to this as realistic or "pragmatic"
portability. The Graphics Standards Plan-

CMCCS '81 / ACCHO '81

- 262 -

1. NATAL

NATAL (acronym for NATional ~uthor
~anguage) is a high-level programming language
which was developed specifically to meet the
requirements of course authors for preparing
Computer Aided Learning (CAL) materials. One
of the primary objectives in the development
of NATAL was to produce a standard CAL
language that could be implemented on a
variety of computer equipment [lJ. This
allows CAL materials to be easily transferred
from one centre to another, eliminating much
duplication of effort and cost.

A most. important requirement of any
CAL language is that it provides course
authors with a rich environment in which to
present information to students and to accept
and process their responses. This includes
capabilities for the display of textual
information; the display of graphical infor
mation (both the vector graphic and font
graphic variety); the control of special
display devices such as random access slide
projectors or videodiscs; the control of
random access audio devices; the acceptance
of input from a keyboard; and the acceptance
of input from other input devices such as
touch sensitive panels or digitizing tablets.
While providing these extensive capabilities,
the language should remain easy to learn and
use. Authors should not be burdened with the
need to understand any details concerning the
operation of these specific devices. The
language should contain a simple interface
between the user and the control of input and
output. NATAL provides such an environment
for course authors and facilitates the
efficient production of CAL materials.

The initial implementation of NATAL
provided the means for creating displays on
graphics terminals. It became apparent,
however, that these capabilities were incom
plete, especially with regard to support for
recent developments in low-cost colour
graphics displays. There were several factors
to be considered. In view of the progress
made by the SIGGRAPH Graphics Standards
Planning Committee (GSPC) towards the defini
tion of standards for graphics packages, it
was decided to review the recommendations in
the GSPC report as a guideline for revising
the NATAL graphics support. At the same time,
however, it was important to remember rehat
NATAL was an existing language with an exist
ing graphics component included. Applications
had been developed and had made use of this

support. Therefore, the effects that any
changes to NATAL would have on these programs
had to be considered and were to be kept
minimal. Also, NATAL was designed to provide
facilities for course authors that are simple
to use so that the graphics support was not
to become too complex. NATAL provides a tool
for the development of CAL materials and was
never intended to provide a graphics develop
ment facility. The differences between
NATAL's objectives and those of the Core
System are quite fundamental and this led to
some compromise on the complete implementa
tion of the GSPC recommendations.

The present report describes the
current NATAL graphics facilities and
examines the implications of the preceding
considerations that led to this support.

2 • CORE SYSTEM

The main aim of the Core System is
the promotion of program portability [2J. In
very ideal situations, programs that are
produced at one installation could be taken
to other installations that support the Core
System standard and with no changes to the
programs they could be executed, producing
identical results. In practice this is
extremely difficult to achieve. The imple
mentations of the Core System would have to
be done using a common language, programmers
would.have to restrict themselves to using
standard subsets of this language, and the
implementations would need to use identical
techniques and naming conventions. Varying
degrees of program transportability may
actually be realized short of this ideal.
Many of the changes required to move a
program from one system to another might be
accomplished through an automatic translation
procedure (simple editing such as changing
the names of the graphics routines or re
ordering parameter lists could easily be
done). Other programs may require changes to
their structure before transporting can be
achieved. This may be due to different hard
ware capabilities at the installations that
require different programming techniques to
produce similar results. Some programs could
even require such extensive modification that
a complete rewriting of the application would
prove more cost effective. Foley suggests
that a program can be called portable if the
cost of moving the program is less than ·the
cost of rewriting the program [3J and refers
to this as realistic or "pragmatic"
portability. The Graphics Standards Plan-

CMCCS '81 / ACCHO '81

- 263 -

ning Committee, in order to assist with these
problems of portability, have identified dif
ferent implementation levels for the Core Sys
tem for both input and output. By specifying
the level of support provided and including
all of the routines recommended by the GSPC
report. portability will be more easily
attained.

There are, however, a couple of un
derlying requirements of the Core System spe
cification that must be remembered if porta
bility is to be achieved. The intended target
of the support packages for the Core System is
a high-level language like FORTRAN or PL/l.
Il is expected that subroutine packages would
be developed and added as libraries of these
languages. The implication of this point is
that providing the functional support of the
Core System as specified in the GSPC report is
not sufficient to address the objective of
program portability. The vehicle used to
provide this support plays an important role.
Also it should be noted that the Core System
is primarily directed towards the support of
medium-performance interactive vector graphics
terminal equipment.

An objective related to program
portability is that of programmer portability;
the ability of a programmer to move to various
installations and need only limited retraining
to perform his intended duties. Given the
difficulties in achieving complete program
portability. perhaps the widespread acceptance
of the standard graphics techniques and termi
nology will be just as significant in the
success of the Core System. There will be a
common ground that will encourage the exchange
of information and allow programmers to
understand each other more fully.

3. COMPROMISING

3.1 The UNIT

NATAL, as originally designed, in
cluded many features necessary for the effect
ive control of textual display, a basic capa
bility for display of vector graphics, fea
tures for displaying font graphics, as well as
the ability to easHy control a host of other
output and input devices. These features are
essential in any advanced CAL system. The
control of the various types of input and out
put has been isolated in a separate component
of the NATAL language called the UNIT (see
Figure 1). Within this module, all trans-

THE NATAL UNIT

GEOGRAPHY: ENTRY PROCEDURE;

CALL *GREAT_LAKES;

END; 1* GEOGRAPHY *1

*GREAT LAKES: UNIT;

DISPLAY &E &Ll The great Lakes are
Lake Erie, Lake Ontario, Lake
Huron, Lake Michigan, and Lake
Superior. &L2 Which of these
lakes does the city of Toronto
border on? &;

RESPONSE POSN=(8,l);

EDIT SHUP;

RIGHT CC('&ONTARIO&') *
-CC('&(ERIE,HURON,SUPERIOR,MICHIGAN)&');

REINF RIGHT &L That is correct&;

RETRY UNREC &L No, try again &E(8,l);

REINF UNREC &E(lO,l) The correct answer is
Lake Ontario.&;

END; 1* GREAT LAKES *1

Figure 1

- beginning of the course

- execute the UNIT named *GREAT LAKES

- beginning of the UNIT

- erase the page (&E), move down 1
line (&Ll), display some text, move
down 2 lines (&L2), and ask
the question.

- ask for the answer to the question

- shift all lower case characters in the
response to upper case

- set RIGHT to true if answer includes
Ontario but not one of the others

- if correct, tell him and exit.

- 1st time not correct (unretognized)
let him try again
next time not correct display
correct answer and exit

CMCCS '81 I ACCHO '81

- 263 -

ning Committee, in order to assist with these
problems of portability, have identified dif
ferent implementation levels for the Core Sys
tem for both input and output. By specifying
the level of support provided and including
all of the routines recommended by the GSPC
report. portability will be more easily
attained.

There are, however, a couple of un
derlying requirements of the Core System spe
cification that must be remembered if porta
bility is to be achieved. The intended target
of the support packages for the Core System is
a high-level language like FORTRAN or PL/l.
Il is expected that subroutine packages would
be developed and added as libraries of these
languages. The implication of this point is
that providing the functional support of the
Core System as specified in the GSPC report is
not sufficient to address the objective of
program portability. The vehicle used to
provide this support plays an important role.
Also it should be noted that the Core System
is primarily directed towards the support of
medium-performance interactive vector graphics
terminal equipment.

An objective related to program
portability is that of programmer portability;
the ability of a programmer to move to various
installations and need only limited retraining
to perform his intended duties. Given the
difficulties in achieving complete program
portability. perhaps the widespread acceptance
of the standard graphics techniques and termi
nology will be just as significant in the
success of the Core System. There will be a
common ground that will encourage the exchange
of information and allow programmers to
understand each other more fully.

3. COMPROMISING

3.1 The UNIT

NATAL, as originally designed, in
cluded many features necessary for the effect
ive control of textual display, a basic capa
bility for display of vector graphics, fea
tures for displaying font graphics, as well as
the ability to easHy control a host of other
output and input devices. These features are
essential in any advanced CAL system. The
control of the various types of input and out
put has been isolated in a separate component
of the NATAL language called the UNIT (see
Figure 1). Within this module, all trans-

THE NATAL UNIT

GEOGRAPHY: ENTRY PROCEDURE;

CALL *GREAT_LAKES;

END; 1* GEOGRAPHY *1

*GREAT LAKES: UNIT;

DISPLAY &E &Ll The great Lakes are
Lake Erie, Lake Ontario, Lake
Huron, Lake Michigan, and Lake
Superior. &L2 Which of these
lakes does the city of Toronto
border on? &;

RESPONSE POSN=(8,l);

EDIT SHUP;

RIGHT CC('&ONTARIO&') *
-CC('&(ERIE,HURON,SUPERIOR,MICHIGAN)&');

REINF RIGHT &L That is correct&;

RETRY UNREC &L No, try again &E(8,l);

REINF UNREC &E(lO,l) The correct answer is
Lake Ontario.&;

END; 1* GREAT LAKES *1

Figure 1

- beginning of the course

- execute the UNIT named *GREAT LAKES

- beginning of the UNIT

- erase the page (&E), move down 1
line (&Ll), display some text, move
down 2 lines (&L2), and ask
the question.

- ask for the answer to the question

- shift all lower case characters in the
response to upper case

- set RIGHT to true if answer includes
Ontario but not one of the others

- if correct, tell him and exit.

- 1st time not correct (unretognized)
let him try again
next time not correct display
correct answer and exit

CMCCS '81 I ACCHO '81

-- --------

- 264 -
.. '"

actions between the program and the student
take place. This allows course authors to
structure their materials into manageable
pieces that perform identifiable tasks -
present some information, ask a question,
receive a response, analyze and categorize the
response. This makes NATAL quite different
in structure from other high-level languages
such as FORTRAN. For this reason it was
immediately apparent that support of the Core
System in NATAL could not promote the develop
ment of programs that.would be easily trans
ported to implementations in other languages.
The Core System was not meant to be implement
ed in a language like NATAL and still provide
easy portability to languages such as FORTRAN.
However,. by providing the functional capabi
lities of the Core System, commonly accepted
graphics practices are followed and the bene
fits of following such practices are realized.

3.2 Text Display

In CAL applications, the display of
textual information .is of major importance.
On the other hand, in strictly graphics appli
cations, such as would be expected with Core
System implementations, textual display plays
the somewhat minor role of annotating
pictures. NATAL required that text presenta
tion be handled in a manner that was natural
and simple for authors, so that they could
easily express what they wanted to do. Also,
it was necessary to allow the control of
textual display to be done in a way that would
relieve an author from having to know the
exact terminal model that would be used for
display (e.g. an author should not have to
write different versions of the same course to
account for terminals with 16 rows and 72
columns and those with 24 rows and 80 columns
if the nature of the material being displayed
doesn't make specific requirements of the size
of the display). This is achieved in NATAL
through the DISPLAY statement of the UNIT.
Included as part of the DISPLAY statement is a
display sub language that allows for flexible
control and formatting of text. Authors can
allow NATAL to process text automatically,
filling rows on the terminal with as many
words as will fit. Or they can control text
formatting through the use of many simple com
mands that are interspersed in the text:

centre text in middle of line
(&M command);

request that text be right justified
on each line (&J command);

erase the entire display area or
portions of it (&E command);

control the colour of text
(&HC command);

etc·.

Figure 2 is an example using some of these
commands. Text locations are conveniently
referred to by the row and column position on
the display. This is a natural way for
authors to think about positioning text when
formatting output for screens.

DISPLAYING TEXT

DISPLAY

&E &M Rain #1 &M &L2 The rain in
Spain falls mainly on the plain. This
text will be automatically formatted
by NATAL with lines being
broken on word boundaries.&L2 &M Rain
112 &M &L2 &J The rain in Spain falls
mainly on the plain. This text will be
formatted also but justification is
turned on so that the right margin is
aligned.&;

The above DISPLAY statement produces the
screen image shown below for terminals with
40 characters per row.

Rain 111

The rain in Spain falls mainly on the
plain. This text will be automatically
formatted by NATAL with lines being
broken on word boundaries.

Rain 112

The rain in Spain falls mainly on the
plain. This· text will be formatted also
but justification is turned on so that
the right margin is aligned.

Figure 2

A NATAL author may also define a
rectangular viewport or 'box' on the display
into which text is to be written. The NATAL
runtime system will automatically format the
text to fit the defined box. This allows the
screen to be subdivided for use as the author
sees fit (see Figure 3). For example, one

CMCCS '81 / ACCHO '81

-- --------

- 264 -
.. '"

actions between the program and the student
take place. This allows course authors to
structure their materials into manageable
pieces that perform identifiable tasks -
present some information, ask a question,
receive a response, analyze and categorize the
response. This makes NATAL quite different
in structure from other high-level languages
such as FORTRAN. For this reason it was
immediately apparent that support of the Core
System in NATAL could not promote the develop
ment of programs that.would be easily trans
ported to implementations in other languages.
The Core System was not meant to be implement
ed in a language like NATAL and still provide
easy portability to languages such as FORTRAN.
However,. by providing the functional capabi
lities of the Core System, commonly accepted
graphics practices are followed and the bene
fits of following such practices are realized.

3.2 Text Display

In CAL applications, the display of
textual information .is of major importance.
On the other hand, in strictly graphics appli
cations, such as would be expected with Core
System implementations, textual display plays
the somewhat minor role of annotating
pictures. NATAL required that text presenta
tion be handled in a manner that was natural
and simple for authors, so that they could
easily express what they wanted to do. Also,
it was necessary to allow the control of
textual display to be done in a way that would
relieve an author from having to know the
exact terminal model that would be used for
display (e.g. an author should not have to
write different versions of the same course to
account for terminals with 16 rows and 72
columns and those with 24 rows and 80 columns
if the nature of the material being displayed
doesn't make specific requirements of the size
of the display). This is achieved in NATAL
through the DISPLAY statement of the UNIT.
Included as part of the DISPLAY statement is a
display sub language that allows for flexible
control and formatting of text. Authors can
allow NATAL to process text automatically,
filling rows on the terminal with as many
words as will fit. Or they can control text
formatting through the use of many simple com
mands that are interspersed in the text:

centre text in middle of line
(&M command);

request that text be right justified
on each line (&J command);

erase the entire display area or
portions of it (&E command);

control the colour of text
(&HC command);

etc·.

Figure 2 is an example using some of these
commands. Text locations are conveniently
referred to by the row and column position on
the display. This is a natural way for
authors to think about positioning text when
formatting output for screens.

DISPLAYING TEXT

DISPLAY

&E &M Rain #1 &M &L2 The rain in
Spain falls mainly on the plain. This
text will be automatically formatted
by NATAL with lines being
broken on word boundaries.&L2 &M Rain
112 &M &L2 &J The rain in Spain falls
mainly on the plain. This text will be
formatted also but justification is
turned on so that the right margin is
aligned.&;

The above DISPLAY statement produces the
screen image shown below for terminals with
40 characters per row.

Rain 111

The rain in Spain falls mainly on the
plain. This text will be automatically
formatted by NATAL with lines being
broken on word boundaries.

Rain 112

The rain in Spain falls mainly on the
plain. This· text will be formatted also
but justification is turned on so that
the right margin is aligned.

Figure 2

A NATAL author may also define a
rectangular viewport or 'box' on the display
into which text is to be written. The NATAL
runtime system will automatically format the
text to fit the defined box. This allows the
screen to be subdivided for use as the author
sees fit (see Figure 3). For example, one

CMCCS '81 / ACCHO '81

?R I S ~l S

A prism is a three
dimensional figure
<polyhedron) with
two ident.ical
polygon face s in
paro I I e I p lanes

Ical led BASES . AI I
other faces ore
para I I e I ogt'ams .

FACE

BASE

- 265 -

Figure 3

Fi gure 4

P R I S M S

A prism is a three
dimensio nal figure
(pol~hedron) with
two ident.ica l
pot~gon face s in
parallel planes
col l ed BASES . AI I
o ther faces are
pCfral I e I ograms .
If a prism is cut
parallel to a base,
the surface formed
is identical to the
base.

?R I S ~l S

A prism is a three
dimensional figure
<polyhedron) with
two ident.ical
polygon face s in
paro I I e I p lanes

Ical led BASES . AI I
other faces ore
para I I e I ogt'ams .

FACE

BASE

- 265 -

Figure 3

Fi gure 4

P R I S M S

A prism is a three
dimensio nal figure
(pol~hedron) with
two ident.ica l
pot~gon face s in
parallel planes
col l ed BASES . AI I
o ther faces are
pCfral I e I ograms .
If a prism is cut
parallel to a base,
the surface formed
is identical to the
base.

- 266 -

part of the screen might contain some static
information while other parts of the display
could contain dynamically changing informa
tion that relates to this static part. This
capability proves very useful in practice.

The display sub language also
provides the means for selecting other than a
standard character set for display. These
alternate character sets could be predefined
as an integral feature of the terminal allow
ing an ability to switch between an English
and a French set for example. Some terminals
allow user created character sets to be de
fined and loaded. This allows authors to
prepare character sets to meet the needs of
their courses. A special character set that
displays mathematical and electrical symbols
could be developed to assist in teaching
electronics. Language training programs
might require the display of the Cyrillic al
phabet to assist in teaching Russian. This
ability to create special symbols is called
'font' graphics. Characters can be used
individually or combined as a mosaic in which
the pieces fit together to form a picture.
Figure 4 illustrates some examples of such
font graphics.

The preceding few paragraphs pre
sented a brief description of some of the
text formatting and control features of NATAL.
It was intended to show that a variety of
facilities are required in CAL systems if
they are to be effective. A strictly ,
graphics system has no such requirements.
Text is generally controlled by specifying
starting positions in a graphics coordinate
space. This would be less natural for
authors and NATAL has addressed the problem
to meet CAL requirements. (Note however,
that text may be positioned with respect to
the graphics space when required.)

3.3 Graphics Output

Graphics functions are executed by
using one of the commands of the display sub
language.

&G(f1, f2, .•. , fn)

TIle fi are a list of graphic functions that
are executed in the order that they appear
within the brackets. This is the mechanism
through which NATAL implements many of the
Core System recommendations. Current support
is two-dimensional, basic output, and syn
chronous input -- within the limitations

imposed by the nature of the NATAL language.
Appendix 1 shows the list of functions
embedded in the language as system graphics
functions. Figure 5 presents a simple example
using some of these functions.

Since NATAL has been implemented to
interpret an intermediate level code produced
by the compiler and these functions are in
cluded as part of the run-time system, it was
necessary to keep the number of graphic func
tions to a minimum. Some functions that are
part of the Core System recommendation were
not included for various reasons: the func
tion was already handled in a quite different
and usually more natural way (such as the
control of text or selection of character
fonts); the function may have added a level
of complexity to NATAL; the function could be
added later as a library function written in
NATAL (those functions less likely to be
used); or the function would serve no useful
purpose by being included (e.g. CREATE TEMP
SEG, CLOSE_TEMP_SEG).

NATAL also provides a mechanism
which allows authors to define their own gra
phic functions. This is the user defined
GRAPHIC FUNCTION. Within these functions
other user defined graphic functions or sys
tem graphic functions can be called to pro
duce the display required by the author.
Figure 6 shows a definition of a rectangle.
This routine could be added to a library of
graphic functions and made available to all
NATAL authors.

3.4 Input

Response handling had already been
included in NATAL in a way quite incompatible
to the techniques suggested for synchronous
input by the GSPC report. The RESPONSE
statement of the UNIT provides for most of
the functional capability required, as well
as some features not addressed by the Core
System but necessary in a CAL environment.
Input from keyboards, pointer devices (touch
tablets, joysticks, digitizer tablets), and
other devices is accommodated. Also, various
controls on the inputs can be maintained: the
number of characters or graphic points
accepted during a response can be limited;
echo or no echo of inputs is controllable;
the elapsed time allowed for an input can be
specified; the position on the display where
keyboard input will be echoed can be indica
ted; and graphic input can be returned as a
row,column position or in an x,y graphic

CMCCS '81 I ACCHO '81

- 266 -

part of the screen might contain some static
information while other parts of the display
could contain dynamically changing informa
tion that relates to this static part. This
capability proves very useful in practice.

The display sub language also
provides the means for selecting other than a
standard character set for display. These
alternate character sets could be predefined
as an integral feature of the terminal allow
ing an ability to switch between an English
and a French set for example. Some terminals
allow user created character sets to be de
fined and loaded. This allows authors to
prepare character sets to meet the needs of
their courses. A special character set that
displays mathematical and electrical symbols
could be developed to assist in teaching
electronics. Language training programs
might require the display of the Cyrillic al
phabet to assist in teaching Russian. This
ability to create special symbols is called
'font' graphics. Characters can be used
individually or combined as a mosaic in which
the pieces fit together to form a picture.
Figure 4 illustrates some examples of such
font graphics.

The preceding few paragraphs pre
sented a brief description of some of the
text formatting and control features of NATAL.
It was intended to show that a variety of
facilities are required in CAL systems if
they are to be effective. A strictly ,
graphics system has no such requirements.
Text is generally controlled by specifying
starting positions in a graphics coordinate
space. This would be less natural for
authors and NATAL has addressed the problem
to meet CAL requirements. (Note however,
that text may be positioned with respect to
the graphics space when required.)

3.3 Graphics Output

Graphics functions are executed by
using one of the commands of the display sub
language.

&G(f1, f2, .•. , fn)

TIle fi are a list of graphic functions that
are executed in the order that they appear
within the brackets. This is the mechanism
through which NATAL implements many of the
Core System recommendations. Current support
is two-dimensional, basic output, and syn
chronous input -- within the limitations

imposed by the nature of the NATAL language.
Appendix 1 shows the list of functions
embedded in the language as system graphics
functions. Figure 5 presents a simple example
using some of these functions.

Since NATAL has been implemented to
interpret an intermediate level code produced
by the compiler and these functions are in
cluded as part of the run-time system, it was
necessary to keep the number of graphic func
tions to a minimum. Some functions that are
part of the Core System recommendation were
not included for various reasons: the func
tion was already handled in a quite different
and usually more natural way (such as the
control of text or selection of character
fonts); the function may have added a level
of complexity to NATAL; the function could be
added later as a library function written in
NATAL (those functions less likely to be
used); or the function would serve no useful
purpose by being included (e.g. CREATE TEMP
SEG, CLOSE_TEMP_SEG).

NATAL also provides a mechanism
which allows authors to define their own gra
phic functions. This is the user defined
GRAPHIC FUNCTION. Within these functions
other user defined graphic functions or sys
tem graphic functions can be called to pro
duce the display required by the author.
Figure 6 shows a definition of a rectangle.
This routine could be added to a library of
graphic functions and made available to all
NATAL authors.

3.4 Input

Response handling had already been
included in NATAL in a way quite incompatible
to the techniques suggested for synchronous
input by the GSPC report. The RESPONSE
statement of the UNIT provides for most of
the functional capability required, as well
as some features not addressed by the Core
System but necessary in a CAL environment.
Input from keyboards, pointer devices (touch
tablets, joysticks, digitizer tablets), and
other devices is accommodated. Also, various
controls on the inputs can be maintained: the
number of characters or graphic points
accepted during a response can be limited;
echo or no echo of inputs is controllable;
the elapsed time allowed for an input can be
specified; the position on the display where
keyboard input will be echoed can be indica
ted; and graphic input can be returned as a
row,column position or in an x,y graphic

CMCCS '81 I ACCHO '81

- 267 -

GRAPHICS

*HOUSE: UNIT;

DISPLAY
&G(SET WlNDOW(O,O,l.2,l.0), SET FILL(2) , SET COLOUR(240),

MOVE(O,O), RPOLY«O,l.2,O),(~4S,O,-.4S»,
MOVE(O,.4S), SET COLOUR(300), RPOLY«O,l.2,O),(.SS,O,-.55»,
SET COLOUR(180),-CIRCLE(l.O,.8S,.1),
TREE(.92,.35), TREE(-.OS,.2),
SET FILL(2), SET COLOUR(O), MOVE(.25,.6), RPOLY«.3,.3),(.15,-.15»,
SET-COLOUR(120),-MOVE(.3,.35), RPOLY«O,.5,O),(.25,O,-.25»,
MOVE(.62,.68), RPOLY«O,.07,O),(.07,O,-.09»,
SET_COLOUR (0 ,100) , MOVE(.36,.45), RPOLY«O,.l,O),(.l,O,-.l»,SET_COLOUR(O,O),
MOVE(.36,.45),RLINE«O,.l,O,-.l,O,.l,O,-.05,O),(.l,O,-.1,0,.05,0,-.05,0,.1»,
MOVE(.6,.35),SET COLOUR(0),RPOLY«O,.l,O),(.15,O,-.lS»,
SET FILL(O),SET COLOUR(180),CIRCLE(.63,.42,.01),SET_FILL(2),
MOVE(.2,.02), RPOLY«.3,.l,.l,-.09,-.2),(.2,.13,O,-.13,-.2»,MOVE(.S,.5)

)&;
END;

The above UNIT can be used to produce the displays shown below. (Note that
the function TREE is a call to a user defined GRAPHIC FUNCTION.)

[lEE
(a)

full screen

EB Ea

EE
::.

(b)
varying windows and viewports

"Figure 5

space format. Consider the following example
of a response statement:

RESPONSE POSN=(5,l),TlME=10,NCHAR=5;

This statement prompts for a response from the
keyboard (default input device) and causes the
characters typed on the keyboard to be echoed
starting at column 1 of row 5. It would allow
up to 10 seconds for the response to be com
pleted before generating an out of time con
dition and it would allow a maximum of 5

characters to be entered as input. One can
readily see the advantages of such control on
responses for CAL applications.

4. CONCLUSIONS

The current NATAL system is success
ful in providing authors with a convenient
tool for creating and controlling the displays
that they require. By using the Core System
recommendations as a guide, a graphics facili
ty has emerged that allows programmers famili-

CMCCS '81 I ACCHO'81

- 267 -

GRAPHICS

*HOUSE: UNIT;

DISPLAY
&G(SET WlNDOW(O,O,l.2,l.0), SET FILL(2) , SET COLOUR(240),

MOVE(O,O), RPOLY«O,l.2,O),(~4S,O,-.4S»,
MOVE(O,.4S), SET COLOUR(300), RPOLY«O,l.2,O),(.SS,O,-.55»,
SET COLOUR(180),-CIRCLE(l.O,.8S,.1),
TREE(.92,.35), TREE(-.OS,.2),
SET FILL(2), SET COLOUR(O), MOVE(.25,.6), RPOLY«.3,.3),(.15,-.15»,
SET-COLOUR(120),-MOVE(.3,.35), RPOLY«O,.5,O),(.25,O,-.25»,
MOVE(.62,.68), RPOLY«O,.07,O),(.07,O,-.09»,
SET_COLOUR (0 ,100) , MOVE(.36,.45), RPOLY«O,.l,O),(.l,O,-.l»,SET_COLOUR(O,O),
MOVE(.36,.45),RLINE«O,.l,O,-.l,O,.l,O,-.05,O),(.l,O,-.1,0,.05,0,-.05,0,.1»,
MOVE(.6,.35),SET COLOUR(0),RPOLY«O,.l,O),(.15,O,-.lS»,
SET FILL(O),SET COLOUR(180),CIRCLE(.63,.42,.01),SET_FILL(2),
MOVE(.2,.02), RPOLY«.3,.l,.l,-.09,-.2),(.2,.13,O,-.13,-.2»,MOVE(.S,.5)

)&;
END;

The above UNIT can be used to produce the displays shown below. (Note that
the function TREE is a call to a user defined GRAPHIC FUNCTION.)

[lEE
(a)

full screen

EB Ea

EE
::.

(b)
varying windows and viewports

"Figure 5

space format. Consider the following example
of a response statement:

RESPONSE POSN=(5,l),TlME=10,NCHAR=5;

This statement prompts for a response from the
keyboard (default input device) and causes the
characters typed on the keyboard to be echoed
starting at column 1 of row 5. It would allow
up to 10 seconds for the response to be com
pleted before generating an out of time con
dition and it would allow a maximum of 5

characters to be entered as input. One can
readily see the advantages of such control on
responses for CAL applications.

4. CONCLUSIONS

The current NATAL system is success
ful in providing authors with a convenient
tool for creating and controlling the displays
that they require. By using the Core System
recommendations as a guide, a graphics facili
ty has emerged that allows programmers famili-

CMCCS '81 I ACCHO'81

ar with graphics concepts to quickly adapt
themselves to NATAL. Recent experience with
the TELIDON terminal has shown that authors
can easily take advantage of all of the fea
tures of this new generation of low-cost co
lour graphics terminals.

USER DEFINED GRAPHIC FUNCTIONS

/i' This graphic function is used to display
a rectangle that is centered about the
current cursor position with width w

*/

and height h, and is rotated about the
centre through deg degrees.

RECTANGLE: GRAPHIC FUNCTION (W,H,DEG);

/* Find vertices of the rectangle relative
to the centre.

*/

XV <- (-W/2, -W/2, +W/2, +W/2) ;
YV <- (-H/2, +H/2, +H/2, -H/2) ;

/* Perform the rotation */

DO I = 1 TO 4;

X <- XV.(I); Y <- YV.(I);
xv. (I) <- X*COS(DEG) - Y*SIN(DEG);
YV.(I) <- X*SIN(DEG) + Y*COS(DEG);

END;

/* Find positions of vertices relative to
each other.

*/
DO I = 4 TO 2 BY -1;

XV.(I) <- XV. (I) - XV. (I-I);
YV.(I) <- YV.(I) - YV.(I-l);

END;

/* Now display the rotated rectangle */

PLOT RMOVE(XV. (1), YV.(l)),
RPOLY(SUBVEC(XV,2,3),SUBVEC(YV,2,3));

END; /* RECTANGLE */

Figure 6

REFERENCES

1. NATAL-74 - Concept to Reality.
J.W. Brahan, W.H. Henneker, A.M. Hlady.
Proceedings of the Third Canadian Sympo
sium on Instructional Technology.
February, 1980.

- 268 -

2. Status Report of the Graphics Standards
Planning Committee. Computer Graphics.
August, 1979. Vol 13 #3, pp 1-270.

3. A Standard Computer Graphics Subroutine
Package. J.D. Foley. Computers and
Structures. April, 1979. Vol 10 111-2,
pp 141-147.

BIBLIOGRAPHY

1. Computer-Aided Learning - A Cooperative
Research Project of the National Research
Council of Canada. J.W. Brahan. AMTEC
(Association for Media & Technology in
Education in Canada) Conference.
June, 1976.

2. The Workstation Concept of GKS and the
Resulting Conceptual Differences to the
GSPC Core System. J. Encarnacao,
G. Enderle, K. Kansy, G. Nees,
E.G. Schlechtendahl, J. Weiss and
P. WiBkirchen. Computer Graphics.
Siggraph 1980 Conference Proceedings,
Seventh Annual Conference on Computer
Graphics & Interactive Techniques,
Seattle, Washington, USA. July, 1980.
Vol 14 #3, pp 226-230.

3. Computing Surveys. December, 1978.
Vol 10 #4, pp 363-464.

CMCCS '81 I ACCHO '81

ar with graphics concepts to quickly adapt
themselves to NATAL. Recent experience with
the TELIDON terminal has shown that authors
can easily take advantage of all of the fea
tures of this new generation of low-cost co
lour graphics terminals.

USER DEFINED GRAPHIC FUNCTIONS

/i' This graphic function is used to display
a rectangle that is centered about the
current cursor position with width w

*/

and height h, and is rotated about the
centre through deg degrees.

RECTANGLE: GRAPHIC FUNCTION (W,H,DEG);

/* Find vertices of the rectangle relative
to the centre.

*/

XV <- (-W/2, -W/2, +W/2, +W/2) ;
YV <- (-H/2, +H/2, +H/2, -H/2) ;

/* Perform the rotation */

DO I = 1 TO 4;

X <- XV.(I); Y <- YV.(I);
xv. (I) <- X*COS(DEG) - Y*SIN(DEG);
YV.(I) <- X*SIN(DEG) + Y*COS(DEG);

END;

/* Find positions of vertices relative to
each other.

*/
DO I = 4 TO 2 BY -1;

XV.(I) <- XV. (I) - XV. (I-I);
YV.(I) <- YV.(I) - YV.(I-l);

END;

/* Now display the rotated rectangle */

PLOT RMOVE(XV. (1), YV.(l)),
RPOLY(SUBVEC(XV,2,3),SUBVEC(YV,2,3));

END; /* RECTANGLE */

Figure 6

REFERENCES

1. NATAL-74 - Concept to Reality.
J.W. Brahan, W.H. Henneker, A.M. Hlady.
Proceedings of the Third Canadian Sympo
sium on Instructional Technology.
February, 1980.

- 268 -

2. Status Report of the Graphics Standards
Planning Committee. Computer Graphics.
August, 1979. Vol 13 #3, pp 1-270.

3. A Standard Computer Graphics Subroutine
Package. J.D. Foley. Computers and
Structures. April, 1979. Vol 10 111-2,
pp 141-147.

BIBLIOGRAPHY

1. Computer-Aided Learning - A Cooperative
Research Project of the National Research
Council of Canada. J.W. Brahan. AMTEC
(Association for Media & Technology in
Education in Canada) Conference.
June, 1976.

2. The Workstation Concept of GKS and the
Resulting Conceptual Differences to the
GSPC Core System. J. Encarnacao,
G. Enderle, K. Kansy, G. Nees,
E.G. Schlechtendahl, J. Weiss and
P. WiBkirchen. Computer Graphics.
Siggraph 1980 Conference Proceedings,
Seventh Annual Conference on Computer
Graphics & Interactive Techniques,
Seattle, Washington, USA. July, 1980.
Vol 14 #3, pp 226-230.

3. Computing Surveys. December, 1978.
Vol 10 #4, pp 363-464.

CMCCS '81 I ACCHO '81

MOVE (x,y)

RMOVE(dx,dy

LINE(x,y)

RLINE(dx,dy

MARK(x,y)

RMARK(dx, dy)

POLY(xv,yv)

RPOLY(dxv,dyv

CHAR(text)

CIRCLE(xc,yc,radius

ARC(dx,dy,deg)

SET_LINE(1

SET_MARK(c

SET_COLOUR(h,l,s

SET_BLINK(sw)

SET_FILL(n,dx,dy,xdeg,ydeg

SET_WINDOW(xl,yb,w,h)

- 269 -

SYSTEM GRAPHICS FUNCTIONS

- move the cursor to the absolute position (x,y)

- move the cursor relative to the current position

- draw a line or series of lines with the initial
position as the current cursor position and the
remaining line endpoints determined by x and y.
If x and y are scalars then one line segment is
displayed with absolute endpoint (x,y). If x and
y are vectors then display a series of lines with
(xi,yi) determining the absolute endpoints of the
connected line segments.

- as for LINE except that the dx,dy pairs will
be relative to the previous cursor position.

- plot marker symbols at the absolute locations
determined by the x and y arguments which may be
scalars or vectors as for the LINE function.

- as for MARK except that dx,dy pairs are relative
displacements from the previous cursor position.

- display a polygon with initial (and final) position
at the current cursor location and other vertices
determined by xV,yv pairs which are absolute locations.
xv and yv must be vectors of length at least 2.

- as for POLY except that arguments dxv and dyv
determine relative positions of the vertices.

- display the text starting at the current cursor
position. Note that the text may contain display
sublanguage commands embedded in it.

- display a circle with centre at xC,yc of given radius.

- draw an arc with centre located relative to current
cursor position (by dx and dy) and making a traverse
of the indicated number of degrees.

- set the line type attribute to that indicated by 1.

- set the marker symbol attribute to the indicated character.

- set the colour attribute for lines that follow to
the given hue, lightness, and saturation specified.

- set the blink status attribute on or off.

- set the filling attribute. Polygons, arcs, and
circles may be filled with solid fill or patterned
fill using horizontal and vertical lines that may
be spaced as required or rotated up to 45 degrees.

- determines whether elements of the picture (lines,
polygons, etc.) will,be displayed normally or will
cause an erase of the portion of the screen that
they would draw on (i.e. draw in the background colour).

- set the window of the user coordinate (world) space.

~~endix 1

MOVE (x,y)

RMOVE(dx,dy

LINE(x,y)

RLINE(dx,dy

MARK(x,y)

RMARK(dx, dy)

POLY(xv,yv)

RPOLY(dxv,dyv

CHAR(text)

CIRCLE(xc,yc,radius

ARC(dx,dy,deg)

SET_LINE(1

SET_MARK(c

SET_COLOUR(h,l,s

SET_BLINK(sw)

SET_FILL(n,dx,dy,xdeg,ydeg

SET_WINDOW(xl,yb,w,h)

- 269 -

SYSTEM GRAPHICS FUNCTIONS

- move the cursor to the absolute position (x,y)

- move the cursor relative to the current position

- draw a line or series of lines with the initial
position as the current cursor position and the
remaining line endpoints determined by x and y.
If x and y are scalars then one line segment is
displayed with absolute endpoint (x,y). If x and
y are vectors then display a series of lines with
(xi,yi) determining the absolute endpoints of the
connected line segments.

- as for LINE except that the dx,dy pairs will
be relative to the previous cursor position.

- plot marker symbols at the absolute locations
determined by the x and y arguments which may be
scalars or vectors as for the LINE function.

- as for MARK except that dx,dy pairs are relative
displacements from the previous cursor position.

- display a polygon with initial (and final) position
at the current cursor location and other vertices
determined by xV,yv pairs which are absolute locations.
xv and yv must be vectors of length at least 2.

- as for POLY except that arguments dxv and dyv
determine relative positions of the vertices.

- display the text starting at the current cursor
position. Note that the text may contain display
sublanguage commands embedded in it.

- display a circle with centre at xC,yc of given radius.

- draw an arc with centre located relative to current
cursor position (by dx and dy) and making a traverse
of the indicated number of degrees.

- set the line type attribute to that indicated by 1.

- set the marker symbol attribute to the indicated character.

- set the colour attribute for lines that follow to
the given hue, lightness, and saturation specified.

- set the blink status attribute on or off.

- set the filling attribute. Polygons, arcs, and
circles may be filled with solid fill or patterned
fill using horizontal and vertical lines that may
be spaced as required or rotated up to 45 degrees.

- determines whether elements of the picture (lines,
polygons, etc.) will,be displayed normally or will
cause an erase of the portion of the screen that
they would draw on (i.e. draw in the background colour).

- set the window of the user coordinate (world) space.

~~endix 1

