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ABSTRACT 

Although the coding technique using 
linear transformations has proven practical for 
continuous tone images, its applicability to 
graphic images has not been examined in the 
literature. In this paper the feasibility of 
employing the transform coding technique in the 
compression of binary pictorial data is 
investigated. Typical linear transformations 
are reviewed and a hybrid tree-transform coding 
method is introduced, which promises to perform 
better than the simple transform scheme for 
graphic images. Simulation results from the 
processing of five different graphic image 
samples on the Image-lOO system strongly 
suggests, however, the impracticability of 
using linear transformations in the coding of 
graphic images. 

Meme si la technique de cod age qui utilise 
les transformations lineaires s'est averee 
pratique pour des images i tonalite continue, 
son applicabilite aux images graphiques n'a pas 
ete etudiee. Dans le present document, on 
analyse la faisabilite de l'utilisation de la 
technique de codage transformee pour la com­
pression des donnees picturales binaires. 

Les transformations lineaires types sont 
etudiees et une methode de cod age en arbores­
cence hybride est introduite, methode qui 
promet de donner de meilleurs resultats que la 
simple transformation de schemas en images 
graphiques. Les resultats de simulation obtenus 
a partir du traitement de cinq echantillons 
d'images graphiques differentes sur le systeme 
Image-lOO laisse toutefois croire fortement i 
l'impossibilite d'utiliser les transformations 
lineaires dans le codage des images graphiques. 
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I. INTRODUCTION 

Although the transform coding technique has proven 

practical for continuous tone images [I), its applicability to 

graphic images, to my knowledge, has not been investigated 

in any work in the literature. The basic idea of transform 

coding is to map the sets of correlated picture elements 

(pixels) into the sets of nearly uncorrelated coefficients which 

can be encoded efficiently. For graphic images, however, 

there seems to be a contradiction. On the one hand, the 

strong correlation among neighboring picture elements in 

graphic images suggests the tractability of the transform cod­

ing method in the compression of binary pictorial data. On 

the other hand, as linear transformations generally map 

binary data into multilevel data, it appears unwise to go to 

the transform domain to code graphic images. In this paper, 

the feasibility of employing the transform coding technique 

in the compression of binary pictorial data is investigated. 

Typical linear transformations and transform coding schemes 

are first reviewed. A hybrid tree-transform coding method is 

then introduced. which promises to perform better than the 

simple transform scheme for graphic images. Finally, a com­

puter' experiment performed on five picture samples is 

described and simulation results are discussed. 

11. LINEAR TRANSFORMATIONS AND 

TRANSFORM CODING 

The basic premise of the transform coding system is 

that the transform of an image has an energy distribution 

more suitable to coding than the representations in the spatial 

domain. Figure I shows the block diagram of a transform 

coding system. Exploring both statistical and psychovisual 

redundancies in images, the transform encoder performs 

basically a sequence of two operations. The first operation is 

a linear transformation, A, which transforms a set of 

statistically dependent picture elements (pixels) f into a set of 

"more independent" coefficients, F. The second operation, Q, 

is to quantize and code each coefficient. The number of bits 

required to code each coefficient depends on 'the number of 

quantizer Icvels dictated by the sensitivity of human vision to 

subjective effect of quantization error. 

The best transformation for image coding would be the 

one resulting in a set of statistically independent coefficients. 

Needless to say, it is practically impossible to obtain this 

transformation, and the closest one can get to such an ideal 

with a linear transformation is the one that produces 

uncorrelated coefficients such as the discrete Karhunen-Loeve. 

Before examining the applicability of the transform coding 
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technique in the compression of binary pictiorial data. it is 

worthwhile to review typical linear transformations and 

transform coding schemes that have been proposed for the 

coding of multilevel images. 

The discrete Karhunen-Loeve transformation. 

For the sake of simplicity. let us consider the one­

dimensional transformation: 

F =A/ 

Where f and F denote the image vector and the image 

transform vector respectively. Then, The discrete 

Karhunen-Loeve transformation matrix is the modal matrix 

M of the covariance matrix RI of the image vector. We can 

write: 

with ~; denoting the eigenvector corresponding to the i Ih 

largest eigenvalue of RI' It can be shown that this transfor­

mation results in uncorrelated coefficients. Indeed. the covari­

ance matrix RF of the coefficients can be expressed as: 

RF = E[FFT) = (F.F) = (A/Af) = A (f.f)A T = A RI A T 

where E[.) denotes the expected value and ( ... ), the inner 

product. Since A = M T = M - J we have 

Hence, RF is a diagonal matrix with diagonal elements 

being eigenvalues of RI. Consequently, the components of F 

are uncorrelated. 

To achieve data compression, we can retain only the 

first m coefficients having the largest variances, i.e. the largest 

eigenvalues of RI for minimun mean square error. 

Although the discrete Karhunen-Loeve transformation 

appears theoretically attractive as it mi nimizes the mean 

square error, there are two major problems associated with its 

use (2): i) much computation must be performed: the covari­

ance matrix RI must be estimated if not known; next it must 

be diagonalized to compute its eigenvalues and eigenvectors; 

then the transform itself must be taken. In general there is 

no fast computational algorithm for the transform. And, ii) 

mean square error is not a valid error criterion for many 

types of images. 

Owing to the computational simplicity. a unitary 
transformation ( A - J A"T) such as the Fourier, 

Hadamard or Haar has been found or to be practical for 

image coding ([2), (3), and (4)). 
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The Discrete FGUrler TrllllSformadon 

The discrete Fourier transform pair can be expressed as 

I I • 
F=TNAI and I=TNA 1 

where A • denotes the conjugate of A which is a unitary and 

symmetric matrix with elements given by: 

ak! = W(k-I)(/-I) and W =e-21r;/N fork.l = 1.2 •.... N 

If the image vector f has N real, positive components 

then its transform F has N complex components but as conju­

gate pairs. For N = 2m , the fast computational algorithm 

requires (N/2)logN complex multiplications and NlogN com­

plex additions and subtractions. 

The Hadamarel (or Walsh) Transformadon 

The Hadamard transform pair can be defined by: 

F = H 1 and 1 = (1/ N) H F 

where the Hadamard matrix H is an orthogonal and 

symmetric matrix with elements being I's and -I's. For N =2, 

the Hadamard matrix H is defined as: 

H2= [: _: ] 

For N = 2n , H can be constructed recursively by: 

[ 
HN /2 HN /2] 

H N = H N !2 X H 2 = H N /2 - H N /2 

where X denotes the Kronecker product. A Walsh 

matrix is simply a Hadamard matrix with its basis vectors 

rearranged in the order of ascending sequency (i.e. the 

nu mber of sign changes in a basis vector). 

The implementation of a Hadamard (or Walsh) 

transform is extremely simple, and the fast computational 

algorithm using matrix factorization requires only NlogN 

additions or substractions. 

The Haar Transformation 

The Haar transform pair can be written as: 

where the Haar matrix H is an orthogonal, non-symmetric 

matrix comprised of I's, -I's and O's and directly related to 

Walsh transform [5]. In term of sampling theory Haar 

matrix samples the input signal of progressively coarser 

intervals, starting with highest resolution and decreasing in 
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powers of two. For example, 

I I -I -I 
H4 = ../2 -../2 0 0 

o 0 ../2-../2 

The Lower Triangular Transform 

The lower triangular transformation is a non-orthogonal 

transformation which results in uncorrelated coefficients. In 

series form. the lower triangular can be written as: 

F(I) = 1(1) 

u-I 
F(u)=/(u)- ~ tux/(x) 

x=1 

for u = 2.3 •...• N 

or in vector form. 

F=TI 

where T is a unit lower triangular matrix such that the covari­

ant matrix of F. RF=TRJTT, is diagonal. Martin and 

Wilkinson [6] have developed an efficient algorithm for 

finding TandRF reqriring only N 3/6 multiplications. 

For an n Ih order Markov process. the transform is given 

by: 

n 
F(u)=/(u)- ~ a.d(u-x) 

<-I 

where f(x) = 0 for x = O. - I. -2..... Then the operator T n is a 

banded matrix of (n+ I) bands. The transformation with 

operator Tn reqrires less than nN multiplications as 
N 2 

compared to I -2- - NI multiplications needed by the 

transformation with unit lower triangular operator in its gen­

eral form. 

Other interesting linear transformations with fast 

transform algorithms that are not described here i nelude the 

cosine and the slant transformations. 

Transform Coding Schemes 

After the pixels of a picture (or subpicture) have been 

transformed into a set of coefficients. a coding scheme such 

as zonal coding or threshold coding can be applied to those 

coefficients to achieve data compression. In the zonal coding 

system, the set of zones is established in each transform 

block.' Transform samples in each zone are then quantized 

with the same number of quantization levels which is 

normally set proportional to the expected variance of the 

transform coefficients. Thus. zero quantization level implies 

that the coefficients falling into that zone are discarded. In 
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threshold coding, only those transform samples whose 

magnitudes are greater than a given threshold are retained 

and quantized with a fixed number of levels. Therefore, it is 

necessary to code not only the magnitude of each retained 

sample but also its position in the transform plane. Due to 

its adaptive process, the threshold coding system is expected 

to perform better than the zonal coding one. However, the 

implementation of the former would be much more complex 

than the one of the latter. On this account, the zonal coding 

strategy is normally used. 

In general, a picture to be coded is partitioned into 

small equal size subpictures and a transform scheme is 

applied to each subpicture rather than the entire picture 

directly to reduce the computation and storage requirement. 

Ill. TRANSFORM CODING FOR GRAPHIC IMAGES 

As mentioned previously. the transform coding system 

has proven efficient and practical for continuous tone 

imagery. For binary pictorial data, however, the transform 

technique seems to be untractable despite the strong correla­

tion among neighboring pixels. As a linear transformation 

generally maps binary data to multilevel da~a, many bits 

would be re4uired to code each retained transform coefficient. 

Let us consider. for example, an one-dimensional Hadamard 

transform scheme with subpicture size N= 16. Each subpic­

ture of 16 binary pixels is then transformed into 16 

coefficients. each having an integer value in the interval [-

16.+ 16]. i.e. the Hadamard transform maps binary data into 

data of 32 levels. Now, even a "crude", efficient coding 

scheme such as the one which uses 3 bits to code the DC 

coefficient, one bit to code each of the next 5 largest variance 

coefficients and zero bit to discard the remaining coefficients 

can only achieve a compression ratio of 2 at the likely penalty 

of severe degradation in picture quality. 

A Handamard transform system is simulated on a 

PDP-15 computer at Carleton University whose block 

diagram is shown in Figure 2. Four different picture samples 

- two typewritten texts, a line drawing and a circuit diagram -

are used. each of size 8"x I" corresponding to 512x 128 pixels. 

Here. each subpicture of 4 x 4 pixels was rearranged as one 

dimentional data, i.e. as a 16 - component vector f with each 

component taking on values I and -I corresponding to black 

pixel and white pixel respectively. With subjective judgement 

of image quality degradation after each processing, we found 

that: i) at least seven Hadamard coefficients must be retained 

exactly to reproduce pictures with barely acceptable degrada­

tion; ii) among several coefficient combinations we have tried, 

reconstructions with the largest variance coefficients yielded 

the least distorted pictures; and iii) further subjective distor­

tion prevails when a quantization scheme was applied. The 
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circuit diagram picture sample and its reconstructions from I 

and 5 nonquantized and from 6 quantized transform 

coefficients are shown in Figures 3a. b, c & d respectively. 

Likewise. Figuri:s 4a & b show a text sample and its recon­

struction ),fum 5 nonquantized transform coefficients. The 

quantization scheme for the 6 transform coefficients of Figure 

3d is given in Table I. 

Although we have sofar demonstrated the inefficiency of 

the transform coding method in the compression of binary 

pictorial data. it is still hopeful that there is a transform cod­

ing scheme which provides some modest data compression 

(e.g. CR=2) such that it can be used in a hybrid coding sys­

tem to result in an attractive overall data compression ratio. 

We are thus motivated to investigate the hybrid technique 

which combines an original domain coding system and a 

transform one. 

IV. THE HYBRID TREE-TRANSFORM CODING SCHEME 

In this approach, the picture is first partitioned into 

several small equal-size subpictures. A tree sheme is then 

applied, which assigns short codewords to a few frequently 

occured subpictures and the shortest codeword to any of the 

remaining subpictures, which is further coded using a 

transform coding scheme. For example, a subpicture can be 

classified as either a "DC" subpicture if it contains all white 

pixels, or a "non-DC" subpicture if it contains one or more 

black pixels, and one bit can be used to distinguish between a 

DC subpicture and a non-DC subpicture. Indeed. a DC sub­

picture, which occurs very frequently in a picture. can be sim­

ply coded by a 0 and a non-DC subpicture can be coded by a 

I followed by an appropriate codeword of a transform coding 

scheme. 

let N denotes the number of pixels in each subpicture; 

n, the number of subpictures in the picture; 

M, the total number of bits required to code the pic­

ture; 

K, the length of subpicture codeword of the transform 

scheme used; 

nb. the number of non-DC subpictures in the picture; 

nb 
and rb, the ratio- of non-DC subpictures over all 

n 
subpictures. 

Then the compression ratio (CR) of the above hybrid 

scheme can be expressed as: 

eR = Nn = Nn 
M Knh +n 
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Clearly. the efficiency of the hybrid scheme depends on 
the subpicture size. the efficiency of the transform coding 
scheme a nd. of course. the picture statistics. A transform 
scheme of modest efficiency (e.g. CR=2) can thus be used in 
this hybrid scheme to achieve an attractive overall compres­
sion ratio (e.g. CR=6.15 if N= 16. K=8 and Th=0.2) 

[t is interesting to note that this hybrid method can be 
generalized by combining a tree scheme with any block cod­
ing scheme such as a transform scheme. a sequence indexing 
scheme [7]. or a scheme using an error correcting code. 

V. SIMULATION AND RESULTS 

To investigate the feasibility of the transform method in 
the coding of graphic images whether applied singly or in 
combination with a tree scheme we have performed a simula­
tion experiment on the Image-lOO image processing system at 
the Canada Center for Remote Sensing (CCRS). Figure 5 
shows the block diagram of this simualtion system. Four pic­
ture samples (a map of north pole, a text, a circuit diagram, 
and a handwritten picture) were scanned by the PDS micro­
densitometer at the resolution of 5, 6, 3 and 2.5 lines per mm 
respectively. Corresponding pictorial data were then stored 
on magnetic tape, and later read into the solid-state Intel 
memory for display on a CRT terminal and for processing by 
the Image-lOO analyser and the POP 11/70 computer. In 
addition, we also processed a text sample, shown in Figure 
8a, which was generated by the character generator of the 

Image-lOO system. 

I n the simulation experiments, a Hadamard transform 
coding scheme with subpicture size Ixl6 was first applied 
singly to the five picture samples, and then in combination 
with a simple tree scheme which filtered out all DC 
subpictures. The plots of the calculated variances of the 16 
Hadamard coefficients show that energy distribution over the 
Hadamard transform coefficients varies from picture to pic­
ture and that picture energy does not concentrate mostly in 
the lower order coefficients as was the case for multi-level 
imagery. As expected, the first (DC) coefficient contains 

most energy for the case of simple transform coding (Figure 
6). But as DC subpictures are removed from the sample, the 
first Hadamard coefficient collects little energy and the 
variances of the remaining coefficients become very close to 
one another, as shown in Figure 7. This rather uniform dis­
tribution of picture energy over the transform coefficients 
clearly indicates the disadvantage of going to the transform 
domain to code graphic images. Indeed, severe degradation 
in picture quality was noted from pictures reconstructed from 
various sets of Hardamard transform coefficients and in gen­
eral, a large number of coefficients, as many as 13, must be 
retained exactly to reproduce picture of barely acceptable 
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quality. Figures 8 shows 3 original picture samples - a text, a 
map, and a circuit diagram - and their reconstructed versions 
from 13 "exact" transform coefficients. Likewise, Figure 9 
shows the degradation 'of the text picture reconstructed from 
13 "exact" coefficients in the hybrid tree - Hadam~rd 
transform scheme (in which DC subpictures are'filtered out). 

We are thus led to believe that the Hadamardtransform 
coding system with subpicture size I x 16, whether applied 
singly or in combination with a tree scheme', is ~ot feasible 
for the coding of graphic images. 

VI. CONCLUSIONS 

I have reviewed various linear transformations for 
multilevel image coding, and demonstrated, by computer 
simulation, the infeasibility of the Hadamard transform cod­
ing system with subpicture sizes 1 x 16 and 4x4 in the compres­

,sion of binary pictorial data, thereby suggesting the impracti­
cability of the linear transform technique in the coding of 
graphic images in genera!. Although the .performance of the 
class of linear transform coding schemes for graphic images 
may be improved by using a different subpicture size, e.g. 
2)(8, 2x 16, 4x4, or 4x8 and a different linear transformation 
such as the Fourier or the lower triangular. I believe that such 
improvements, if any at all, would not be so great as to turn 
a deficient coding scheme into an efficient one. 
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