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LINEAR TRANSFORMATION IS BAD FOR THE CODING OF GRAPHIC IMAGES
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ABSTRACT

Although the coding technique using
linear transformations has proven practical for
cont inuous tone images, its applicability to
graphic images has not been examined in the
literature. In this paper the feasibility of
employing the transform coding technique in the
compression of binary pictorial data is
investigated, Typical linear transformations
are reviewed and a hybrid tree~transform coding
method 1s introduced, which promises to perform
better than the simple transform scheme for
graphic images. Simulation results from the
processing of five different graphic image
samples on the Image-100 system strongly
suggests, however, the impracticability of
using linear transformations in the coding of
graphic images.

RESUME

Méme si la technique de codage qui utilise
les transformations lin€aires s'est avérée
pratique pour des images 3 tonalité@ continue,
son applicabilité aux images graphiques n'a pas
été étudiée. Dans le présent document, on
analyse la faisabilit@ de l1'utilisation de la
technique de codage transformée pour la com—
pression des données picturales binaires.

Les transformations lin&aires types sont
8tudides et une méthode de codage en arbores-
cence hybride est introduite, méthode qui
promet de donner de meilleurs résultats que la
simple transformation de schémas en images
graphiques. Les résultats de simulation obtenus
d partir du traitement de cing &chantillons
d'images graphiques différentes sur le systéme
Image-100 laisse toutefois croire fortement &
1'impossibilité d'utiliser les transformations
linéaires dans le codage des images graphiques.
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I. INTRODUCTION

Although the transform coding technique has proven
practical for continuous tone images (1], its applicability to
graphic images, to my knowledge, has not been investigated
in any work in the literature. The basic idea of transform
coding is to map the sets of correlated picture elements
(pixels) into the sets of nearly uncorrelated coeficients which
can be encoded efficiently. For graphic images, however,
there seems to be a contradiction. On the one hand, the
strong correlation among neighboring picture elements in
graphic images suggests the tractability of the transform cod-
ing method in the compression of binary pictorial data. On
the other hand, as linear transformations generally map
binary data into multilevel data, it appears unwise to go to
the transform domain to code graphic images. In this paper,
the feasibility of employing the transform coding technique
in the compression of binary pictorial data is investigated.
Typical linear transformations and transform coding schemes
are first reviewed. A hybrid tree-transform coding method is
then introduced, which promises to perform better than the
simple transform scheme for graphic images. Finally, a com-
performed on five picture samples is
described and simulation results are discussed.

puter experiment

1i. LINEAR TRANSFORMATIONS AND
TRANSFORM CODING

The basic premise of the transform coding system is
that the transform of an image has an energy distribution
more suitable to coding than the representations in the spatial
domain. Figure 1 shows the block diagram of a transform
coding system. Exploring both statistical and psychovisual
redundancies in images, the transform encoder performs
basically a sequence of two operations. The first operation is
a linear transformation, A, which transforms a set of
statistically dependent picture elements (pixels) f into a set of
"more independent” coefficients, F. The second operation, Q,
is to quantize and code each coefficient. The number of bits
required to code each coefficient depends on the number of
quantizer lcvels dictated by the sensitivity of human vision to
subjective effect of quantization error.

The best transformation for image coding would be the
one resulting in a set of statistically independent coefficients.
Needless to say, it is practically impossible to obtain this
transformation, and the closest one can get to such an ideal
with a linear transformation is the one that produces
uncorrelated coefTicients such as the discrete Karhunen-Loeve.
Before examining the applicability of the transform coding
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technique in the compression of binary pictiorial data, it is
worthwhile to review typical linear transformations and
transform coding schemes that have been proposed for the
coding of multilevel images.

The discrete Karhunen-Loeve transformation.

For the sake of simplicity, let us consider the one-
dimensional transformation:

F=af

Where f and F denote the image vector and the image
transform  vector respectively.  Then, The discrete
Karhunen-Loeve transformation matrix is the modal matrix
M of the covariance matrix Ry of the image vector. We can
write:

A=MT=[5 £ . tn)7

with £&; denoting the eigenvector corresponding to the ith

largest eigen\}alue of Ry. It can be shown that this transfor-
mation results in uncorrelated coefficients. Indeed, the covari-
ance matrix Rr of the coefTicients can be expressed as:

RF=E[FFN=(FF)=(AfAf)=A()AT=aR;aT

where E[.] denotes the expected value and (...), the inner
product . Since 4 = M T= M~ we have

RF=M7"'RyM=A

Hence, RF is a diagonal matrix with diagonal elements
being eigenvalues of Ry. Consequently, the components of F
are uncorrelated.

To achieve data compression, we can retain only the
first m coefficients having the largest variances, i.e. the largest
eigenvalues of Ry for minimun mean square error.

Although the discrete Karhunen-Loeve transformation
appears theoretically attractive as it minimizes the mean
square error, there are two major problems associated with its
use [2]: i) much computation must be performed: the covari-
ance matrix Ry must be estimated if not known: next it must
be diagonalized to compute its eigenvalues and eigenvectors;
then the transform itself must be taken.
no fast computational algorithm for the transform. And, ii)
mean square error is not a valid error criterion for many
types of images.

In general there is

Owing to the computational simplicity, a unitary
transformation ( A~ A4°T ) such as the Fourier,
Hadamard or Haar has been found or to be practical for
image coding ([2], [3], and [4]).




" The Discrete Fourler Transformation

The discrete Fourier transform pair can be expressed as

1 1 .
F= Af and f = A
I AS e S =gy S

where 4" denotes the conjugate of 4 which is a unitary and

symmetric matrix with elements given by: ‘

ap =WE=D g0d W=~ 20N for gy =1,2,..N
If the image vector f has N real, positive components
then its transform F has N complex components but as conju-
gate pairs. For N =2", the fast computational algorithm

requires (N/2)logN complex muitiplications and NlogN com-
plex additions and subtractions.

The Hadamard (or Walsh) Transformation
The Hadamard transform pair can be defined by:
F=Hf and f=(I/NYH F

where the Hadamard matrix H is an orthogonal and
symmetric matrix with elements being I's and -1’s. For N=2,
the Hadamard matrix H is defined as:

-]

For N = 2", H can be constructed recursively by:

|

Hypp Hyp

Hyv=HnpXHy= g —Hyp

where X denotes the Kronecker product. A Walsh
matrix is simply a Hadamard matrix with its basis vectors
rearranged in the order of ascending sequency (i.e. the
number of sign changes in a basis vector).

The
transform is extremely simple, and the fast computational
algorithm using matrix factorization requires only NlogN
additions or substractions.

The Haar Transformation

The Haar transform pair can be written as:

F=H/f and f=#HTF

where the Haar matrix H is an orthogonal, non-symmetric
matrix comprised of 1's, -1's and 0's and directly related to
Walsh transform (5]. In term of samplihg theory Haar
matrix samples the input signal of progressively coarser
intervals, starting with highest resolution and decreasing in
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implementation of a Hadamard (or Walsh)

powers of two. For example,

The Lower Triangular Transform

The lower triangular transformation is a non-orthogonal
transformation which results in uncorrelated coefficients. In
series form, the lower triangular can be written as:

F(=f()
u=—1

F(“)'—'f(u)_z_'ltuxf(x)

foru = 2,3,...,.N

or in vector form,
F=Tf

where T is a unit lower triangular matrix such that the covari-
ant matrix of F, RF=TRfTT, is diagonal. Martin and
Wilkinson [6] have developed an efficient algorithm for
finding TandRF reqriring only N3/6 multiplications.

For an n* order Markov process, the transform is given
by:

F(u)=f(u)—21axf(u—X)
where f(x) = 0 forx =0, -1, -2,....

banded matrix of (n+1) bands.
operator Tj, than

Then the operator T, is a
The transformation with
less

reqrires nN multiplications as

2
compared to | NT - N} multiplications needed by the

transformation with unit lower triangular operator in its gen-
eral form.
Other interesting with fast

transform algorithms that are not described here inciude the
cosine and the slant transformations.

linear transformations

Transform Coding Schemes

After the pixels of a picture (or subpicture) have been
transformed into a set of coefficients, a coding scheme such
as zonal coding or threshold coding can be applied to those
coefficients to achieve data compression. In the zonal coding
system, the set of zones is established in each transform
block. Transform samples in each zone are then quantized
with the same number of quantization
normally set proportional to the expected variance of the
transform coefficients. Thus, zero quantization level implies
that the coefficients falling into that zone are discarded. In

levels which s
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threshold coding, only those transform samples whose
magnitudes are greater than a given threshold are retained
and quantized with a fixed number of levels. Therefore, it is
necessary to code not only the magnitude of each retained
sample but also its position in the transform plane. Due to
its adaptive process, the threshold coding system is expected
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to perform better than the zonal coding one. However, the -

implementation of the former would be much more complex
than the one of the latter. On this account, the zonal coding
strategy is normally used.

In general, a picture to be coded is partitioned into
small equal size subpictures and a transform scheme is
applied to each subpicture rather than the entire picture
directly to reduce the computation and storage requirement.

Ill. TRANSFORM CODING FOR GRAPHIC IMAGES

As mentioned previously, the transform coding system
has proven efficient and practical for continuous tone
imagery. For binary pictorial data, however, the transform
technique seems to be untractable despite the strong correla-
tion among neighboring pixels. As a linear transformation
generally maps binary data to multilevel data, many bits
would be required to code each retained transform coefficient.
Let us consider, for example, an one-dimensional Hadamard
transform scheme with subpicture size N=16. Each subpic-
ture of 16 binary is then transformed into 16
coefficients, each having an integer value in the interval [-
16,+16], i.e. the Hadamard transform maps binary data into
data of 32 levels. Now, even a "crude”, efficient coding
scheme such as the one which uses 3 bits to code the DC
coefficient, one bit to code each of the next 5 largest variance
coefficients and zero bit to discard the remaining coefficients
can only achieve a compression ratio of 2 at the likely penalty
of severe degradation in picture quality.

pixels

A Handamard transform system is simulated on a
PDP-15 computer Carleton University whose block
diagram is shown in Figure 2. Four different picture samples
- two typewritten texts, a line drawing and a circuit diagram -

at

are used, each of size 8"x1” corresponding to 512x128 pixels.
Here, each subpicture of 4 x 4 pixels was rearranged as one
dimentional data, i.e. as a 16 - component vector f with each
component taking on values | and -1 corresponding to black
pixel and white pixel respectively. With subjective judgement
of image quality degradation after each processing, we found
that: i) at least seven Hadamard coefficients must be retained
exactly to reproduce pictures with barely acceptable degrada-
tion; ii) among several coefficient combinations we have tried,
reconstructions with the largest variance coeflicients yielded
the least distorted pictures; and iii) further subjective distor-
tion prevails when a quantization scheme was applied. The

circuit diagram picture sample and its reconstructions from 1
and 5 nonquantized and from 6 quantized
coefficients are shown in Figures 3a, b, ¢ & d respectively.
Likewise, Figuﬂs 4a & b show a text sample and its recon-
struction/f om 5 nonquantized transform coefficients. The
quantization scheme for the 6 transform coefficients of Figure
3d is given in Table 1.

transform

Although we have sofar demonstrated the inefficiency of
the transform coding method in the compression of binary
pictorial data, it is still hopeful that there is a transform cod-
ing scheme which provides some modest data compression
(e.g. CR=2) such that it can be used in a hybrid coding sys-
tem to result in an attractive overall data compression ratio.
We are thus motivated to investigate the hybrid technique
which combines an original domain coding system and a
transform one.

IV. THE HYBRID TREE-TRANSFORM CODING SCHEME

In this approach, the picture is first partitioned into
several small equal-size subpictures. A tree sheme is then
applied, which assigns short codewords to a few frequently
occured subpictures and the shortest codeword to any of the
remaining subpictures, which is further coded using a
transform coding scheme. For example, a subpicture can be
classified as either a “DC” subpicture if it contains all white
pixels, or a "non-DC” subpicture if it contains one or more
black pixels, and one bit can be used to distinguish between a
DC subpicture and a non-DC subpicture. Indeed, a DC sub-
picture, which occurs very frequently in a picture, can be sim-
ply coded by a O and a non-DC subpicture can be coded by a
1 followed by an appropriate codeword of a transform coding
scheme.

let N denotes the number of pixels in each subpicture;
n, the number of subpictures in the picture:

M, the total number of bits required to code the pic-
ture;

K, the length of subpicture codeword of the transform
scheme used:

ny . the number of non-DC subpictures in the picture;

. Ny .
and rp, the rauoT of non-DC subpictures over all

subpictures.
Then the compression ratio (CR) of the above hybrid
scheme can be expressed as:

=N _
CR=—

Nn__ _ N
Kny +n Krp+1
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Clearly, the eﬁ'ic'iency of the hybrid scheme depends on
the subpicture size, the efficiency of the transform coding
scheme and, of course, the picture statistics. A transform
scheme of modest efficiency (e.g. CR=2) can thus be used in
this hybrid scheme to achieve an attractive overall compres-
sion ratio (e.g. CR=6.15 if N=16, K=8 and r,=0.2)

It is interesting to note that this hybrid method can be
generalized by combining a tree scheme with any block cod-
ing scheme such as a transform scheme, a sequence indexing
scheme 7], or a scheme using an error correcting code.

V. SIMULATION AND RESULTS

To investigate the feasibility of the transform method in
the coding of graphic images whether applied singly or in
combination with a tree scheme we have performed a simula-
tion experiment on the Image-100 image processing system at
the Canada Center for Remote Sensing (CCRS). Figure 5
shows the block diagram of this simualtion system. Four pic-
ture samples (a map of north pole, a text, a circuit diagram,
and a handwritten picture) were scanned by the PDS micro-
densitometer at the resolution of 5, 6, 3 and 2.5 lines per mm
respectively. Corresponding pictorial data were then stored
on magnetic tape, and later read into the solid-state Intel
memory for display on a CRT terminal and for processing by
the Image-100 analyser and the PDP 11/70 computer. In
addition, we also processed a text sample, shown in Figure
8a, which was generated by the character generator of the
Image-100 system.

In the simulation experiments, a Hadamard transform
coding scheme with subpicture size 1x16 was first applied
singly to the five picture samples, and then in combination
simple all DC
subpictures. The plots of the calculated variances of the 16
Hadamard coefTicients show that energy distribution over the
Hadamard transform coefficients varies from picture to pic-
ture and that picture energy does not concentrate mostly in
the lower order coefficients as was the case for multi-level
As expected, the first (DC) coefficient contains
most energy for the case of simple transform coding (Figure
6). But as DC subpictures are removed from the sample, the
first Hadamard coefficient collects little energy and the
variances of the remaining coefficients become very close to
one another, as shown in Figure 7. This rather uniform dis-
tribution of picture energy over the transform coefficients
clearly indicates the disadvantage of going to the transform
Indeed, severe degradation
in picture quality was noted from pictures reconstructed from

with a tree scheme which filtered out

imagery.

domain to code graphic images.

various sets of Hardamard transform coefficients and in gen-
eral, a large number of coefficients, as many as 13, must be
retained exactly to reproduce picture of barely acceptable
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quality. Figures 8 shows 3 original picture samples - 4 text, a
map, and a circuit diagram - and their reconstructed versions
from 13 "exact” transform coeflicients. LikéWis’e, Figure 9
shows the degradation -of the text picture reconstructed from
13 "exact” coefficients in the hybrid tree - Hadamard
transform scheme (in which DC subpictures are filtered out).

We are thus led to believe that the Hadamard transform
coding system with subpicture size 1x16, whether applied
singly or in combination with a tree scheme, is not feasible
for the coding of graphic images.

VI. CONCLUSIONS

I have reviewed various linear transformations for
multilevel image coding, and demonstrated, by computer
simulation, the infeasibility of the Hadamard transform cod-

ing system with subpicture sizes 1x16 and 4x4 in the compres-

-sion of binary pictorial data, thereby suggesting the impracti-

cability of the linear transform technique in the coding of
graphic images in general. Although the -performance of the
class of linear transform coding schemes for graphic images
may be improved by using a different sﬁhpicture size, e.g.
2x8, 2x16, 4x4, or 4x8 and a different linear transformation
such as the Fourier or the lower triangular, | believe that such
improvements, if any at all, would not be so great as to turn
a deficient coding scheme into an efficient one.
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Figure 1. Block diagram of a transform system

M Facsimile PDP-15
scanner computer
Disk [[VT 15| [Disk [[VT 15
CRT CRT

Input image Processed image

Figure 3.

d) Retaining 6 quantized largest variance coefficients

A circuit diagram picture sample and its

reconstructions by retaining some transform coefficients

Figure 2. Block diagram of the simulation system at Carleton
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Table 1. Quantization scheme for Figure 3d (similarly for
negative value)

b) Reconstructed from 5 “exact” Hadamard coefficients

Figure 4. A text picture sample and its reconstructed version
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Figure 5. Block diagram of the simulation system at CCRS Figure 9. Text picture reconstructed from 13 "exact”

coeflicients in the tree - Hadamard transform scheme (DC
subpictures filtered out)
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Figure 6. Relative variance of Hadamard transform Figure 7. Relative variance of Hadamard transform
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Figure 8. Three picture samples and their reconstructed
versions from 13 "exact” Hadamard transform coefTicients
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