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ABSTRACT 

There is a range of applications for 
shaded display of 3-dimensional scenes for 
which performance of 1/30th or 1/60th of real 
time (j .e. one frame per second) gives a 
sufficient level of interaction to be useful. 

There have been attempts to provide this 
medium level of performance by adding special 
purpose microcode to conventional computers, or 
by placing bipolar microprocessors between the, 
host computer and the display device. An 
extension of this approach is to directly 
convert the inner loops of the display code 
into special purpose LSI chips. 

An NMOS chip has been designed (and 
fabricated) that executes the scan line 
visibility tests associated with the well 
known z-buffer algorithm, removing all of the 
pixel-by-pixel operations from the host. An 
identical chip is used to interpolate intensity 
values for smooth shading. A circuit containing 
both chips can be incorporated into a frame 
buffer memory. 

Statistics gathered from a software 
simulation of a system using this circuit show 
that the chip provides a substantial gain when 
the average projected area of polygons in a 
scene is high compared to the number of 
polygons. 

11 existe une gamme d'application pour 
affichage ombre de scenes tridimensionnelles 
pour lesquelles des rendements de 1/30e ou 
1/60e du temps reel (c'est-i-dire un cadre 
par seconde) donnent un niveau suffisant 
d'interaction pour que le systeme soit utile. 

Plusieurs tentatives ont ete faites pour 
en arriver i ce niveau de rendement du support 
en ajoutant des microcodes speciaux aux 
ordinateurs conventionnels ou en pla~ant des 
microprocesseurs bipolaires entre l'ordinateur 
central et les dispositifs d'affichage. Une 
ext~nsion de cette approche consiste i 
convertir directement les boucles internes du 
code d'affichage en boitiers LS1 speciaux. 

Un boitier NMOS a ete con~\l (et fabrique) 
pour executer les essais de visibilite de 
lignes balayees associes i l'algorithme bien 
connu Z-tampon en enlevant toutes' les 
operations pixel par pixel de l'ordinateur 
central. Un boitier identique est utilise pour 
interclasser les valeurs d'intensite pour 
obtenir du faible ombragement. Un circuit 
contenant des deux types de boitier peut etre 
incorpore dans un cadre de memoire tampon. 

Les statistiques obtenues i partir d'une 
simulation d'un systeme utilisant ce circuit 
montrent que le boitier entraine un gain 
substantiel lorsque la superficie moyenne 
projetee des polygones dans une scene est 
elevee par rapport au nombre de polygones. 
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Hardware Enhanced 3-D Raster Display Systems 

Approaches to Enhanced Performance 

The real-time synthesis of shaded images is a feature 
usually found only in night simulators using special purpose 
hardware whose expense can be justified by the application 
[12,131. Recently, several proposals have been made for 
cheaper real-time image generation hardware composed of 
arrays of cheap processors [5,9,3,11,2]' A neglected research 
area is the range of 3-D display applications which do not 
require and cannot justify the expense of real-time perfor
mance. These applications have been forced to get by with 
frame buffer memories attached to general purpose comput
ers. Occasionally, graphics systems designers have enhanced 
the display system performance by interposing a small, dedi
cated satellite processor between the host and the display 
memory [4) or by writing special purpose microcode for the 
host computer [7]. 

For these lower performance systems, the z-buffer algo
rithm is a popular choice for hidden surfaee removal because 
of its flexibility and simplicity. Parke [10) provides a detailed 
analysis of the performance of z-buffer algorithms executed 
either entirely within the host machine, or partitioned 
between the host and a satellite. He assumes, however, that 
both the host and satellite are machines that execute single 
instructions seq ue ntially. 

This paper discusses the case of the z-buffer algorithm 
partially implemented in custom LSI integrated circuits which 
are capable of parallel execution of ~any of the algorithm's 
steps. Unlike other proposals for LSI implementations of 
visible surface algorithms, large arrays of chips are not an 
essential feature. The special purpose hardware consists of 
only two LSI chips - one to perform the visibility calculations 
and another to smoothly interpolate shading along a scan line. 

Elements of the Algorithm 

The z-buffer algorithm [1,8) is a simple technique for 
determining the visibility of 3-dimensional surfaces by com
paring the depth (distance from the viewer) of sample points 
on the surface with the previously closest depth at that sam
ple point. Sample points are chosen so that they correspond 
to pixel locations in the image plane. This requires the use of 
a memory large enough to store both intensity and depth 
values at eaeh pixel. If the depth of the current surface at a 
pixel is less than the stored depth for that pixel, then both 
t he intensity and depth values for the pixel are overwritten by 
the current depth and intensity values. If the current depth is 
greater than the stored depth, then some previously pro
cessed surface is between the viewer and the current surface 
and neither intensity nor depth are overwritten. After pro
cessing all surfaces, only the ones visible to the viewer are 
represented in the z-buffer. 

Although the z-buffer algorithm can be applied to 
objects of any shape, for this discussion consider only 
polyhedral objects tiled by triangles. Absolutely any surface 
can be approximated with a mesh of triangles. Furthermore, 
triangles have the wonderful property of always being convex 
and planar. 

There are two approaches to using the z-buffer algo
rithm. In the first, triangles are considered one at a time. As 
shown in figure I, points of intersection of the polygon edges 
with successive scan lines are determined by 
Xn+1 = Xn + tu /6.y. The depth, z, of the poi nt of i ntersec
tion is determined in a like manner. (In image coordinates, 
the positive x axis is to the viewer's right, the positive y axis 
is up, and the positive z axis points away from the viewer.) 
For all scan lines intersecting a triangle, the region between 
the left and right intersection points is filled with intensity 
values corresponding to the relative orientation of the surface 
with respect to a light source. To approximate the appearance 
of a smoothly curved surface with the mesh of triangles, this 
intensity value, i, may be interpolated along the edges and 
between them in the same way that x and z are interpolated 
(6). For a given scan line, depth and intensity are interpo
lated by adding 6.z/tu and 6.i/t:u to the z and i values and 
accumulating the result at each pixel. 

The second approach is to consider all polygons at once 
while proceeding in scan line order. All triangle edges are 
sorted by their maximum y value so that the processor can 
easily tell which new edges will be intersected by each scan 
line. When an edge is first intersected, it is added to a list of 
"active edges" which represent all edges intersected by the 
current scan line. The region between two active edges of a 
triangle is filled in exactly the same manner described for the 
first approach. The first approach is simpler, but the second 
is cheaper since it requires only enough z-buffer memory for 
a single scan line. 

Performance Analysis 

In his detailed analysis of the z-buffer algorithm's per
formance, Parke (10) splits the processing time into four 
components as shown below: 

where 

Id is the time to display one frame, 
nq is the number of polygons, 
Iq is the overhead time associated with one polygon, 
n, is the number of edges, 
le is the overhead time associated with one edge, 
n, is the number of scan line segments, 
15 is the overhead time associated with one segment, 
n~ is the number of pixels generated, 
and Ip is the time to generate one pixel. 

Parke decomposes each of the terms, Iq, I" I .• , and lp, into 
low level instructions. He then makes some reasonable 
assumptions about the relative execution times of various 
instructions. 

Rather than repeat Parke's analysis, the approach taken 
here is to actually implement the z-buffer algorithm and 
derive performance estimates from run-time statistics. The 
two-fold objective of this approach is to obtain actual 
numbers to check Parke's analysis, and to get an estimate of 
how effectively the hardware enhanced system will work in an 
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Figure I. I ncremental calculation of edge intersection point. 

interactive environment. 

There are differences in Parke's statement of the z
bulfer algorithm and the one presented here. For instance, 
since only triangles are considered, for i and z (the variables 
interpolated with respect to x), Ilz / tu and l:J.i/ tu need only 
be calculated once per polygon. As a result, the divisions 
needed to compute 1lz/l:J.y, l:J.i/l:J.y, Ilz/tu, and l:J.i/tu are 
executed only once per polygon. Then there is a slight 
increase in Iq and a smaller Is in the version of the algorithm 
descri bed here. 

A more significant difference is in the proposed imple
mentation of the scan line processing. In an LSI implementa
tion, the number of instructions executed has little meaning 
since the operations are performed in hardware, and in paral
lel. The only relevant numbers are the time required by the 
LSI chip to generate a pixel and the overhead time associated 
with initializing the chip for each scan line segment. These 
numbers have been obtained by exercising the chip in a test 
ci rcuit. 

The Chip 

In its simplest configuration, a circuit containing two 
copies of the chip is installed in a frame buffer containing a 
sufficient number of bit planes to store depth and intensity 
for each pixel (figure 2). From its host, this circuit receives 
x 1,/;' x riRhr - X I,.ft, ;: I,.ft, i I,.ft, Ilz / tu, and l:J.i / tu for each scan 
line segment. Then for every pixel between Xltjl and XrigloJ the 
chip interpolates z and i and compares z with the previous 
nearest z value for each pixel. For each pixel the chip will 
either overwrite the frame buffer with the updated z and i 
values or not depending on which z is closer. 

The chip basically consists of a counter, an adder, and 
several rcgisters. The adder serves to increment the interpo
lated variable and to compare it with the z-buffer value. By 
the time the compare operation is completed, new z-buffer 
values will have been read into the chip. Therefore an addi
tional stage of pipeline register is included for both the z-
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Figure 2. Enhanced frame buffer system. 

buffer data and the interpolated variable. The counter is 
loaded with XrigloJ - xl,ft and counts down for every pixel. The 
counter raises a completion signal when it reaches zero. The 
initial design, an NMOS chip of dimensions 290 by 240 mils 
containing 2200 transistors, is shown in figure 3. 

All data paths are 16 bits wide, yet experience has 
shown that adequate image quality can be obtained with no 
fewer than 32 bits of z value. Rather than make the chip's 
data paths 32 bits wide, all 32-bit numbers are stored as high 
and low halves. An external latch saves the adder carry bit 
between operations to allow 32-bit adds and compares. Four 
clock cycles are then required to perform the 32-bit incre
ment and compare functions. During these same four clock 
cycles the chip executes two z-buffer read accesses and two 
write accesses. If lower image quality is permitted, the chip 
can manipulate 16-bit numbers twice as fast. 

Measured Performance 

The host performance measurements presented here are 
run time statistics taken from a software implementation of 
the z-buffer algorithm which proceeds in scan line order by 
y-sorting all polygons in the scene (i.e. the second of the two 
alternatives described in the second section). The routines 
are coded in the C language for a VAX-II/780 1. The 
software is a subset of a "raster test- bed" package [141 
developed for experiments in 3-D display. Since the routines 
are designed more for flexibility than performance, the host 
execution times listed in this report are not representative of 

1 VAX is a trademark of Digital Equipment Corporation. 
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an efficiently coded implementation. For the portion of the 
processing performed by the host computer, 

lhost = nq *Iq + ne *Ie + n, *1,. 

Note that I, includes only the time required to compute 
xright -- x/eft plus the overhead of transferring the appropriate 
terms to the scan line processor. 

If 32 bits of Z are used in the visibility calculations and 
two LSI chips are included in the satellite processor, four 
clock cycles are required to generate a pixel. With rather 
conservative margins, the chips have been run at a rate of 
one cycle every 500 '1secs. If Ill/!lx and fli/!lx are loaded 
into their respective chips each time they are initialized for a 
scan line segment, then five clock cycles are required for the 
initialization. The expression for the chip's performance is 
then 

IISI = n,*2.5 jJ.sec + (np + 1)*2.0 jJ.sec. 

The one pixel overhead in the last term of the expression is 
for flushing the internal pipeline on the chip. 

Although the host and satellite operate in parallel, the 
satellite cannot proceed without data from the host. Simi
larly, the host must wait for the satellite to finish a scan line 
segment before sending more data. To eliminate the waits , a 
FIFO must be included between the host and satellite. Then 
the expression for display system performance is approxi
mated by 

as long as the FIFO doesn ' t overflow. In Parke's analysis, 

the point for which lhost = IISI is called a balance point, i.e. 
the point of optimum match between host and satellite per
formance. 

Execution times have been obtained for several objects 
characterized in table I . Two different times are show n for 
IISI depending on whether the chip is used to initialize the 
intensity and z values for each frame. (Some commercial 
frame buffers can initialize all pixels in a single frame time.) 
The images shown in figures 4 and 5 each contain 8 triangles, 
but np is much higher for the 4 overlapping planes. In 
figures 7 through 10 a torus is approximated by increasing 
numbers of polygons. As more polygons are used , the 
number of pixels covered approaches an upper limit so that Ip 

is nearly constant. Figure 11 shows the effect on lhost and I iSl 

of nq (the number of triangles) for the torus. 

Consider the case of processing one polygon at a time. 
There is a penalty for each edge shared between two polygons 
since the interpolation of x, z, and i along the edge must be 
performed separately for each of the two polygons. However, 
by expanding the chip with additional registers for x/eft' X right, 
Z/tft' !lx/eft/fly. !lxright/fly , Ill ltfr6.y, flYleft' and 6.Yright interpo
lation of variables along the edges can be performed by the 
chip. Tt en communication between the host and satellite 
occurs only when the chip is initialized for a polygon a nd 
whenever the scan line passes the bottom of the left or right 
edge (whichever comes first) as shown in figure 12. For a 
configuration using this expanded chip, the per-pixel timing 
remains unchanged . There is, however , additional on-chip 
processing for each edge at each scan line, and the per-scan 
line initialization overhead is replaced by the per-edge over
head. 
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FIFO must be included between the host and satellite. Then 
the expression for display system performance is approxi
mated by 

as long as the FIFO doesn ' t overflow. In Parke's analysis, 

the point for which lhost = IISI is called a balance point, i.e. 
the point of optimum match between host and satellite per
formance. 
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IISI depending on whether the chip is used to initialize the 
intensity and z values for each frame. (Some commercial 
frame buffers can initialize all pixels in a single frame time.) 
The images shown in figures 4 and 5 each contain 8 triangles, 
but np is much higher for the 4 overlapping planes. In 
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is nearly constant. Figure 11 shows the effect on lhost and I iSl 

of nq (the number of triangles) for the torus. 

Consider the case of processing one polygon at a time. 
There is a penalty for each edge shared between two polygons 
since the interpolation of x, z, and i along the edge must be 
performed separately for each of the two polygons. However, 
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Z/tft' !lx/eft/fly. !lxright/fly , Ill ltfr6.y, flYleft' and 6.Yright interpo
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occurs only when the chip is initialized for a polygon a nd 
whenever the scan line passes the bottom of the left or right 
edge (whichever comes first) as shown in figure 12. For a 
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processing for each edge at each scan line, and the per-scan 
line initialization overhead is replaced by the per-edge over
head. 
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Object and Image Statistics 

name polys edges vertices pixels segments (hO.ft I}..,., IZs, t\~fl 

sheet 8 16 9 82227 1001 0.26 0.167 0.692 4.5 

planes 8 20 16 786486 3560 0.55 1.58 2.11 15.7 

pair 520 816 298 211375 15581 2.5 0.462 0.987 10.9 

torus6 72 120 49 105853 5052 0.68 0.224 0.750 5.7 

torus I 0 200 320 121 123724 8880 1.3 0.269 0.795 7.3 

torus 16 512 800 289 129148 14580 2.4 0.298 0.820 9.1 

torus30 1800 2760 961 131941 27370 6.1 0.332 0.857 14.7 

I Excludes time to initialize depth and intensity for every pixel. 
2 Includes time to initialize depth and intensity for every pixel. 
3 Refers to time required by software without hardware enhancement. 
All times are given in seconds. 

Table I. Characteristics of test objects. 

As indicated above, the z and i values along the right 
edge of a planar polygon are redundant if t:.z/ilx and tli/ilx 
for the polygon are known. The edge initialization cost for a 
right edge is then only that of loading X right, ilxrigWtly, and 
tlYrixht into the chip. For a left edge, five registers must be 
initialized. Thcre is also the cost of loading t:.z/ilx and 
!:!.i / ax once per polygon. I n the worst case of two left edges 
and one right edge for a triangle, there is a per-polygon cost 
of 7.5 !,sec. For each scan line segment the chip must incre
ment x and z for each edge and compute xright - Xleft. The 
time, t, ' required for these operations is 3.0 !,sec . (Since 
the intensity calculations take place in parallel with z calcula
tions, only one or the other need be considered for timing 
purposes.) Therefore, the time per frame for an expanded 
chip is 

IISI = nq *7.5 !,sec + n,*3.0 !,sec + (np +I)*2.0 !,sec. 

while 

Figure 13 plots the modified Ilwsl and ILSI for the same shapes 
used to create figure 11. The effect of this modification of 
the chip is to push the balance point towards the range of 
more complex objects. The absence of any dramatic gains for 
the more complex objects can be partially explained by the 
fact that the host must process edges shared between 
polygons twice instead of only once. For all of the objects 

shown, a large percentage of the edges are shared. As figure 
13 shows, the additional edge processing transferred to the 
chip does not slow the chip appreciably. The real culprit is 
the code in the host that computes tu/tly , t:.z/tly , t:.z/!:!.x, 
etc. 

Summary 

The class of display system described here utilizes a 
straightforward translation of software into hardware. From 
the measurements presented , one can conclude that this 
approach to the use of custom LSI for 3-D raster display will 
yield a useful level of performancc. Despite the previously 
mentioned differences in implementation, figures 11 and 13 
are similar to estimates provided in Parke's simulation. 
Although the performance statistics show that lhost is the 
dominant term for all but the simplest scenes, the chip pro
vides at least a two to one increase in performance for each 
case tested. Because the custom circuits are installed in an 
ordinary frame buffer based display system, and because large 
numbers of the custom chips are not required, the approach 
promises to be cost effective as well. 
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Figure 5. Four parallel planes. 
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Figure 7. Torus6. 

Figure 8. ToruslO. 

Figure 9. Torus l6. 
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Figure 10. Torus30. 
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Figure 12. Initialization overhead for expanded chip. 
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Figure 11. Relative execution times of host and current chip. 
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Figure 13. Relati ve execution times for host and expanded chip. 
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