
- 349 -

HARDWARE ENHANCED 3-D RASTER DISPLAY SYSTEM

T. Whitted

Rell Laboratories
lIo1mdcl, N.J.

ABSTRACT

There is a range of applications for
shaded display of 3-dimensional scenes for
which performance of 1/30th or 1/60th of real
time (j .e. one frame per second) gives a
sufficient level of interaction to be useful.

There have been attempts to provide this
medium level of performance by adding special
purpose microcode to conventional computers, or
by placing bipolar microprocessors between the,
host computer and the display device. An
extension of this approach is to directly
convert the inner loops of the display code
into special purpose LSI chips.

An NMOS chip has been designed (and
fabricated) that executes the scan line
visibility tests associated with the well
known z-buffer algorithm, removing all of the
pixel-by-pixel operations from the host. An
identical chip is used to interpolate intensity
values for smooth shading. A circuit containing
both chips can be incorporated into a frame
buffer memory.

Statistics gathered from a software
simulation of a system using this circuit show
that the chip provides a substantial gain when
the average projected area of polygons in a
scene is high compared to the number of
polygons.

11 existe une gamme d'application pour
affichage ombre de scenes tridimensionnelles
pour lesquelles des rendements de 1/30e ou
1/60e du temps reel (c'est-i-dire un cadre
par seconde) donnent un niveau suffisant
d'interaction pour que le systeme soit utile.

Plusieurs tentatives ont ete faites pour
en arriver i ce niveau de rendement du support
en ajoutant des microcodes speciaux aux
ordinateurs conventionnels ou en pla~ant des
microprocesseurs bipolaires entre l'ordinateur
central et les dispositifs d'affichage. Une
ext~nsion de cette approche consiste i
convertir directement les boucles internes du
code d'affichage en boitiers LS1 speciaux.

Un boitier NMOS a ete con~\l (et fabrique)
pour executer les essais de visibilite de
lignes balayees associes i l'algorithme bien
connu Z-tampon en enlevant toutes' les
operations pixel par pixel de l'ordinateur
central. Un boitier identique est utilise pour
interclasser les valeurs d'intensite pour
obtenir du faible ombragement. Un circuit
contenant des deux types de boitier peut etre
incorpore dans un cadre de memoire tampon.

Les statistiques obtenues i partir d'une
simulation d'un systeme utilisant ce circuit
montrent que le boitier entraine un gain
substantiel lorsque la superficie moyenne
projetee des polygones dans une scene est
elevee par rapport au nombre de polygones.

CMCCS '81 / ACCHO '81

- 349 -

HARDWARE ENHANCED 3-D RASTER DISPLAY SYSTEM

T. Whitted

Rell Laboratories
lIo1mdcl, N.J.

ABSTRACT

There is a range of applications for
shaded display of 3-dimensional scenes for
which performance of 1/30th or 1/60th of real
time (j .e. one frame per second) gives a
sufficient level of interaction to be useful.

There have been attempts to provide this
medium level of performance by adding special
purpose microcode to conventional computers, or
by placing bipolar microprocessors between the,
host computer and the display device. An
extension of this approach is to directly
convert the inner loops of the display code
into special purpose LSI chips.

An NMOS chip has been designed (and
fabricated) that executes the scan line
visibility tests associated with the well
known z-buffer algorithm, removing all of the
pixel-by-pixel operations from the host. An
identical chip is used to interpolate intensity
values for smooth shading. A circuit containing
both chips can be incorporated into a frame
buffer memory.

Statistics gathered from a software
simulation of a system using this circuit show
that the chip provides a substantial gain when
the average projected area of polygons in a
scene is high compared to the number of
polygons.

11 existe une gamme d'application pour
affichage ombre de scenes tridimensionnelles
pour lesquelles des rendements de 1/30e ou
1/60e du temps reel (c'est-i-dire un cadre
par seconde) donnent un niveau suffisant
d'interaction pour que le systeme soit utile.

Plusieurs tentatives ont ete faites pour
en arriver i ce niveau de rendement du support
en ajoutant des microcodes speciaux aux
ordinateurs conventionnels ou en pla~ant des
microprocesseurs bipolaires entre l'ordinateur
central et les dispositifs d'affichage. Une
ext~nsion de cette approche consiste i
convertir directement les boucles internes du
code d'affichage en boitiers LS1 speciaux.

Un boitier NMOS a ete con~\l (et fabrique)
pour executer les essais de visibilite de
lignes balayees associes i l'algorithme bien
connu Z-tampon en enlevant toutes' les
operations pixel par pixel de l'ordinateur
central. Un boitier identique est utilise pour
interclasser les valeurs d'intensite pour
obtenir du faible ombragement. Un circuit
contenant des deux types de boitier peut etre
incorpore dans un cadre de memoire tampon.

Les statistiques obtenues i partir d'une
simulation d'un systeme utilisant ce circuit
montrent que le boitier entraine un gain
substantiel lorsque la superficie moyenne
projetee des polygones dans une scene est
elevee par rapport au nombre de polygones.

CMCCS '81 / ACCHO '81

- 350 -

Hardware Enhanced 3-D Raster Display Systems

Approaches to Enhanced Performance

The real-time synthesis of shaded images is a feature
usually found only in night simulators using special purpose
hardware whose expense can be justified by the application
[12,131. Recently, several proposals have been made for
cheaper real-time image generation hardware composed of
arrays of cheap processors [5,9,3,11,2]' A neglected research
area is the range of 3-D display applications which do not
require and cannot justify the expense of real-time perfor
mance. These applications have been forced to get by with
frame buffer memories attached to general purpose comput
ers. Occasionally, graphics systems designers have enhanced
the display system performance by interposing a small, dedi
cated satellite processor between the host and the display
memory [4) or by writing special purpose microcode for the
host computer [7].

For these lower performance systems, the z-buffer algo
rithm is a popular choice for hidden surfaee removal because
of its flexibility and simplicity. Parke [10) provides a detailed
analysis of the performance of z-buffer algorithms executed
either entirely within the host machine, or partitioned
between the host and a satellite. He assumes, however, that
both the host and satellite are machines that execute single
instructions seq ue ntially.

This paper discusses the case of the z-buffer algorithm
partially implemented in custom LSI integrated circuits which
are capable of parallel execution of ~any of the algorithm's
steps. Unlike other proposals for LSI implementations of
visible surface algorithms, large arrays of chips are not an
essential feature. The special purpose hardware consists of
only two LSI chips - one to perform the visibility calculations
and another to smoothly interpolate shading along a scan line.

Elements of the Algorithm

The z-buffer algorithm [1,8) is a simple technique for
determining the visibility of 3-dimensional surfaces by com
paring the depth (distance from the viewer) of sample points
on the surface with the previously closest depth at that sam
ple point. Sample points are chosen so that they correspond
to pixel locations in the image plane. This requires the use of
a memory large enough to store both intensity and depth
values at eaeh pixel. If the depth of the current surface at a
pixel is less than the stored depth for that pixel, then both
t he intensity and depth values for the pixel are overwritten by
the current depth and intensity values. If the current depth is
greater than the stored depth, then some previously pro
cessed surface is between the viewer and the current surface
and neither intensity nor depth are overwritten. After pro
cessing all surfaces, only the ones visible to the viewer are
represented in the z-buffer.

Although the z-buffer algorithm can be applied to
objects of any shape, for this discussion consider only
polyhedral objects tiled by triangles. Absolutely any surface
can be approximated with a mesh of triangles. Furthermore,
triangles have the wonderful property of always being convex
and planar.

There are two approaches to using the z-buffer algo
rithm. In the first, triangles are considered one at a time. As
shown in figure I, points of intersection of the polygon edges
with successive scan lines are determined by
Xn+1 = Xn + tu /6.y. The depth, z, of the poi nt of i ntersec
tion is determined in a like manner. (In image coordinates,
the positive x axis is to the viewer's right, the positive y axis
is up, and the positive z axis points away from the viewer.)
For all scan lines intersecting a triangle, the region between
the left and right intersection points is filled with intensity
values corresponding to the relative orientation of the surface
with respect to a light source. To approximate the appearance
of a smoothly curved surface with the mesh of triangles, this
intensity value, i, may be interpolated along the edges and
between them in the same way that x and z are interpolated
(6). For a given scan line, depth and intensity are interpo
lated by adding 6.z/tu and 6.i/t:u to the z and i values and
accumulating the result at each pixel.

The second approach is to consider all polygons at once
while proceeding in scan line order. All triangle edges are
sorted by their maximum y value so that the processor can
easily tell which new edges will be intersected by each scan
line. When an edge is first intersected, it is added to a list of
"active edges" which represent all edges intersected by the
current scan line. The region between two active edges of a
triangle is filled in exactly the same manner described for the
first approach. The first approach is simpler, but the second
is cheaper since it requires only enough z-buffer memory for
a single scan line.

Performance Analysis

In his detailed analysis of the z-buffer algorithm's per
formance, Parke (10) splits the processing time into four
components as shown below:

where

Id is the time to display one frame,
nq is the number of polygons,
Iq is the overhead time associated with one polygon,
n, is the number of edges,
le is the overhead time associated with one edge,
n, is the number of scan line segments,
15 is the overhead time associated with one segment,
n~ is the number of pixels generated,
and Ip is the time to generate one pixel.

Parke decomposes each of the terms, Iq, I" I .• , and lp, into
low level instructions. He then makes some reasonable
assumptions about the relative execution times of various
instructions.

Rather than repeat Parke's analysis, the approach taken
here is to actually implement the z-buffer algorithm and
derive performance estimates from run-time statistics. The
two-fold objective of this approach is to obtain actual
numbers to check Parke's analysis, and to get an estimate of
how effectively the hardware enhanced system will work in an

CMCCS '81 / ACCHO '81

- 350 -

Hardware Enhanced 3-D Raster Display Systems

Approaches to Enhanced Performance

The real-time synthesis of shaded images is a feature
usually found only in night simulators using special purpose
hardware whose expense can be justified by the application
[12,131. Recently, several proposals have been made for
cheaper real-time image generation hardware composed of
arrays of cheap processors [5,9,3,11,2]' A neglected research
area is the range of 3-D display applications which do not
require and cannot justify the expense of real-time perfor
mance. These applications have been forced to get by with
frame buffer memories attached to general purpose comput
ers. Occasionally, graphics systems designers have enhanced
the display system performance by interposing a small, dedi
cated satellite processor between the host and the display
memory [4) or by writing special purpose microcode for the
host computer [7].

For these lower performance systems, the z-buffer algo
rithm is a popular choice for hidden surfaee removal because
of its flexibility and simplicity. Parke [10) provides a detailed
analysis of the performance of z-buffer algorithms executed
either entirely within the host machine, or partitioned
between the host and a satellite. He assumes, however, that
both the host and satellite are machines that execute single
instructions seq ue ntially.

This paper discusses the case of the z-buffer algorithm
partially implemented in custom LSI integrated circuits which
are capable of parallel execution of ~any of the algorithm's
steps. Unlike other proposals for LSI implementations of
visible surface algorithms, large arrays of chips are not an
essential feature. The special purpose hardware consists of
only two LSI chips - one to perform the visibility calculations
and another to smoothly interpolate shading along a scan line.

Elements of the Algorithm

The z-buffer algorithm [1,8) is a simple technique for
determining the visibility of 3-dimensional surfaces by com
paring the depth (distance from the viewer) of sample points
on the surface with the previously closest depth at that sam
ple point. Sample points are chosen so that they correspond
to pixel locations in the image plane. This requires the use of
a memory large enough to store both intensity and depth
values at eaeh pixel. If the depth of the current surface at a
pixel is less than the stored depth for that pixel, then both
t he intensity and depth values for the pixel are overwritten by
the current depth and intensity values. If the current depth is
greater than the stored depth, then some previously pro
cessed surface is between the viewer and the current surface
and neither intensity nor depth are overwritten. After pro
cessing all surfaces, only the ones visible to the viewer are
represented in the z-buffer.

Although the z-buffer algorithm can be applied to
objects of any shape, for this discussion consider only
polyhedral objects tiled by triangles. Absolutely any surface
can be approximated with a mesh of triangles. Furthermore,
triangles have the wonderful property of always being convex
and planar.

There are two approaches to using the z-buffer algo
rithm. In the first, triangles are considered one at a time. As
shown in figure I, points of intersection of the polygon edges
with successive scan lines are determined by
Xn+1 = Xn + tu /6.y. The depth, z, of the poi nt of i ntersec
tion is determined in a like manner. (In image coordinates,
the positive x axis is to the viewer's right, the positive y axis
is up, and the positive z axis points away from the viewer.)
For all scan lines intersecting a triangle, the region between
the left and right intersection points is filled with intensity
values corresponding to the relative orientation of the surface
with respect to a light source. To approximate the appearance
of a smoothly curved surface with the mesh of triangles, this
intensity value, i, may be interpolated along the edges and
between them in the same way that x and z are interpolated
(6). For a given scan line, depth and intensity are interpo
lated by adding 6.z/tu and 6.i/t:u to the z and i values and
accumulating the result at each pixel.

The second approach is to consider all polygons at once
while proceeding in scan line order. All triangle edges are
sorted by their maximum y value so that the processor can
easily tell which new edges will be intersected by each scan
line. When an edge is first intersected, it is added to a list of
"active edges" which represent all edges intersected by the
current scan line. The region between two active edges of a
triangle is filled in exactly the same manner described for the
first approach. The first approach is simpler, but the second
is cheaper since it requires only enough z-buffer memory for
a single scan line.

Performance Analysis

In his detailed analysis of the z-buffer algorithm's per
formance, Parke (10) splits the processing time into four
components as shown below:

where

Id is the time to display one frame,
nq is the number of polygons,
Iq is the overhead time associated with one polygon,
n, is the number of edges,
le is the overhead time associated with one edge,
n, is the number of scan line segments,
15 is the overhead time associated with one segment,
n~ is the number of pixels generated,
and Ip is the time to generate one pixel.

Parke decomposes each of the terms, Iq, I" I .• , and lp, into
low level instructions. He then makes some reasonable
assumptions about the relative execution times of various
instructions.

Rather than repeat Parke's analysis, the approach taken
here is to actually implement the z-buffer algorithm and
derive performance estimates from run-time statistics. The
two-fold objective of this approach is to obtain actual
numbers to check Parke's analysis, and to get an estimate of
how effectively the hardware enhanced system will work in an

CMCCS '81 / ACCHO '81

- 351 -

scan line n

][n+l =][n + f:;.][/f:;.y

scan line n+ 1

Figure I. I ncremental calculation of edge intersection point.

interactive environment.

There are differences in Parke's statement of the z
bulfer algorithm and the one presented here. For instance,
since only triangles are considered, for i and z (the variables
interpolated with respect to x), Ilz / tu and l:J.i/ tu need only
be calculated once per polygon. As a result, the divisions
needed to compute 1lz/l:J.y, l:J.i/l:J.y, Ilz/tu, and l:J.i/tu are
executed only once per polygon. Then there is a slight
increase in Iq and a smaller Is in the version of the algorithm
descri bed here.

A more significant difference is in the proposed imple
mentation of the scan line processing. In an LSI implementa
tion, the number of instructions executed has little meaning
since the operations are performed in hardware, and in paral
lel. The only relevant numbers are the time required by the
LSI chip to generate a pixel and the overhead time associated
with initializing the chip for each scan line segment. These
numbers have been obtained by exercising the chip in a test
ci rcuit.

The Chip

In its simplest configuration, a circuit containing two
copies of the chip is installed in a frame buffer containing a
sufficient number of bit planes to store depth and intensity
for each pixel (figure 2). From its host, this circuit receives
x 1,/;' x riRhr - X I,.ft, ;: I,.ft, i I,.ft, Ilz / tu, and l:J.i / tu for each scan
line segment. Then for every pixel between Xltjl and XrigloJ the
chip interpolates z and i and compares z with the previous
nearest z value for each pixel. For each pixel the chip will
either overwrite the frame buffer with the updated z and i
values or not depending on which z is closer.

The chip basically consists of a counter, an adder, and
several rcgisters. The adder serves to increment the interpo
lated variable and to compare it with the z-buffer value. By
the time the compare operation is completed, new z-buffer
values will have been read into the chip. Therefore an addi
tional stage of pipeline register is included for both the z-

a..
GJ

=-= =-0- - Cl ~ a.. ~!l GJ ~! / u - • ., Cl - " Cl Cl N t.I a.. ... to
= Q'"
Cl a H t.I
I GJN ::j" a;n -

host interface

host CPU

Figure 2. Enhanced frame buffer system.

buffer data and the interpolated variable. The counter is
loaded with XrigloJ - xl,ft and counts down for every pixel. The
counter raises a completion signal when it reaches zero. The
initial design, an NMOS chip of dimensions 290 by 240 mils
containing 2200 transistors, is shown in figure 3.

All data paths are 16 bits wide, yet experience has
shown that adequate image quality can be obtained with no
fewer than 32 bits of z value. Rather than make the chip's
data paths 32 bits wide, all 32-bit numbers are stored as high
and low halves. An external latch saves the adder carry bit
between operations to allow 32-bit adds and compares. Four
clock cycles are then required to perform the 32-bit incre
ment and compare functions. During these same four clock
cycles the chip executes two z-buffer read accesses and two
write accesses. If lower image quality is permitted, the chip
can manipulate 16-bit numbers twice as fast.

Measured Performance

The host performance measurements presented here are
run time statistics taken from a software implementation of
the z-buffer algorithm which proceeds in scan line order by
y-sorting all polygons in the scene (i.e. the second of the two
alternatives described in the second section). The routines
are coded in the C language for a VAX-II/780 1. The
software is a subset of a "raster test- bed" package [141
developed for experiments in 3-D display. Since the routines
are designed more for flexibility than performance, the host
execution times listed in this report are not representative of

1 VAX is a trademark of Digital Equipment Corporation.

CMCCS '81 I ACCHO '81

- 351 -

scan line n

][n+l =][n + f:;.][/f:;.y

scan line n+ 1

Figure I. I ncremental calculation of edge intersection point.

interactive environment.

There are differences in Parke's statement of the z
bulfer algorithm and the one presented here. For instance,
since only triangles are considered, for i and z (the variables
interpolated with respect to x), Ilz / tu and l:J.i/ tu need only
be calculated once per polygon. As a result, the divisions
needed to compute 1lz/l:J.y, l:J.i/l:J.y, Ilz/tu, and l:J.i/tu are
executed only once per polygon. Then there is a slight
increase in Iq and a smaller Is in the version of the algorithm
descri bed here.

A more significant difference is in the proposed imple
mentation of the scan line processing. In an LSI implementa
tion, the number of instructions executed has little meaning
since the operations are performed in hardware, and in paral
lel. The only relevant numbers are the time required by the
LSI chip to generate a pixel and the overhead time associated
with initializing the chip for each scan line segment. These
numbers have been obtained by exercising the chip in a test
ci rcuit.

The Chip

In its simplest configuration, a circuit containing two
copies of the chip is installed in a frame buffer containing a
sufficient number of bit planes to store depth and intensity
for each pixel (figure 2). From its host, this circuit receives
x 1,/;' x riRhr - X I,.ft, ;: I,.ft, i I,.ft, Ilz / tu, and l:J.i / tu for each scan
line segment. Then for every pixel between Xltjl and XrigloJ the
chip interpolates z and i and compares z with the previous
nearest z value for each pixel. For each pixel the chip will
either overwrite the frame buffer with the updated z and i
values or not depending on which z is closer.

The chip basically consists of a counter, an adder, and
several rcgisters. The adder serves to increment the interpo
lated variable and to compare it with the z-buffer value. By
the time the compare operation is completed, new z-buffer
values will have been read into the chip. Therefore an addi
tional stage of pipeline register is included for both the z-

a..
GJ

=-= =-0- - Cl ~ a.. ~!l GJ ~! / u - • ., Cl - " Cl Cl N t.I a.. ... to
= Q'"
Cl a H t.I
I GJN ::j" a;n -

host interface

host CPU

Figure 2. Enhanced frame buffer system.

buffer data and the interpolated variable. The counter is
loaded with XrigloJ - xl,ft and counts down for every pixel. The
counter raises a completion signal when it reaches zero. The
initial design, an NMOS chip of dimensions 290 by 240 mils
containing 2200 transistors, is shown in figure 3.

All data paths are 16 bits wide, yet experience has
shown that adequate image quality can be obtained with no
fewer than 32 bits of z value. Rather than make the chip's
data paths 32 bits wide, all 32-bit numbers are stored as high
and low halves. An external latch saves the adder carry bit
between operations to allow 32-bit adds and compares. Four
clock cycles are then required to perform the 32-bit incre
ment and compare functions. During these same four clock
cycles the chip executes two z-buffer read accesses and two
write accesses. If lower image quality is permitted, the chip
can manipulate 16-bit numbers twice as fast.

Measured Performance

The host performance measurements presented here are
run time statistics taken from a software implementation of
the z-buffer algorithm which proceeds in scan line order by
y-sorting all polygons in the scene (i.e. the second of the two
alternatives described in the second section). The routines
are coded in the C language for a VAX-II/780 1. The
software is a subset of a "raster test- bed" package [141
developed for experiments in 3-D display. Since the routines
are designed more for flexibility than performance, the host
execution times listed in this report are not representative of

1 VAX is a trademark of Digital Equipment Corporation.

CMCCS '81 I ACCHO '81

- 352 -

I control logic
I

...

. . f-;-
.s ' f 11.

old f III ... ~ .s
.~) 1 ... ~ III

\ 1~
~

1 I) III

~ '§.~ ~.s
Col

,Q "'"
t.l ~ III

\-~ H ' N
......... t.l "Cl

N<] ... t.l
~ III

"Cl , r
"Cl N
III

I control logic
I

Figure 3. Chip layout.

an efficiently coded implementation. For the portion of the
processing performed by the host computer,

lhost = nq *Iq + ne *Ie + n, *1,.

Note that I, includes only the time required to compute
xright -- x/eft plus the overhead of transferring the appropriate
terms to the scan line processor.

If 32 bits of Z are used in the visibility calculations and
two LSI chips are included in the satellite processor, four
clock cycles are required to generate a pixel. With rather
conservative margins, the chips have been run at a rate of
one cycle every 500 '1secs. If Ill/!lx and fli/!lx are loaded
into their respective chips each time they are initialized for a
scan line segment, then five clock cycles are required for the
initialization. The expression for the chip's performance is
then

IISI = n,*2.5 jJ.sec + (np + 1)*2.0 jJ.sec.

The one pixel overhead in the last term of the expression is
for flushing the internal pipeline on the chip.

Although the host and satellite operate in parallel, the
satellite cannot proceed without data from the host. Simi
larly, the host must wait for the satellite to finish a scan line
segment before sending more data. To eliminate the waits , a
FIFO must be included between the host and satellite. Then
the expression for display system performance is approxi
mated by

as long as the FIFO doesn ' t overflow. In Parke's analysis,

the point for which lhost = IISI is called a balance point, i.e.
the point of optimum match between host and satellite per
formance.

Execution times have been obtained for several objects
characterized in table I . Two different times are show n for
IISI depending on whether the chip is used to initialize the
intensity and z values for each frame. (Some commercial
frame buffers can initialize all pixels in a single frame time.)
The images shown in figures 4 and 5 each contain 8 triangles,
but np is much higher for the 4 overlapping planes. In
figures 7 through 10 a torus is approximated by increasing
numbers of polygons. As more polygons are used , the
number of pixels covered approaches an upper limit so that Ip

is nearly constant. Figure 11 shows the effect on lhost and I iSl

of nq (the number of triangles) for the torus.

Consider the case of processing one polygon at a time.
There is a penalty for each edge shared between two polygons
since the interpolation of x, z, and i along the edge must be
performed separately for each of the two polygons. However,
by expanding the chip with additional registers for x/eft' X right,
Z/tft' !lx/eft/fly. !lxright/fly , Ill ltfr6.y, flYleft' and 6.Yright interpo
lation of variables along the edges can be performed by the
chip. Tt en communication between the host and satellite
occurs only when the chip is initialized for a polygon a nd
whenever the scan line passes the bottom of the left or right
edge (whichever comes first) as shown in figure 12. For a
configuration using this expanded chip, the per-pixel timing
remains unchanged . There is, however , additional on-chip
processing for each edge at each scan line, and the per-scan
line initialization overhead is replaced by the per-edge over
head.

CMCCS '81 / ACCHO'81

- 352 -

I control logic
I

...

. . f-;-
.s ' f 11.

old f III ... ~ .s
.~) 1 ... ~ III

\ 1~
~

1 I) III

~ '§.~ ~.s
Col

,Q "'"
t.l ~ III

\-~ H ' N
......... t.l "Cl

N<] ... t.l
~ III

"Cl , r
"Cl N
III

I control logic
I

Figure 3. Chip layout.

an efficiently coded implementation. For the portion of the
processing performed by the host computer,

lhost = nq *Iq + ne *Ie + n, *1,.

Note that I, includes only the time required to compute
xright -- x/eft plus the overhead of transferring the appropriate
terms to the scan line processor.

If 32 bits of Z are used in the visibility calculations and
two LSI chips are included in the satellite processor, four
clock cycles are required to generate a pixel. With rather
conservative margins, the chips have been run at a rate of
one cycle every 500 '1secs. If Ill/!lx and fli/!lx are loaded
into their respective chips each time they are initialized for a
scan line segment, then five clock cycles are required for the
initialization. The expression for the chip's performance is
then

IISI = n,*2.5 jJ.sec + (np + 1)*2.0 jJ.sec.

The one pixel overhead in the last term of the expression is
for flushing the internal pipeline on the chip.

Although the host and satellite operate in parallel, the
satellite cannot proceed without data from the host. Simi
larly, the host must wait for the satellite to finish a scan line
segment before sending more data. To eliminate the waits , a
FIFO must be included between the host and satellite. Then
the expression for display system performance is approxi
mated by

as long as the FIFO doesn ' t overflow. In Parke's analysis,

the point for which lhost = IISI is called a balance point, i.e.
the point of optimum match between host and satellite per
formance.

Execution times have been obtained for several objects
characterized in table I . Two different times are show n for
IISI depending on whether the chip is used to initialize the
intensity and z values for each frame. (Some commercial
frame buffers can initialize all pixels in a single frame time.)
The images shown in figures 4 and 5 each contain 8 triangles,
but np is much higher for the 4 overlapping planes. In
figures 7 through 10 a torus is approximated by increasing
numbers of polygons. As more polygons are used , the
number of pixels covered approaches an upper limit so that Ip

is nearly constant. Figure 11 shows the effect on lhost and I iSl

of nq (the number of triangles) for the torus.

Consider the case of processing one polygon at a time.
There is a penalty for each edge shared between two polygons
since the interpolation of x, z, and i along the edge must be
performed separately for each of the two polygons. However,
by expanding the chip with additional registers for x/eft' X right,
Z/tft' !lx/eft/fly. !lxright/fly , Ill ltfr6.y, flYleft' and 6.Yright interpo
lation of variables along the edges can be performed by the
chip. Tt en communication between the host and satellite
occurs only when the chip is initialized for a polygon a nd
whenever the scan line passes the bottom of the left or right
edge (whichever comes first) as shown in figure 12. For a
configuration using this expanded chip, the per-pixel timing
remains unchanged . There is, however , additional on-chip
processing for each edge at each scan line, and the per-scan
line initialization overhead is replaced by the per-edge over
head.

CMCCS '81 / ACCHO'81

- 353 -

Object and Image Statistics

name polys edges vertices pixels segments (hO.ft I}..,., IZs, t\~fl

sheet 8 16 9 82227 1001 0.26 0.167 0.692 4.5

planes 8 20 16 786486 3560 0.55 1.58 2.11 15.7

pair 520 816 298 211375 15581 2.5 0.462 0.987 10.9

torus6 72 120 49 105853 5052 0.68 0.224 0.750 5.7

torus I 0 200 320 121 123724 8880 1.3 0.269 0.795 7.3

torus 16 512 800 289 129148 14580 2.4 0.298 0.820 9.1

torus30 1800 2760 961 131941 27370 6.1 0.332 0.857 14.7

I Excludes time to initialize depth and intensity for every pixel.
2 Includes time to initialize depth and intensity for every pixel.
3 Refers to time required by software without hardware enhancement.
All times are given in seconds.

Table I. Characteristics of test objects.

As indicated above, the z and i values along the right
edge of a planar polygon are redundant if t:.z/ilx and tli/ilx
for the polygon are known. The edge initialization cost for a
right edge is then only that of loading X right, ilxrigWtly, and
tlYrixht into the chip. For a left edge, five registers must be
initialized. Thcre is also the cost of loading t:.z/ilx and
!:!.i / ax once per polygon. I n the worst case of two left edges
and one right edge for a triangle, there is a per-polygon cost
of 7.5 !,sec. For each scan line segment the chip must incre
ment x and z for each edge and compute xright - Xleft. The
time, t, ' required for these operations is 3.0 !,sec . (Since
the intensity calculations take place in parallel with z calcula
tions, only one or the other need be considered for timing
purposes.) Therefore, the time per frame for an expanded
chip is

IISI = nq *7.5 !,sec + n,*3.0 !,sec + (np +I)*2.0 !,sec.

while

Figure 13 plots the modified Ilwsl and ILSI for the same shapes
used to create figure 11. The effect of this modification of
the chip is to push the balance point towards the range of
more complex objects. The absence of any dramatic gains for
the more complex objects can be partially explained by the
fact that the host must process edges shared between
polygons twice instead of only once. For all of the objects

shown, a large percentage of the edges are shared. As figure
13 shows, the additional edge processing transferred to the
chip does not slow the chip appreciably. The real culprit is
the code in the host that computes tu/tly , t:.z/tly , t:.z/!:!.x,
etc.

Summary

The class of display system described here utilizes a
straightforward translation of software into hardware. From
the measurements presented , one can conclude that this
approach to the use of custom LSI for 3-D raster display will
yield a useful level of performancc. Despite the previously
mentioned differences in implementation, figures 11 and 13
are similar to estimates provided in Parke's simulation.
Although the performance statistics show that lhost is the
dominant term for all but the simplest scenes, the chip pro
vides at least a two to one increase in performance for each
case tested. Because the custom circuits are installed in an
ordinary frame buffer based display system, and because large
numbers of the custom chips are not required, the approach
promises to be cost effective as well.

CMCCS '81 I ACCHO '81

- 353 -

Object and Image Statistics

name polys edges vertices pixels segments (hO.ft I}..,., IZs, t\~fl

sheet 8 16 9 82227 1001 0.26 0.167 0.692 4.5

planes 8 20 16 786486 3560 0.55 1.58 2.11 15.7

pair 520 816 298 211375 15581 2.5 0.462 0.987 10.9

torus6 72 120 49 105853 5052 0.68 0.224 0.750 5.7

torus I 0 200 320 121 123724 8880 1.3 0.269 0.795 7.3

torus 16 512 800 289 129148 14580 2.4 0.298 0.820 9.1

torus30 1800 2760 961 131941 27370 6.1 0.332 0.857 14.7

I Excludes time to initialize depth and intensity for every pixel.
2 Includes time to initialize depth and intensity for every pixel.
3 Refers to time required by software without hardware enhancement.
All times are given in seconds.

Table I. Characteristics of test objects.

As indicated above, the z and i values along the right
edge of a planar polygon are redundant if t:.z/ilx and tli/ilx
for the polygon are known. The edge initialization cost for a
right edge is then only that of loading X right, ilxrigWtly, and
tlYrixht into the chip. For a left edge, five registers must be
initialized. Thcre is also the cost of loading t:.z/ilx and
!:!.i / ax once per polygon. I n the worst case of two left edges
and one right edge for a triangle, there is a per-polygon cost
of 7.5 !,sec. For each scan line segment the chip must incre
ment x and z for each edge and compute xright - Xleft. The
time, t, ' required for these operations is 3.0 !,sec . (Since
the intensity calculations take place in parallel with z calcula
tions, only one or the other need be considered for timing
purposes.) Therefore, the time per frame for an expanded
chip is

IISI = nq *7.5 !,sec + n,*3.0 !,sec + (np +I)*2.0 !,sec.

while

Figure 13 plots the modified Ilwsl and ILSI for the same shapes
used to create figure 11. The effect of this modification of
the chip is to push the balance point towards the range of
more complex objects. The absence of any dramatic gains for
the more complex objects can be partially explained by the
fact that the host must process edges shared between
polygons twice instead of only once. For all of the objects

shown, a large percentage of the edges are shared. As figure
13 shows, the additional edge processing transferred to the
chip does not slow the chip appreciably. The real culprit is
the code in the host that computes tu/tly , t:.z/tly , t:.z/!:!.x,
etc.

Summary

The class of display system described here utilizes a
straightforward translation of software into hardware. From
the measurements presented , one can conclude that this
approach to the use of custom LSI for 3-D raster display will
yield a useful level of performancc. Despite the previously
mentioned differences in implementation, figures 11 and 13
are similar to estimates provided in Parke's simulation.
Although the performance statistics show that lhost is the
dominant term for all but the simplest scenes, the chip pro
vides at least a two to one increase in performance for each
case tested. Because the custom circuits are installed in an
ordinary frame buffer based display system, and because large
numbers of the custom chips are not required, the approach
promises to be cost effective as well.

CMCCS '81 I ACCHO '81

- 354 -

References

[I] Catmull, Edwin , A Subdivision Algorithm for Computer
Display of Curved Surfaces, PhD thesis , University of
Utah, 1974.

[2] Clark, James H., and Hannah, Marc R. , ' Distributed
Processing in a High-Performance Smart Image
Memory' , Lambda, vol. I , no. 3, 1980.

[3] Cohen, D., and Demetrescu, S., A VLSI Approach to
COlj1puter Generated Imagery, Technical Report, Ca!.
Tech, 1979, oral presentation by Dan Cohen made at
SIGGRAPH '80, Seattle, July 1980.

[4] Eastman, Jeffrey, 'An Efficient Scan Conversion and
Hidden Surface Removal Algorithm' , Computers and
Graphics, Vol. I, No. 2, Se pt. 1975, p. 215 .

[5] Fuchs, Henry, 'Distributing a Visible Surface Algorithm
Over Multiple Processors', Proc. ACM Annual Conf.,
Seattle, Oct. 1977.

[6] Gouraud, Henri, 'Continuous Shading of Curved Sur
faces ', IEEE Trans. Cmptrs., C-20 (June 1971),623.

[7] Jackson, J.H., ' Dynamic Scan-Converted Images with a
Frame Buffer Display .Device', Computer Graphics, 14 ,3,
(July 1980) , 163.

[8] Myers, Allan J., An Efficient Visible Surface Algorithm,
Report to NSF, Grant No. DCR 74-00768 AOI, Com
puter Graphics Research Group, Ohio State University,
July 1975.

[9] Parke, Frederic I., 'Simulation and Expected Perfor
mance of Multiple Processor Z-Buffer Systems' , Com
puter Graphics, Volume 14, No. 3 (July 1980), pp. 48-
56.

[10] Parke, Frederic I. , Performance Analysis of Z-buffer
Convex Tiler Based Shaded Image Generation, Tech.
Rep. CES 79-15, Case Western Reserve University,
October 1979.

[Il] Roman, Grui-Catalin, and Kimura, Takayuki, 'A VLSI
Architecture for Real-Time Color Display of Three
Dimensional Objects' , Proceedings of MICRO
DELCON, April 1979, pp. 113-118.

[12] Schachter, Bruce, and Ahuja, Narendra, ' A History of
Visual Flight Simulation', Computer Graphics World,
Vol. 3, no. 3 (May 1980) pp. 16-3l.

[13] Watkins, G.S., A Real-Time Hidden Surface Algorithm ,
PhD. thesis, Univ. of Utah, 1970.

[14] Whitted, Turner, and Weimer David M., 'A Software
Test-Bed for the Development of 3-D Raster Graphics
Systems', to appear in Proceedings of SIGG RA PH '8 1,
August 1981.

CMCCS '81 / ACCHO'81

Figure 4. Warped sheet.

Figure 5. Four parallel planes.

Figure 6. Pair of objects.

- 354 -

References

[I] Catmull, Edwin , A Subdivision Algorithm for Computer
Display of Curved Surfaces, PhD thesis , University of
Utah, 1974.

[2] Clark, James H., and Hannah, Marc R. , ' Distributed
Processing in a High-Performance Smart Image
Memory' , Lambda, vol. I , no. 3, 1980.

[3] Cohen, D., and Demetrescu, S., A VLSI Approach to
COlj1puter Generated Imagery, Technical Report, Ca!.
Tech, 1979, oral presentation by Dan Cohen made at
SIGGRAPH '80, Seattle, July 1980.

[4] Eastman, Jeffrey, 'An Efficient Scan Conversion and
Hidden Surface Removal Algorithm' , Computers and
Graphics, Vol. I, No. 2, Se pt. 1975, p. 215 .

[5] Fuchs, Henry, 'Distributing a Visible Surface Algorithm
Over Multiple Processors', Proc. ACM Annual Conf.,
Seattle, Oct. 1977.

[6] Gouraud, Henri, 'Continuous Shading of Curved Sur
faces ', IEEE Trans. Cmptrs., C-20 (June 1971),623.

[7] Jackson, J.H., ' Dynamic Scan-Converted Images with a
Frame Buffer Display .Device', Computer Graphics, 14 ,3,
(July 1980) , 163.

[8] Myers, Allan J., An Efficient Visible Surface Algorithm,
Report to NSF, Grant No. DCR 74-00768 AOI, Com
puter Graphics Research Group, Ohio State University,
July 1975.

[9] Parke, Frederic I., 'Simulation and Expected Perfor
mance of Multiple Processor Z-Buffer Systems' , Com
puter Graphics, Volume 14, No. 3 (July 1980), pp. 48-
56.

[10] Parke, Frederic I. , Performance Analysis of Z-buffer
Convex Tiler Based Shaded Image Generation, Tech.
Rep. CES 79-15, Case Western Reserve University,
October 1979.

[Il] Roman, Grui-Catalin, and Kimura, Takayuki, 'A VLSI
Architecture for Real-Time Color Display of Three
Dimensional Objects' , Proceedings of MICRO
DELCON, April 1979, pp. 113-118.

[12] Schachter, Bruce, and Ahuja, Narendra, ' A History of
Visual Flight Simulation', Computer Graphics World,
Vol. 3, no. 3 (May 1980) pp. 16-3l.

[13] Watkins, G.S., A Real-Time Hidden Surface Algorithm ,
PhD. thesis, Univ. of Utah, 1970.

[14] Whitted, Turner, and Weimer David M., 'A Software
Test-Bed for the Development of 3-D Raster Graphics
Systems', to appear in Proceedings of SIGG RA PH '8 1,
August 1981.

CMCCS '81 / ACCHO'81

Figure 4. Warped sheet.

Figure 5. Four parallel planes.

Figure 6. Pair of objects.

Figure 7. Torus6.

Figure 8. ToruslO.

Figure 9. Torus l6.

- 355 -

Figure 10. Torus30.

<j--

initialize registers
for one new edge

initialize registers
for new polygon and
two new edges

Figure 12. Initialization overhead for expanded chip.

CMCCS '81 / ACCHO'81

Figure 7. Torus6.

Figure 8. ToruslO.

Figure 9. Torus l6.

- 355 -

Figure 10. Torus30.

<j--

initialize registers
for one new edge

initialize registers
for new polygon and
two new edges

Figure 12. Initialization overhead for expanded chip.

CMCCS '81 / ACCHO'81

- 356 -

6 sec

:-__ ~£nlp

500 1000 1S00 polygons

Figure 11. Relative execution times of host and current chip.

6 sec

4 eec ost

2 sec

__ --~~~--------------------------------~hip
1000 lS00 polygons

Figure 13. Relati ve execution times for host and expanded chip.

CMCCS 'S1 / ACCHO 'S1

- 356 -

6 sec

:-__ ~£nlp

500 1000 1S00 polygons

Figure 11. Relative execution times of host and current chip.

6 sec

4 eec ost

2 sec

__ --~~~--------------------------------~hip
1000 lS00 polygons

Figure 13. Relati ve execution times for host and expanded chip.

CMCCS 'S1 / ACCHO 'S1

