
- 359 -

REVISITING WATKINS ALGORITHM 

J.C. Beatty, K.S. Booth, and L.R. Matthies 

Department of Computer Science 
University of Waterloo, Ontario 

ABSTRACT 

In the eleven years since Watkins' 
algorithm first appeared it has not been 
subjected to the rigorous complexity analysis 
applied to other problems such as is typified 
by the vast literature on searching and 
sort ing. This neglect has reBul ted in the use 
of terms such as "visual complexity" to 
describe the running times of the algorithms, 
with no precise formulation of what that 
complexity is. 

This paper discusses some optimizations 
to Watkins' algorithm and provides a comple

xity analysis of our particular version of the 
algorithm. We also emphasize the wide applica
bility of the basic scanline approach as 
evidenced by related algorithms for cross
hatching, haloing and VLSI layout. 

Au cours de ses onze annees d'existence, 
l'algorithme de Watkins n'a pas ete soumis a 
l'analyse de complexite rigoureuse comme l'ont 
ete d'autres problemes si on en juge par la 
documentation importante sur les operations de 
recherche et de trio Cette negligence a abouti 
a l'utilisation de termes comme "complexite 
visuelle" pour decrire les temps d'utilisation 
des algorithmes sans que cette complexite soit 
definie de fa~on precise. 

Dans le present document, nous traitons de 
quelques methodes d'optimisation de l'algorithme 
de Watkins et nous presentons une analyse de 
complexite de notre propre version de 
l'algorithme. Nous soulignons egalement les 
vastes possibilites d'~pplication de l'approche 
fondamentale d' analyse par ligne comme le 
montrent des algorithmes rat taches pour la 
presentation par hachures, par halos et par 
tres grande integration (VLSI). 

CMCCS '81 I ACCHO '81 

- 359 -

REVISITING WATKINS ALGORITHM 

J.C. Beatty, K.S. Booth, and L.R. Matthies 

Department of Computer Science 
University of Waterloo, Ontario 

ABSTRACT 

In the eleven years since Watkins' 
algorithm first appeared it has not been 
subjected to the rigorous complexity analysis 
applied to other problems such as is typified 
by the vast literature on searching and 
sort ing. This neglect has reBul ted in the use 
of terms such as "visual complexity" to 
describe the running times of the algorithms, 
with no precise formulation of what that 
complexity is. 

This paper discusses some optimizations 
to Watkins' algorithm and provides a comple

xity analysis of our particular version of the 
algorithm. We also emphasize the wide applica
bility of the basic scanline approach as 
evidenced by related algorithms for cross
hatching, haloing and VLSI layout. 

Au cours de ses onze annees d'existence, 
l'algorithme de Watkins n'a pas ete soumis a 
l'analyse de complexite rigoureuse comme l'ont 
ete d'autres problemes si on en juge par la 
documentation importante sur les operations de 
recherche et de trio Cette negligence a abouti 
a l'utilisation de termes comme "complexite 
visuelle" pour decrire les temps d'utilisation 
des algorithmes sans que cette complexite soit 
definie de fa~on precise. 

Dans le present document, nous traitons de 
quelques methodes d'optimisation de l'algorithme 
de Watkins et nous presentons une analyse de 
complexite de notre propre version de 
l'algorithme. Nous soulignons egalement les 
vastes possibilites d'~pplication de l'approche 
fondamentale d' analyse par ligne comme le 
montrent des algorithmes rat taches pour la 
presentation par hachures, par halos et par 
tres grande integration (VLSI). 

CMCCS '81 I ACCHO '81 



r---------------------------------------------- --------

- 360 -

Extended Abstract 

1. Introduction 

The visible surface problem is to 
efficiently determine which portions of 
a scene are visible from some view
po int. The problem is d i ff icul t: it 
has a long history, a variety of ap
proaches have been explored, and it is 
still a~ active area of research. We 
are interested in applying techniques 
from computational geometry, theory of 
data structures and analysis of al
gorithms to the family of scan line al
~orithms, especially to the algorithm 

eveloped by Gary Watkins which has 
been in use for over ten years. Our 
work stems from the following three 
observations. 

* Watkins' algorithm has not been sub
jected to a rigorous complexity 
analysis, in contrast to problems 
such as sorting. Terms like 
"visible complexityn have been used 
to describe the running time but no 
precise definition has appeared in 
the literature. 

* Watkins' algorithm can be sped up by 
using additional coherence informa
tion and by employing more 
sophisticated data structures which 
allow many scan lines to be 
processed with much less work, espe
cially for the hidden line version 
of the algorithm. 

* Watkins' algorithm is very similar 
to a number of algorithms used in 
graphics and computational geometry. 
The scan line approach in these al
gorithms is a technique which 
deserves to be in the standard 
programmer's toolkit. 

description of the algorithm. Section 
5 continues this discussion with a case 
study of a scan line algorithm for com-
puting the haloed line effect. Section 
6 describes two other problems for 
which similar solutions have been 
proposed. We conclude in Section 7 
with a short summary of the work we 
have been doing and an indication of 
further work to be done. 

Our goal here is to provide a 
thorough complexity analysis of our 
haloing algorithm and to stress the 
similarity between related algorithms 
by using a uniform framework for 
discussion. 

2. Watkins' Algorithm 

In his Ph .D. thesis [W], Gary Wat
kins presented an elegant algorithm for 
determining the visible surfaces of 
complex 3-dimensional scenes. Watkins 
generated output for a raster display 
in which a picture is a rectangular ar
ray of pixels. The visible surface 
problem is equivalent to deciding, for 
each pixel, which of the polygons is 
visible at that pixel. A realization 
that the problem need only be solved to 
screen resolution is one of the key 
ideas in Watkins' algorithm. A second 
is the notion that each scan line (a 
horizontal row of pixels-)---can-- be 
processed separately, but that if the 
scan lines are processed in order from 
top to bottom, consecutive scan lines 
will usually be quite similar. This is 
called scan line coherence and is one 
instance-OY-a more general observation: 
within a scene visible areas or objects 
tend to change infrequently and only at 
discrete places. 

We will assume that a scene is made 
up of objects consisting of planar 
polygons in three dimensions and that 
no polygon penetrates another. A scan 
line algorithm is one which sorts poly
gons according to the scan lines on 
which they first appear in the picture, 
then processes each scan line in turn, 
adding polygons as they enter the pic
ture and deleting them as they exit. 

In section 2 we describe the general 
structure of Watkins' algorithm and 
argue that scan line algorithms have 
significant advantages in terms of 
efficiency of execution and quality of 
ima~e when compared with some other al
gorIthms. Section 3 addresses our 
first observation, suggesting a uniform 
set of parameters for measuring the 
complexity of visible surface al- Figure 1 shows two examples of 
gorithms. This is then applied to Wat- scenes in which (a) all edges have been 
kins' algorithm in Section 4 where we drawn, (b) only edges of front-facing 
describe a number of improvements which polygons have been drawn, and (c) only 
have been made since Watkins' original visible edges have been drawn. The 

CMCCS '81 / ACCHO '81 

r---------------------------------------------- --------

- 360 -

Extended Abstract 

1. Introduction 

The visible surface problem is to 
efficiently determine which portions of 
a scene are visible from some view
po int. The problem is d i ff icul t: it 
has a long history, a variety of ap
proaches have been explored, and it is 
still a~ active area of research. We 
are interested in applying techniques 
from computational geometry, theory of 
data structures and analysis of al
gorithms to the family of scan line al
~orithms, especially to the algorithm 

eveloped by Gary Watkins which has 
been in use for over ten years. Our 
work stems from the following three 
observations. 

* Watkins' algorithm has not been sub
jected to a rigorous complexity 
analysis, in contrast to problems 
such as sorting. Terms like 
"visible complexityn have been used 
to describe the running time but no 
precise definition has appeared in 
the literature. 

* Watkins' algorithm can be sped up by 
using additional coherence informa
tion and by employing more 
sophisticated data structures which 
allow many scan lines to be 
processed with much less work, espe
cially for the hidden line version 
of the algorithm. 

* Watkins' algorithm is very similar 
to a number of algorithms used in 
graphics and computational geometry. 
The scan line approach in these al
gorithms is a technique which 
deserves to be in the standard 
programmer's toolkit. 

description of the algorithm. Section 
5 continues this discussion with a case 
study of a scan line algorithm for com-
puting the haloed line effect. Section 
6 describes two other problems for 
which similar solutions have been 
proposed. We conclude in Section 7 
with a short summary of the work we 
have been doing and an indication of 
further work to be done. 

Our goal here is to provide a 
thorough complexity analysis of our 
haloing algorithm and to stress the 
similarity between related algorithms 
by using a uniform framework for 
discussion. 

2. Watkins' Algorithm 

In his Ph .D. thesis [W], Gary Wat
kins presented an elegant algorithm for 
determining the visible surfaces of 
complex 3-dimensional scenes. Watkins 
generated output for a raster display 
in which a picture is a rectangular ar
ray of pixels. The visible surface 
problem is equivalent to deciding, for 
each pixel, which of the polygons is 
visible at that pixel. A realization 
that the problem need only be solved to 
screen resolution is one of the key 
ideas in Watkins' algorithm. A second 
is the notion that each scan line (a 
horizontal row of pixels-)---can-- be 
processed separately, but that if the 
scan lines are processed in order from 
top to bottom, consecutive scan lines 
will usually be quite similar. This is 
called scan line coherence and is one 
instance-OY-a more general observation: 
within a scene visible areas or objects 
tend to change infrequently and only at 
discrete places. 

We will assume that a scene is made 
up of objects consisting of planar 
polygons in three dimensions and that 
no polygon penetrates another. A scan 
line algorithm is one which sorts poly
gons according to the scan lines on 
which they first appear in the picture, 
then processes each scan line in turn, 
adding polygons as they enter the pic
ture and deleting them as they exit. 

In section 2 we describe the general 
structure of Watkins' algorithm and 
argue that scan line algorithms have 
significant advantages in terms of 
efficiency of execution and quality of 
ima~e when compared with some other al
gorIthms. Section 3 addresses our 
first observation, suggesting a uniform 
set of parameters for measuring the 
complexity of visible surface al- Figure 1 shows two examples of 
gorithms. This is then applied to Wat- scenes in which (a) all edges have been 
kins' algorithm in Section 4 where we drawn, (b) only edges of front-facing 
describe a number of improvements which polygons have been drawn, and (c) only 
have been made since Watkins' original visible edges have been drawn. The 

CMCCS '81 / ACCHO '81 



- 361 -

Figure l(a). Wire-frame with all edges drawn. 

Figure I (b). Backfacing polygons removed. 

Figure l(c). Only visible edges drawn. 

CMCCS '81 I ACCHO '81 

- 361 -

Figure l(a). Wire-frame with all edges drawn. 

Figure I (b). Backfacing polygons removed. 

Figure l(c). Only visible edges drawn. 

CMCCS '81 I ACCHO '81 



- 362,-

p~lrpose of using a visible surface al
aGrithm is to add realism to the ren
~ering. The advantage of displaying 
only the visible edges is readily ap
parent in the second set of examples. 

Watkins' algorithm processes each 
scan line maintaining a list of active 
edges sorted along x. As the list is 
traversed the active polygons are com
pared in z and the frontmost polygon is 
displayed. Figure 2. illustrates the 
top-to-bottom order in which polygons 
enter a scene after being bucket sorted 
according to their highest y 
coordinates. 

Efficiency is achieved by main
taining a sample list of spans, which 
are segments of a scan line along which 
the same polygon is visible. This sim
plifies the z sort within a scan line. 
The algorithm capitalizes on scan line 
coherence by using the same sample list 
on each scan line and by assuming that 
the polygons appear in the same x and z 
relationship on successive scan lines. 
When these assumptions are incorrect, 
the algorithm performs additional work 
to reestablish the appropriate lists. 

Using the scan line approach means 
that many complicated calculations, 
such as determining the intersection of 
an edge with a particular scan line, 
can be replaced by incremental calcula
tions, in which the intersection is 
computed from the previous intersection 
by addition of the inverse slope. 
Depth and shading information are also 
easily updated in this manner. 

Scan line algorithms are not the 
only means for solving the visible sur
face problem. Declining costs for com
puter memory have greatly increased the 
availability of raster terminals and 
frame buffers. Techniques such as the 
z-buffer algorithm are computationally 
less expensive when implemented 
directly in hardware or firmware and 
have supplanted the more sophisticated 
visible surface algorithms for some ap
plications [C, NS2j. Older algorithms 
based on priority orderings of the in
put polygons have been revised to 
handle a larger class of problems [Yj. 

solved. 

Aliasing is the term applied to the 
jagged lines which result when a line 
is drawn on a raster terminal. If the 
line is not exactly vertical or 
horizontal then it must be approximated 
by a sequence of pixels which will not 
fall precisely on the line. Figure 3 
shows an exaggerated example of 
aliasing for the first scene of Figure 
1. 

There are well-known techniques for 
anti-aliasing a picture by averaging 
all of the visible polygons for a given 
pixel, but these do not work well for 
z-buffer or priority algorithms [Crj. 
The reason is that these algorithms 
overwrite previously computed areas of 
the screen; they are unable to cor
rectly compute the intensity of a 
single pixel because there is never a 
time at which all of the polygons 
visible at that pixel are simul
taneously under consideration. Scan 
line algorithms do not suffer from this 
drawback and can be easily modified to 
produce very high quality anti-aliased 
renderings of complex scenes. 

Scenes may be described using more 
complicated surface patches such as 
B-splines or Bezier surfaces [NS2j. 
Recently Lane, Carpenter, Whitted and 
Blinn have described a family of 
visible surface algorithms for dealing 
with these parametric definitions of 
3-dimensional objects [LCWBj. The 
techniques we propose for improving the 
polygon-based algorithms should also 
apply to their patch-based scan line 
algorithms. The algorithms are neces
sarily more complex, so the percentage 
improvement may be less. 

2. Analyzing Complexity 

In the appendices to their survey of 
ten hidden surface algorithms Suther
land, Sproull and Schumacker propose a 
list of twenty environment statistics 
for measuring the complexity of a scene 
[SSSj. They provide estimates of the 
running times for each of the al
gorithms in terms of these statistics. 

In both cases there remains a major These environment statistics are one 
stumbling block: the problem of anti- way of parametrizing a scene. We think 
aliasing pictures, especially for full that a slightly different viewpoint 
color renderings, is still largely un- provides more insight into the 

CMCCS '81 I ACCHO 'S1 

- 362,-

p~lrpose of using a visible surface al
aGrithm is to add realism to the ren
~ering. The advantage of displaying 
only the visible edges is readily ap
parent in the second set of examples. 

Watkins' algorithm processes each 
scan line maintaining a list of active 
edges sorted along x. As the list is 
traversed the active polygons are com
pared in z and the frontmost polygon is 
displayed. Figure 2. illustrates the 
top-to-bottom order in which polygons 
enter a scene after being bucket sorted 
according to their highest y 
coordinates. 

Efficiency is achieved by main
taining a sample list of spans, which 
are segments of a scan line along which 
the same polygon is visible. This sim
plifies the z sort within a scan line. 
The algorithm capitalizes on scan line 
coherence by using the same sample list 
on each scan line and by assuming that 
the polygons appear in the same x and z 
relationship on successive scan lines. 
When these assumptions are incorrect, 
the algorithm performs additional work 
to reestablish the appropriate lists. 

Using the scan line approach means 
that many complicated calculations, 
such as determining the intersection of 
an edge with a particular scan line, 
can be replaced by incremental calcula
tions, in which the intersection is 
computed from the previous intersection 
by addition of the inverse slope. 
Depth and shading information are also 
easily updated in this manner. 

Scan line algorithms are not the 
only means for solving the visible sur
face problem. Declining costs for com
puter memory have greatly increased the 
availability of raster terminals and 
frame buffers. Techniques such as the 
z-buffer algorithm are computationally 
less expensive when implemented 
directly in hardware or firmware and 
have supplanted the more sophisticated 
visible surface algorithms for some ap
plications [C, NS2j. Older algorithms 
based on priority orderings of the in
put polygons have been revised to 
handle a larger class of problems [Yj. 

solved. 

Aliasing is the term applied to the 
jagged lines which result when a line 
is drawn on a raster terminal. If the 
line is not exactly vertical or 
horizontal then it must be approximated 
by a sequence of pixels which will not 
fall precisely on the line. Figure 3 
shows an exaggerated example of 
aliasing for the first scene of Figure 
1. 

There are well-known techniques for 
anti-aliasing a picture by averaging 
all of the visible polygons for a given 
pixel, but these do not work well for 
z-buffer or priority algorithms [Crj. 
The reason is that these algorithms 
overwrite previously computed areas of 
the screen; they are unable to cor
rectly compute the intensity of a 
single pixel because there is never a 
time at which all of the polygons 
visible at that pixel are simul
taneously under consideration. Scan 
line algorithms do not suffer from this 
drawback and can be easily modified to 
produce very high quality anti-aliased 
renderings of complex scenes. 

Scenes may be described using more 
complicated surface patches such as 
B-splines or Bezier surfaces [NS2j. 
Recently Lane, Carpenter, Whitted and 
Blinn have described a family of 
visible surface algorithms for dealing 
with these parametric definitions of 
3-dimensional objects [LCWBj. The 
techniques we propose for improving the 
polygon-based algorithms should also 
apply to their patch-based scan line 
algorithms. The algorithms are neces
sarily more complex, so the percentage 
improvement may be less. 

2. Analyzing Complexity 

In the appendices to their survey of 
ten hidden surface algorithms Suther
land, Sproull and Schumacker propose a 
list of twenty environment statistics 
for measuring the complexity of a scene 
[SSSj. They provide estimates of the 
running times for each of the al
gorithms in terms of these statistics. 

In both cases there remains a major These environment statistics are one 
stumbling block: the problem of anti- way of parametrizing a scene. We think 
aliasing pictures, especially for full that a slightly different viewpoint 
color renderings, is still largely un- provides more insight into the 

CMCCS '81 I ACCHO 'S1 



- 363 -

Figure 2. Edges of polygons enter the picture as 
the scan lines on which they first appear are 
processed. Active edges are kept in x-sorted 
order along the scan line. 

/. 

Figure 3. The jagged lines characteristic of 
aliasing on raster terminals have been exaggerated 
in this view of the two cubes. 

CMCCS '81 I ACCHO '81 

- 363 -

Figure 2. Edges of polygons enter the picture as 
the scan lines on which they first appear are 
processed. Active edges are kept in x-sorted 
order along the scan line. 

/. 

Figure 3. The jagged lines characteristic of 
aliasing on raster terminals have been exaggerated 
in this view of the two cubes. 

CMCCS '81 I ACCHO '81 



- 364 -

efficiency of visible surface al
gorithms. Examining Watkins' algorithm 
reveals that the following operations 
are being performed. 

* Work proportional to the number of 
edges in a scene during the x and y 
bucket sorts at the start of each 
frame and on various scan lines as 
each edge enters and leaves the 
scene. 

* Work proportional to the number of 
polygons during initialization of 
the scene. 

* Work proportional to the number of 
edges on scan lines as x andz 
values for each edge are incremented 
from scan line to scan line. 

* Work proportinal to the number of 
total adge crossings keeping the ac
t1ve e ge 11St 1n x-sorted order. 

* Work proportional to the number of 
visible edge crossings determining-a 
new visible polygon. 

* Work proportional to the screen 
resolution initializing the bucket 
sorts and performing the outer loop 
of the top-to-bottom scan of the 
scene. 

All of these measures are included 
in the environment statistics, or can 
be easily derived from measures in that 
list. We choose these for our study 
because they allow us to focus on some 
of the significant costs which can be 
red uced. 

A useful definition of "visual 
complexity" can be made in terms of 
these parameters. Any algorithm which 
solves the visible surface probiem must 
examine every polygon, in fact every 
edge, at least once. Moreover it seems 
reasonable to allow time at least 
linear in the screen resolution. 
Finally, since each visible edge 
crossing requires some output action 
the running time must allow for their 
detection. We thus propose that the 
visual comhlexity of a picture be 
defined as t e sum of the number of 
edges in a scene, the screen resolution 
and the number of visible edge 
crossings. 

Our view of Watkins' algorithm in
dicates that its running time is not 
proportional to the visual complexity, 
contrary to some claims in the litera
ture [NSI). Instead, there is a term 
linear in the total number of edge 
crossings (whether visible or not) .and 
also to the total number of edges on 
scan lines, since each edge is 
processed on each incident scan line. 
The latter term might reasonably be in
cluded in the visual complexity, but 
not the former. A term proportional to 
the total number of edge crossings 
arises in Watkins' algorithm precisely 
because the active edge list is kept in 
x sorted order. This is accomplished 
with a bubble sort. A bubble sort al
ways does work proportionnl to the 
number of inversions within the data. 
Each edge crossing is an inversion. 
The extra work spent looking at in
visible crossings is a prime candidate 
for elimination. 

It is worth noting that for n ob
jects there can be, in the worst case, 
n squared edged crossings. This leads 
to quadratic behaviour, precisely the 
objection raised by Sutherland, Sproull 
and Schumacker when they compare 
Roberts' and other algorithms to Wat
k i ns' • 

4. Suggested Improvements 

Watkins' algorithm is designed for 
hidden surface processing. It is 
easily modified to handle hidden line 
elimination by keeping track of when 
edges become visible and invisible. On 
a raster display this is probably best 
performed by simply drawing scan seg
ments with the "first" and "last" 
pixels "on" and intermediate pixels 
"off" [NS2). On line-drawing systems 
one would remember the endpoints of the 
edges and issue simple drawing commands 
to generate the visible scene. 

The basic algorithm can be sped up 
by observing that multiple scan-line 
coherence occurs in many pictures. 
This means that not only are adjacent 
scan lines similar, but in fact a whole 
group of scan lines will be similar. 
An algorithm for a raster display must 
specify the image at each pixel of each 
scan line; a line-drawing algorithm 
need not be concerned with scan lines 
on which no "critical events" occur. 

CMCCS '81 / ACCHO '81 

- 364 -

efficiency of visible surface al
gorithms. Examining Watkins' algorithm 
reveals that the following operations 
are being performed. 

* Work proportional to the number of 
edges in a scene during the x and y 
bucket sorts at the start of each 
frame and on various scan lines as 
each edge enters and leaves the 
scene. 

* Work proportional to the number of 
polygons during initialization of 
the scene. 

* Work proportional to the number of 
edges on scan lines as x andz 
values for each edge are incremented 
from scan line to scan line. 

* Work proportinal to the number of 
total adge crossings keeping the ac
t1ve e ge 11St 1n x-sorted order. 

* Work proportional to the number of 
visible edge crossings determining-a 
new visible polygon. 

* Work proportional to the screen 
resolution initializing the bucket 
sorts and performing the outer loop 
of the top-to-bottom scan of the 
scene. 

All of these measures are included 
in the environment statistics, or can 
be easily derived from measures in that 
list. We choose these for our study 
because they allow us to focus on some 
of the significant costs which can be 
red uced. 

A useful definition of "visual 
complexity" can be made in terms of 
these parameters. Any algorithm which 
solves the visible surface probiem must 
examine every polygon, in fact every 
edge, at least once. Moreover it seems 
reasonable to allow time at least 
linear in the screen resolution. 
Finally, since each visible edge 
crossing requires some output action 
the running time must allow for their 
detection. We thus propose that the 
visual comhlexity of a picture be 
defined as t e sum of the number of 
edges in a scene, the screen resolution 
and the number of visible edge 
crossings. 

Our view of Watkins' algorithm in
dicates that its running time is not 
proportional to the visual complexity, 
contrary to some claims in the litera
ture [NSI). Instead, there is a term 
linear in the total number of edge 
crossings (whether visible or not) .and 
also to the total number of edges on 
scan lines, since each edge is 
processed on each incident scan line. 
The latter term might reasonably be in
cluded in the visual complexity, but 
not the former. A term proportional to 
the total number of edge crossings 
arises in Watkins' algorithm precisely 
because the active edge list is kept in 
x sorted order. This is accomplished 
with a bubble sort. A bubble sort al
ways does work proportionnl to the 
number of inversions within the data. 
Each edge crossing is an inversion. 
The extra work spent looking at in
visible crossings is a prime candidate 
for elimination. 

It is worth noting that for n ob
jects there can be, in the worst case, 
n squared edged crossings. This leads 
to quadratic behaviour, precisely the 
objection raised by Sutherland, Sproull 
and Schumacker when they compare 
Roberts' and other algorithms to Wat
k i ns' • 

4. Suggested Improvements 

Watkins' algorithm is designed for 
hidden surface processing. It is 
easily modified to handle hidden line 
elimination by keeping track of when 
edges become visible and invisible. On 
a raster display this is probably best 
performed by simply drawing scan seg
ments with the "first" and "last" 
pixels "on" and intermediate pixels 
"off" [NS2). On line-drawing systems 
one would remember the endpoints of the 
edges and issue simple drawing commands 
to generate the visible scene. 

The basic algorithm can be sped up 
by observing that multiple scan-line 
coherence occurs in many pictures. 
This means that not only are adjacent 
scan lines similar, but in fact a whole 
group of scan lines will be similar. 
An algorithm for a raster display must 
specify the image at each pixel of each 
scan line; a line-drawing algorithm 
need not be concerned with scan lines 
on which no "critical events" occur. 

CMCCS '81 / ACCHO '81 



- 365 -

We define a critical event to be the 
visible entry, exit--or- crossing of 
edges in the scene. We propose to ig-
nore scan lines on which no critical 
events occur. 

Sutherland, Sproull and Schumacker 
made a similar observation in their 
survey [SSS] and later Hamlin and Gear 
[HG] implemented a visible surface al
gorithm which did predict crossings. 
Their algorithm predicted all 
crossings, however, which still left a 
potentially quadratic behaviour, al
though they noted that there was no 
need to process crossings which were 
invisible. 

As Watkins' algorithm processes a 
scan line it verifies that the edges 
are in x-sorted order along the scan 
line. As this check is made it is 
possible to predict the next scan line 
on which two edges will cross. This, 
together with readily-available infor
mation about when edges enter and leave 
the picture, enables the algorithm to 
predict the next scan line on which a 
critical event might occur. It is thus 
free to skip intervening scan lines. 

A further improvement on this scheme 
fully realizes the potential for ig
noring invisible crossings. Two edges 
which cross while obscured by some 
other surface do not affect the visible 
picture so the scan line on which the 
crossing occurs does not have to be 
processed (unless, of course, there is 
some critical event on that scan line). 
The final observation is that on a scan 
line which has a critical event, if the 
crossing is known to lie between two 
visible edges, there is no need to 
process the entire active edge list, 
only the spans (regions of the scan 
line) in which the event occurs need be 
updated. 

In the first edition of their text
book on graphics, Newman and Sproull 
report that 

[Watkins' algorithm] is quite 
fast, although its dependence 
on the complexity of the scene 
is difficult to analyze. Wat
kins tabulated the performance 
of the algorithm for a variety 
of scenes and discovered that 
the computation grows roughly 

as the visible complexity in
creases [NSl, page 321]. 

This is not the case, at least for 
the standard version of Watkins' al
gorithm which appears in the litera
ture. In the worst case the al
gorithm has a quadratic behaviour, 
due simply to the fact that the 
bubble sort of the active edge list 
requires that all of the inversions 
removed as edges cross. 

A careful analysis of the running 
time of our proposed algorithm in
dictes that it is still not propor
tional to the visuaY--COmplexity of 
the scene. An invisible edge which 
crosses diagonally through the scene 
can cause many scan lines to be 
processed unnecessarily. In the 
worst case it seems that quadratic 
behaviour is still possible. We have 
not completely analyzed the effect of 
more sophisticatect ctata structures 
for maintaining z-sort information 
within a span. Perhaps with this 
information the quadratic behaviour 
can be avoided for scenes whose 
visual complexity is not quadratic in 
the number of objects. 

The version of the algorithm 
proposed here does not handle 
penetrating polygons. Adding this to 
the algorithm is a straightforward 
adaptation of the solution used in 
Watkins' original algorithm. We have 
left it out here to provide a clear 
indication of the differences between 
our algorithm and the original. 
There are added complications in the 
z-sort which have not been fully ex
plored. Again, more sophisticated 
data structures for maintaining 
information within a span may reduce 
the complexity. 

5. Haloing 

One interesting question which can 
be asked is whether the scan line al
gorithms can be used to provide an 
exact solution for the visible sur
race-problem. It seems that the scan 
line algorithms derive some of their 
power from the_ fact that they only 
solve the problem to screen resolu
tion. This is true. But an exact 
solution can be obtained if we use 
priority queues to keep track of the 

CMCCS '81 I ACCHO '81 

J 

- 365 -

We define a critical event to be the 
visible entry, exit--or- crossing of 
edges in the scene. We propose to ig-
nore scan lines on which no critical 
events occur. 

Sutherland, Sproull and Schumacker 
made a similar observation in their 
survey [SSS] and later Hamlin and Gear 
[HG] implemented a visible surface al
gorithm which did predict crossings. 
Their algorithm predicted all 
crossings, however, which still left a 
potentially quadratic behaviour, al
though they noted that there was no 
need to process crossings which were 
invisible. 

As Watkins' algorithm processes a 
scan line it verifies that the edges 
are in x-sorted order along the scan 
line. As this check is made it is 
possible to predict the next scan line 
on which two edges will cross. This, 
together with readily-available infor
mation about when edges enter and leave 
the picture, enables the algorithm to 
predict the next scan line on which a 
critical event might occur. It is thus 
free to skip intervening scan lines. 

A further improvement on this scheme 
fully realizes the potential for ig
noring invisible crossings. Two edges 
which cross while obscured by some 
other surface do not affect the visible 
picture so the scan line on which the 
crossing occurs does not have to be 
processed (unless, of course, there is 
some critical event on that scan line). 
The final observation is that on a scan 
line which has a critical event, if the 
crossing is known to lie between two 
visible edges, there is no need to 
process the entire active edge list, 
only the spans (regions of the scan 
line) in which the event occurs need be 
updated. 

In the first edition of their text
book on graphics, Newman and Sproull 
report that 

[Watkins' algorithm] is quite 
fast, although its dependence 
on the complexity of the scene 
is difficult to analyze. Wat
kins tabulated the performance 
of the algorithm for a variety 
of scenes and discovered that 
the computation grows roughly 

as the visible complexity in
creases [NSl, page 321]. 

This is not the case, at least for 
the standard version of Watkins' al
gorithm which appears in the litera
ture. In the worst case the al
gorithm has a quadratic behaviour, 
due simply to the fact that the 
bubble sort of the active edge list 
requires that all of the inversions 
removed as edges cross. 

A careful analysis of the running 
time of our proposed algorithm in
dictes that it is still not propor
tional to the visuaY--COmplexity of 
the scene. An invisible edge which 
crosses diagonally through the scene 
can cause many scan lines to be 
processed unnecessarily. In the 
worst case it seems that quadratic 
behaviour is still possible. We have 
not completely analyzed the effect of 
more sophisticatect ctata structures 
for maintaining z-sort information 
within a span. Perhaps with this 
information the quadratic behaviour 
can be avoided for scenes whose 
visual complexity is not quadratic in 
the number of objects. 

The version of the algorithm 
proposed here does not handle 
penetrating polygons. Adding this to 
the algorithm is a straightforward 
adaptation of the solution used in 
Watkins' original algorithm. We have 
left it out here to provide a clear 
indication of the differences between 
our algorithm and the original. 
There are added complications in the 
z-sort which have not been fully ex
plored. Again, more sophisticated 
data structures for maintaining 
information within a span may reduce 
the complexity. 

5. Haloing 

One interesting question which can 
be asked is whether the scan line al
gorithms can be used to provide an 
exact solution for the visible sur
race-problem. It seems that the scan 
line algorithms derive some of their 
power from the_ fact that they only 
solve the problem to screen resolu
tion. This is true. But an exact 
solution can be obtained if we use 
priority queues to keep track of the 

CMCCS '81 I ACCHO '81 

J 



y coordinates at which critical 
events occur. This allows us to 
process only those slices through the 
picture at which the scene changes. 
The cost is a logarithmic slowdown, 
replacing the y bucket sort with one 
of the standard priority queue al
gorithms. 

A number of other problems can be 
solved with an exact scan line ap
proach. The one which we will look 
at in detail is a variant of the 
visible surface problem. Appel, 
Rohlf and Stein [ARS] have pointed 
out that for some applications a ren
dering with hidden lines removed is 
inappropriate. They suggest a 
haloing effect in which hidden lines 
are removed only when they pass near 
or behind other lines. Their 
implementation is based on a hidden 
line algorithm of Appel, but they ob
serve that the same techniques 
probably apply to other hidden line 
algorithms. 

Figure 4 illustrates the use of 
haloing on three scenes showing (a) a 
wire-frame rendering in which all 
edges have been drawn, (b) a haloed 
rendering in which edges crossing 
behind other edges are clipped as 
they pass behind the front edge, and 
(c) a visible surface rendering in 
which Watkins' algorithm has been ap
plied to eliminate all hidden line 
segments. 

The scan line algorithm outlined 
in Section 4 can be adapted to 
haloing. The algorithm already keeps 
track of where edges cross so that 
just the visible portions are drawn. 
The only change required is to keep 
track of the distance from the 
crossing point at which the line 
should be terminated. The idea of 
skipping ahead to the next scan line 
on which a crossing occurs is still 
relevant, although now we have to 
revert to a version similar to Hamlin 
and Gear's algorithm since all 
crossings are visible, not just those 
crossings which involve edges of 
visible surfaces. 

- 366 -

critical events in y-sorted order; 
the e~ge queue maintains the active 
edges n x=sorr:ed order. The al-
gorithm cyclically removes the 
mlnlmum (highest scan line) critical 
event from the event queue and up
dates the edge queue by inserting, 
deleting or reordering the active 
edges. The edge queue makes it easy 
to find the edges to the leEt and 
right of a critical event, thus al
lowing further critical events to be 
predicted and inserted into the event 
queue. 

An event is any edge entering or 
leaving the scene or any two edges 
which cross. For haloed pictures all 
events are visible, thus critical. 
As each event is processed, it is 
removed Erom the event queue (in scan 
line order because of the y-sort). 
The x-sorted edge queue permits the 
immediately adjacent active edges 
(left and right spans on the scan 
I ine) to be located quickl y. These 
edges are checked Eor possible 
crossings, the edge list is updated 
to maintain the x-sort, and any 
detected crossings are inserted into 
the event queue for subsequent 
process i ng • 

The event queue allows insertion 
of an arbitrary element and deletion 
of the minimum element. The edge 
queue admits insertion, deletion, 
predecessor and successor operations 
for an arbitrary element. All of 
these can be performed in at most 
logarithmic time in a 2-3 tree. 

The running time of the algorithm 
is proportional to the number of 
crossings (all crossings are visible 
in a haloed rendering) times the 
logarithm of the number of elements 
in the queues. The queues are always 
linear in the number of edges, so the 
overall running time is proportional 
to the number of crossings times the 
logarithm of the number of edges. 
This is clearly not linear in the 
visible complexity (number of 
crossings) So there is still a margin 
for further improvement. 

Our implementation of the haloing We have not investigated the pos-
algorithm maintains two priority sibility for parallel processing in 
queues, each implemented as 2-3 this algorithm. Clearly "nonover-
trees. The event queue maintains the lapping" critical events can be 

CMCCS '81 / ACCHO· '81 

y coordinates at which critical 
events occur. This allows us to 
process only those slices through the 
picture at which the scene changes. 
The cost is a logarithmic slowdown, 
replacing the y bucket sort with one 
of the standard priority queue al
gorithms. 

A number of other problems can be 
solved with an exact scan line ap
proach. The one which we will look 
at in detail is a variant of the 
visible surface problem. Appel, 
Rohlf and Stein [ARS] have pointed 
out that for some applications a ren
dering with hidden lines removed is 
inappropriate. They suggest a 
haloing effect in which hidden lines 
are removed only when they pass near 
or behind other lines. Their 
implementation is based on a hidden 
line algorithm of Appel, but they ob
serve that the same techniques 
probably apply to other hidden line 
algorithms. 

Figure 4 illustrates the use of 
haloing on three scenes showing (a) a 
wire-frame rendering in which all 
edges have been drawn, (b) a haloed 
rendering in which edges crossing 
behind other edges are clipped as 
they pass behind the front edge, and 
(c) a visible surface rendering in 
which Watkins' algorithm has been ap
plied to eliminate all hidden line 
segments. 

The scan line algorithm outlined 
in Section 4 can be adapted to 
haloing. The algorithm already keeps 
track of where edges cross so that 
just the visible portions are drawn. 
The only change required is to keep 
track of the distance from the 
crossing point at which the line 
should be terminated. The idea of 
skipping ahead to the next scan line 
on which a crossing occurs is still 
relevant, although now we have to 
revert to a version similar to Hamlin 
and Gear's algorithm since all 
crossings are visible, not just those 
crossings which involve edges of 
visible surfaces. 

- 366 -

critical events in y-sorted order; 
the e~ge queue maintains the active 
edges n x=sorr:ed order. The al-
gorithm cyclically removes the 
mlnlmum (highest scan line) critical 
event from the event queue and up
dates the edge queue by inserting, 
deleting or reordering the active 
edges. The edge queue makes it easy 
to find the edges to the leEt and 
right of a critical event, thus al
lowing further critical events to be 
predicted and inserted into the event 
queue. 

An event is any edge entering or 
leaving the scene or any two edges 
which cross. For haloed pictures all 
events are visible, thus critical. 
As each event is processed, it is 
removed Erom the event queue (in scan 
line order because of the y-sort). 
The x-sorted edge queue permits the 
immediately adjacent active edges 
(left and right spans on the scan 
I ine) to be located quickl y. These 
edges are checked Eor possible 
crossings, the edge list is updated 
to maintain the x-sort, and any 
detected crossings are inserted into 
the event queue for subsequent 
process i ng • 

The event queue allows insertion 
of an arbitrary element and deletion 
of the minimum element. The edge 
queue admits insertion, deletion, 
predecessor and successor operations 
for an arbitrary element. All of 
these can be performed in at most 
logarithmic time in a 2-3 tree. 

The running time of the algorithm 
is proportional to the number of 
crossings (all crossings are visible 
in a haloed rendering) times the 
logarithm of the number of elements 
in the queues. The queues are always 
linear in the number of edges, so the 
overall running time is proportional 
to the number of crossings times the 
logarithm of the number of edges. 
This is clearly not linear in the 
visible complexity (number of 
crossings) So there is still a margin 
for further improvement. 

Our implementation of the haloing We have not investigated the pos-
algorithm maintains two priority sibility for parallel processing in 
queues, each implemented as 2-3 this algorithm. Clearly "nonover-
trees. The event queue maintains the lapping" critical events can be 

CMCCS '81 / ACCHO· '81 



- 367 -

Fig ure 4 (a) • A wire-frame rendering. 

Figure 4 (b) • . ng d render 1 • A haIoe 

Figure rendering • . 'bIe surface 4(c). AV1Sl 

o '81 CMCCS '81 I ACCH 

- 367 -

Fig ure 4 (a) • A wire-frame rendering. 

Figure 4 (b) • . ng d render 1 • A haIoe 

Figure rendering • . 'bIe surface 4(c). AV1Sl 

o '81 CMCCS '81 I ACCH 



- 368 -

handled in parallel. Ensuring that 
this is done correctly, and detecting 
cases in which it cannot be handled 
in parallel, requires further in
vestigation. 

We remark in passing that one of 
the difficulties which Appel, Rohlf 
and Stein encountered was the problem 
of deciding just how much of a line 
should be haloed. Our implementation 
suffers in this respect (it is par- _ 
ticularly noticeable in the third ex
ample of Figure 4). One possible 
solution is to use a two-pass al
gorithm which treats "horizontal" and 
"vertical" lines separately, a tech
nique already employed in our 
implementation of Watkin's algorithm 
[A] • 

6. Related Problems 

The haloing algorithm is only one 
instance of a problem which can be 
solved using a scan line approach. 
Beretta and Nievergelt have observed 
the same phenomenon which prompted us 
to look at scan line algorithms: 

Recent progress in com
putational geometry has made 
it possible to isolate the 
algorithmic core of· scan 
conversion algorithms, to as
sess their generality, and to 
describe fairly clearly the 
kinds of geometric and 
topological questions they 
can answer [BN]. 

Their notion of a plane-sweep al
gorithm which sorts line segments 
according to x and then processes 
cross-sections in y is what we have 
been calling a scan line algorithm. 
By way of example, we point out two 
other problems for which scan line 
(plane-sweep) algorithms provide 
efficient solutions. 

The algorithm presented by Bras
sel and Fegeas [BF] for cross
hatching can be improved by viewing 
it as a version of hidden surface 
processing. In applications such 
as cartography a number of polygons 
frequently need to be cross
hatched. Typical algorithms have 
substantial overhead computing the 
intersections of cross-hatching 

CMCCS '81 

lines with the polygons. Refor
mulating the algorithm as a top-to
bottom scan allows most of the cal-
culations to be done incrementally, 
taking full advantage of coherence 
properties in the cross-hatched re
gions. 

Bentley, Ot tman, Si x and Wood 
[BO, SW] have algorithms for deter
mining the overlap of a set of rec
tangles in two dimensions. Their 
algorithms are yet another 
rediscovery of the scan line ap
proach, although with some ad
ditional features to detect rec
tangles which are entirely included 
within others. Again, the basic 
idea is a scan line approach which 
detects crossings incrementally in 
a single pass over the data. 

A number of other examples of 
scan line or plane-sweep algorithms 
appear in literature [DM, LP, SH]. 

7. Conclusions 

Our original goal was to achieve 
a visible surface algorithm which 
truly ran in time proportional to 
the visible complexity of a scene. 
To date we have not reached this 
goal. We are analyzing additional 
coherence properties which may be 
of help in this regard. The 
haloing algorithm detects all 
intersections. Because all of the 
edges are being drawn, this is not 
unreasonable. We are still looking 
for a way to capitalize on scan 
line coherence to avoid this work 
when computing visible surfaces, 
since for that problem the in
visible crossings do not appear in 
the output. 

The complexity analysis in this 
paper is worst-case. Traditionally 
visible surface algorithms are 
measured by their average 
behaviour, but only in terms of 
measurements from sample data. 
More emphasis on the theoretical 
aspects of both the worst-case and 
the average case complexity is cer
tainly in order. 

The primary advantage of a scan 
line algorithm for the visible sur
face problem is its ability to per-

/ ACCHO ·'81 

- 368 -

handled in parallel. Ensuring that 
this is done correctly, and detecting 
cases in which it cannot be handled 
in parallel, requires further in
vestigation. 

We remark in passing that one of 
the difficulties which Appel, Rohlf 
and Stein encountered was the problem 
of deciding just how much of a line 
should be haloed. Our implementation 
suffers in this respect (it is par- _ 
ticularly noticeable in the third ex
ample of Figure 4). One possible 
solution is to use a two-pass al
gorithm which treats "horizontal" and 
"vertical" lines separately, a tech
nique already employed in our 
implementation of Watkin's algorithm 
[A] • 

6. Related Problems 

The haloing algorithm is only one 
instance of a problem which can be 
solved using a scan line approach. 
Beretta and Nievergelt have observed 
the same phenomenon which prompted us 
to look at scan line algorithms: 

Recent progress in com
putational geometry has made 
it possible to isolate the 
algorithmic core of· scan 
conversion algorithms, to as
sess their generality, and to 
describe fairly clearly the 
kinds of geometric and 
topological questions they 
can answer [BN]. 

Their notion of a plane-sweep al
gorithm which sorts line segments 
according to x and then processes 
cross-sections in y is what we have 
been calling a scan line algorithm. 
By way of example, we point out two 
other problems for which scan line 
(plane-sweep) algorithms provide 
efficient solutions. 

The algorithm presented by Bras
sel and Fegeas [BF] for cross
hatching can be improved by viewing 
it as a version of hidden surface 
processing. In applications such 
as cartography a number of polygons 
frequently need to be cross
hatched. Typical algorithms have 
substantial overhead computing the 
intersections of cross-hatching 

CMCCS '81 

lines with the polygons. Refor
mulating the algorithm as a top-to
bottom scan allows most of the cal-
culations to be done incrementally, 
taking full advantage of coherence 
properties in the cross-hatched re
gions. 

Bentley, Ot tman, Si x and Wood 
[BO, SW] have algorithms for deter
mining the overlap of a set of rec
tangles in two dimensions. Their 
algorithms are yet another 
rediscovery of the scan line ap
proach, although with some ad
ditional features to detect rec
tangles which are entirely included 
within others. Again, the basic 
idea is a scan line approach which 
detects crossings incrementally in 
a single pass over the data. 

A number of other examples of 
scan line or plane-sweep algorithms 
appear in literature [DM, LP, SH]. 

7. Conclusions 

Our original goal was to achieve 
a visible surface algorithm which 
truly ran in time proportional to 
the visible complexity of a scene. 
To date we have not reached this 
goal. We are analyzing additional 
coherence properties which may be 
of help in this regard. The 
haloing algorithm detects all 
intersections. Because all of the 
edges are being drawn, this is not 
unreasonable. We are still looking 
for a way to capitalize on scan 
line coherence to avoid this work 
when computing visible surfaces, 
since for that problem the in
visible crossings do not appear in 
the output. 

The complexity analysis in this 
paper is worst-case. Traditionally 
visible surface algorithms are 
measured by their average 
behaviour, but only in terms of 
measurements from sample data. 
More emphasis on the theoretical 
aspects of both the worst-case and 
the average case complexity is cer
tainly in order. 

The primary advantage of a scan 
line algorithm for the visible sur
face problem is its ability to per-

/ ACCHO ·'81 



form anti-aliasing. Z-buffer and 
priority algorithms fall short in 
this respect. By way of contrast, 
the z-buffer and priority al
gorithms have taken advantage of 
parallelism to a much greater 
degree than have the scan line al
gor i thms [KG, P] • One reason for 
this may be the synchronization re
quired between the various spans as 
scan lines are processed. A 
distributed algorithm in which 
separate processors are assigned to 
visible spans will require more 
elaborate communication. This is 
again a topic for further research. 

The similarity of scan line al
gorithms for visible surface 
processing and algorithms for other 
geometric problems found in com
puter graphics and VLSI layout 
suggest that scan ~ine algorit~ms 
are themselves a rIch area for In
vestigation. Our effort and the 
related work of Beretta and Niever
gelt are first steps in this direc
tion. 

Acknowledgements 

The Watkins' and haloing al
gorithms were implemented using the 
Wa"terloo Pascal compiler on a 
Honeywell 66/60. They interface to 
the standard graphics package 
developed by students in the 
introductory graphics course at the 
University of Waterloo. This work 
was supported by the Natural 
Sciences and Engineering Research 
Council of Canada under grants 
A3022 and A4037 and by a Science 67 
Scholarship. 

References 

[A] 
Michael Archuleta, private 
munication. 

[ARS] 

com-

Arthur Appel, F. James Rohlf and 
Arthur J. Stein, The haloed effect 
for hidden line elimination, 
Computer Graphics !l:~, pp. 151-157 
(August 1979). 

[BO] 
Jon L. Bentley and Thomas A. Ott
man, Algorithms for reporting and 

- 369 -

counting geometric 
IEEE Transactions 
~:9, pp 643 647 
1979):-

[BW] 

intersections, 
on Computers 
-(SeptemBer, 

Jon L. ~entley and Derick Wood, An 
optimal worst-case algorithm for 
reporting intersections of rec
tangles, Technical Report 79-CS-13, 
McMaster University, (1979). 

[BN] 
G. Beretta and J. Nievergelt, Scan 
conversion algorithms revisited, 
International Conference on 
Research and Trends in Document 
Preparation-systems;-ET~ Lausanne, 
Switzerland, pp. 77-80 (February, 
1981) • 

[BF] 
Kurt E. Brassel and Robin Fegeas, 
An algorithm for shading of regions 
on vector devices, Computer 
Gra~hics !l:~, pp. 126-133 (August 
197 ). 

[C] 
James Clark, A VLSI 
processor for graphics, 
!l:2, pp. 59-68. 

[C r] 

geometry 
Computer 

Frankl in C. Crow, The al iasing 
problem in computer synthesized 
shaded images, Communications of 
the ACM 20:11, pp. 799-805 
{November, 1917)-.-

[OM] 
David P. Dobkin and J. Ian Munro, 
Efficient uses of the past, 
Proceedings 21st Annual Symposium 
on Foundatlons-oI Computer SCIence, 
pp. 200-206 (October, 1980). 

[HG] 
Griffith Hamlin, Jr. and C. William 
Gear, Raster" scan hidden surface 
algorithm techniques, Computer 
Graphics ~:~, pp. 206-213 (July, 
1977). 

[KG] 
Michael Kaplan and Donald P. Green
berg, Parallel processing tech
niques for hidden surface removal, 
Computer Graphics ll:~, pp. 300-307 
(August, 1979). 

CMCCS '81 I ACCHO "'81 

form anti-aliasing. Z-buffer and 
priority algorithms fall short in 
this respect. By way of contrast, 
the z-buffer and priority al
gorithms have taken advantage of 
parallelism to a much greater 
degree than have the scan line al
gor i thms [KG, P] • One reason for 
this may be the synchronization re
quired between the various spans as 
scan lines are processed. A 
distributed algorithm in which 
separate processors are assigned to 
visible spans will require more 
elaborate communication. This is 
again a topic for further research. 

The similarity of scan line al
gorithms for visible surface 
processing and algorithms for other 
geometric problems found in com
puter graphics and VLSI layout 
suggest that scan ~ine algorit~ms 
are themselves a rIch area for In
vestigation. Our effort and the 
related work of Beretta and Niever
gelt are first steps in this direc
tion. 

Acknowledgements 

The Watkins' and haloing al
gorithms were implemented using the 
Wa"terloo Pascal compiler on a 
Honeywell 66/60. They interface to 
the standard graphics package 
developed by students in the 
introductory graphics course at the 
University of Waterloo. This work 
was supported by the Natural 
Sciences and Engineering Research 
Council of Canada under grants 
A3022 and A4037 and by a Science 67 
Scholarship. 

References 

[A] 
Michael Archuleta, private 
munication. 

[ARS] 

com-

Arthur Appel, F. James Rohlf and 
Arthur J. Stein, The haloed effect 
for hidden line elimination, 
Computer Graphics !l:~, pp. 151-157 
(August 1979). 

[BO] 
Jon L. Bentley and Thomas A. Ott
man, Algorithms for reporting and 

- 369 -

counting geometric 
IEEE Transactions 
~:9, pp 643 647 
1979):-

[BW] 

intersections, 
on Computers 
-(SeptemBer, 

Jon L. ~entley and Derick Wood, An 
optimal worst-case algorithm for 
reporting intersections of rec
tangles, Technical Report 79-CS-13, 
McMaster University, (1979). 

[BN] 
G. Beretta and J. Nievergelt, Scan 
conversion algorithms revisited, 
International Conference on 
Research and Trends in Document 
Preparation-systems;-ET~ Lausanne, 
Switzerland, pp. 77-80 (February, 
1981) • 

[BF] 
Kurt E. Brassel and Robin Fegeas, 
An algorithm for shading of regions 
on vector devices, Computer 
Gra~hics !l:~, pp. 126-133 (August 
197 ). 

[C] 
James Clark, A VLSI 
processor for graphics, 
!l:2, pp. 59-68. 

[C r] 

geometry 
Computer 

Frankl in C. Crow, The al iasing 
problem in computer synthesized 
shaded images, Communications of 
the ACM 20:11, pp. 799-805 
{November, 1917)-.-

[OM] 
David P. Dobkin and J. Ian Munro, 
Efficient uses of the past, 
Proceedings 21st Annual Symposium 
on Foundatlons-oI Computer SCIence, 
pp. 200-206 (October, 1980). 

[HG] 
Griffith Hamlin, Jr. and C. William 
Gear, Raster" scan hidden surface 
algorithm techniques, Computer 
Graphics ~:~, pp. 206-213 (July, 
1977). 

[KG] 
Michael Kaplan and Donald P. Green
berg, Parallel processing tech
niques for hidden surface removal, 
Computer Graphics ll:~, pp. 300-307 
(August, 1979). 

CMCCS '81 I ACCHO "'81 



[LCWB] 
Jeffrey M. Lane, Loren C. Car
penter, Turner Whitted and James 
Blinn, Scan line methods for 
displaying parameirically define 
surfaces, Communications of the ACM 
~:l, pp. 23-34 (January,-r980}.---

[LP] 
D.T. Lee and F.P. Preparata, Loca-
tion of a point in a planar 
division and its applications, 
Journal on Computing ~:l, 
594-606 (September, 1977). 

sub
SIAM 
pp. 

[NS1] 
William M. Newman and Robert F. 
Sproull, Principles of Interactive 
Computer Graphics, 1St edition, 
McGraw-Hill (1973). 

[NS2] 
William M. Newman and Robert F. 
Sproull, Principles of Interactive 
Computer Graphics, 2nd edition, 
McGraw-Hill (1979). 

[P] 
Frederic 
expected 
multiple 
systems, 
pp. 48-56 

I. Parke, Simulation and 
performance analysis of 

processor z-buffer 
Computer Graphics l!:l, 
(July, 1980). 

[SW] 
H. -Wo Six 
tang 1 e 
revisited, 
79-CS-24, 
(1979) . 

and Derick Wood, The rec-

[SH] 
Michael Ian 
Geometric 
Seventeenth 
Foundations 
pp. 208-215 

[SSS] 

intersection problem 
Technical Report 

McMaster University, 

Shamos and Daniel Hoey, 
intersection problems, 
Annual Symposium on 
of Computer Science, 

(October, 1976). 

Ivan E. Sutherland, Robert F. 
Sproull and Robert A. Schumacker, A 
characterization of ten hidden
surface algorithms, Computing Sur
veys ~:l, pp. 1-55 (March 1974)-.--

[W] 
Gary S. Watkins, A Real-Time 
Visible Surface Algorithm, Computer 
Science Department, University of 
Utah UTECH-CSc-70-101 (1970). 

- 370 -

[Y] 
F. Frances Yao, On the priority ap
proach to hidden-surface al-
gorithms, Proceedings 21st Annual 
Symposium on Foundations ~ Com
puter Science, pp. 301-307 (Oc
tober, 1980). 

CMCCS '81 / ACCHO'81 

[LCWB] 
Jeffrey M. Lane, Loren C. Car
penter, Turner Whitted and James 
Blinn, Scan line methods for 
displaying parameirically define 
surfaces, Communications of the ACM 
~:l, pp. 23-34 (January,-r980}.---

[LP] 
D.T. Lee and F.P. Preparata, Loca-
tion of a point in a planar 
division and its applications, 
Journal on Computing ~:l, 
594-606 (September, 1977). 

sub
SIAM 
pp. 

[NS1] 
William M. Newman and Robert F. 
Sproull, Principles of Interactive 
Computer Graphics, 1St edition, 
McGraw-Hill (1973). 

[NS2] 
William M. Newman and Robert F. 
Sproull, Principles of Interactive 
Computer Graphics, 2nd edition, 
McGraw-Hill (1979). 

[P] 
Frederic 
expected 
multiple 
systems, 
pp. 48-56 

I. Parke, Simulation and 
performance analysis of 

processor z-buffer 
Computer Graphics l!:l, 
(July, 1980). 

[SW] 
H. -Wo Six 
tang 1 e 
revisited, 
79-CS-24, 
(1979) . 

and Derick Wood, The rec-

[SH] 
Michael Ian 
Geometric 
Seventeenth 
Foundations 
pp. 208-215 

[SSS] 

intersection problem 
Technical Report 

McMaster University, 

Shamos and Daniel Hoey, 
intersection problems, 
Annual Symposium on 
of Computer Science, 

(October, 1976). 

Ivan E. Sutherland, Robert F. 
Sproull and Robert A. Schumacker, A 
characterization of ten hidden
surface algorithms, Computing Sur
veys ~:l, pp. 1-55 (March 1974)-.--

[W] 
Gary S. Watkins, A Real-Time 
Visible Surface Algorithm, Computer 
Science Department, University of 
Utah UTECH-CSc-70-101 (1970). 

- 370 -

[Y] 
F. Frances Yao, On the priority ap
proach to hidden-surface al-
gorithms, Proceedings 21st Annual 
Symposium on Foundations ~ Com
puter Science, pp. 301-307 (Oc
tober, 1980). 

CMCCS '81 / ACCHO'81 


