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RESUllE 

Les courbes et les surface s parametriques sont connues 
depuis long temps. et leur utilisation pour representer les objets en 
infographie (par opposit ion au d esign en CAO) ellt encore en pleine 
croissance. 11 y a cependant quelque fois des hesitati.ons ales 
ut.iliser, car il semble que le gain e n puissa nc e ne compense pas 
pour les diITieulles de formulation ct de calcul. 

Le but de cet article et de rendre plus clair la signification et 
l'utilisation de ces objets. et d e montrer qu'ils ont beaucoup en 
commun en depit de l'apparente diversite de leurs formules. 

Nous donnons les raisons d'e tre, les propricHes et les 
n:!fE!rences des courbes ou surfa c e s d' Hermite, de Coons, de 
Bezier, des "B-splines" et des "{1-spli.nes . Les methodes de calcul et 
d'atfichage commUnE!me ni. utilisee s dans les sy stemes grapbiques 
sont discutees (calculs de points, transformations geometriques, 
algorithmes pour l'affichage). 

Les exemples el les illustrations sont donnees pour les 
courbes et les surfaces cUbiques. 

ABSTRACT 
Parametric curves and surfaces have b e en with us for a long 

time, and their use for object mode ling in Computer Graphics (as 
opposed to designing in CAD a pplica tions ) is still growing. There is 
sometimes. however, a r elucta nce t o use them because i t seems 
that the added power they give is more than otIse t by the complex
ity of their formulations and their computat.ions. 

The purpose of this paper is to make cleare r their meanings 
and uses, and show how much t h ey have in common behind the 
diversity of their formulations. The motiva tions, properties and 
references for the Hermite, Coons, Bezier, B-spline and {1-spline 
curves or surface s are given. The computation and display 
methods common in a standard graphics system are discussed 
(computations of points. geome tric transformations, display algo
rithms). 

The examples and illustrations a r e given for the curves and 
surfaces in their cubic form. 
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1. Introduction 
Parametric curves and surfaces have been defined 

for a long time in mathematics, and used extensively 
in enginee ring and more recently in Computer Aided 
Geometric Design. In Computer Graphics outside of 
CAD, they have been used to model from simple 
objects with a few patches to 3-D animation models 
with several hundred patches. NU.merous papers have 
been published on various algorithms to manipUlate, 
compute and display them. 

In spite of all this activity, they still look some
what forbidding to most people in Computer Graphics. 
One proof of the dearth of new objects designed with 
Paramelric curves and surfaces in Computer Graphics 
is thc ubiquity of the famous teapot, made of 26 (or is 
it 28) palche s, which appeared in a standard textbook 
[Newman79], twice on the cover of the CACM [Blinn76, 
Lane80b] . and even in a computer animated film [Car
penterBOl. 

We will revicw thc main formulations, lhe proper
ties, the computational methods and the display tech
Iliqucs aSS(lr.:i;ti .cd wit.h t.he most common t.ypes or 
pararneh-ic curves and sm·faces. It. is hardly necessary 
anymore to just.ify the choice of parametric represen
t ations. It allows multiple valued curves or surfaces 
and it gives independence from the coordinate system. 
Some of the drawbacks will be mentioned in the rest of 
this paper, and they have to do with the fact that the 
relationships between coordinates is only through the 
p0 rameter{s}. By the same token, we do not have to 
apologize for considering only polynomial formula
~ions. Other functions {with t.he possible exception of 
trigonometric functions to represent circles, ellipsoids 
and spheres}, are too costly to compute with litUe gain 
in power to justify the cost; and of course theoretically 
a ny curve can be approximated to any tolerance by 
polynomials (with some customary analytical caveats) . 

In addition to these important factors, other qual
itie s a re sought in the formulat.ions for easier use in 
design and generally better use rs interface. Consider' 
the simple defini tion of a parametric mill, degree 
polynomial: 

Q(u, )=ao+a\u+a2u2+ ... +amum (1.1) 

Note that Q{u} and the a.;'s each have x and y (and 
possibly z) components. Assuming, without loss of gen
e rality if we consider a fmite span, that the parameter 
u varies fr'om 0 Lo 1, Lhe definition of this polynomial 
requires m + 1 coefficients 

rI.;. i=O,l, " 'm 

Note: in the rest of this pape r, in the interest of 
brevi ty, we will give a formula only for one component 
of the points in space if they are similar for all com
ponents. 

The first choice to make is about the degree 
{highest power of u with a non-zero coefficient} or the 
order {number of coe fficient, or degree+ 1} of the poly
nomial to use . Cu bic are generally used in Computer 
Graphics and other applications because they 
represe nt n good c ompromise between power and 
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complexity. They have the power to allow nonplanar 
space curves and inflexion points, and curvature con
tinuity between two curves de fined by different polyno
mials, which lower degree polynomial do not have . 
They are not too complex in the sense that their 
second derivative is a linear function of u , and the 
number of operations necessary to evaluate the '" ; s 
not too high. Cubic polynomial will provide most of the 
examples here. but in most cases extension to ot.her 
degrees is straightforward. 

What coeffic ients should be chosen for a curve? 
From equation (1.1), the following equat.ions are 
readily verified: 

Q(O}=ao 

Q(l}=aO+al+a2+ a 3 

Q(I)(O}=al 

Q(I){ l}=a ) +2a2+3a' 3 

Solvi ng for the CL; , 

CJ.o = Q{O} 

al=Q(i)(O} 

a2=3( Q( 1} -Q(O} )+2Q(1)(O)- Q(l)( 1) 

a3=2{ Q(O)-Q( 1})+ Q(l)(O}+ Q(I)( 1} 

(1.2) 

Unfortunately, there is little intuition associa ted 
with this set of coefficients. What is needed is a formu
lation which has a stronger geometric interpreta tion. 
It is well known that the s et of all polynomial of order 
M (of degree M-1 or less) is a vector space of dimension 
M. In other words, any set of four linearly indepe nde nt. 
polynomials oC order M can form a basis for this space. 

Most people, especially in Computer Graphics, are 
familiar with the concepts of vector space, dimen
sionality, basis and change of coordinate system, 
mainly as it relates to our two or three d imensiona l 
I ~;uclidean spaee . In Comput.er Graphics, or dealing 
with interactive techniques ill genera l, the choice of a 
basis is not in term of power and generality, but of 
convenience. Any linearly independent set of vec tors 
has all the generality and power needed, since it can 
be used to represent any point with the same number 
of coefficients. So the application and user conve ni
ence should dictate which one to chose. For example, 
it is better, when using three mutually orthogonal vec
tors as a basis in 3-space, to have one of them pointing 
away from the center of the planet on which th e user 
slands {technically known "': _p"}. As anot.her exam
ple, if the user picks points in spac e with a gun (or 
more pacifically a telescope), then polar coordinates 
allowing to use azimuth. elevation and dist.ance are 
more "natura l" than Cartesian coordinates. 

A similar sit.uation exists, perhaps less obviously, 
in chosing the r ight formulation [or the paramet.ric 
curves and surfaces . Taking as a n example the family 
of parametric curves of third degree , the usual power 
basis {uo .u \,u2,u3 } gives coefficie nts which. a s we have 
seen from formula 1.2 are not very ge ometrically infor
mative_ The decisive ste p was taken by BE!zier. when 
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he rearranged the coefficients of the cubic polynomial 
to use a different basis (the Bernstein polynomials) 
which allowed the coefficients to have a clear, appeal
ing geometric interpretation (see subsection 2.2 for 
more details). 

To show that there is nothing mysterious about it, 
consider as an exercise the following goals: we want to 
design a basis for third-degree curves such that the 
user specifies the two end points, a middle point (mid
dle in parametric space, but anywhere in geomet.ric 
space), and the tangent vector at this point (the vector 
defined by the mid-point for origin and another point 
for extre mity) . We need to determine the 4x4 matrix 
M to compute the curve: 

(1.3) 

p 

Figure 1.1 Curve and control vertices. 

Note that we could rearrange the order of the vertices, 
and therefore the rows at our convenience. 
From the constraints: 

x(o)=Po; 

XCI) (1/2)=[ (1/2)3 (1/2)2 (1/2)1 1]M 

we obtain a system of 16 e quations with sixteen unk
nowns, which when solved give the matrix: 

-4 0 -4 4 
8 -4 6 -4 

M = -5 4 -2 1 
1 0 0 0 
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To prove that it constit~s a basis, we just have to ver
ify t.hat the determinant is not zero. The useful pro
perties of this formulation, for which it was designed, 
is that it interpolates the three given points, with 
explicit control over the tangent at the middle. Thc 
user can then control it in " visually obvious way. In 
other words , the four coefficients of the cubic polyno
mial have been replac e d by something that mean 
something to the user. Figure 1.2 shows how the curve 
reacts to a change in tangent vector without modifying 
the other vertices. 

Figure 1.2 Curves with same control vertices but for 

Other properties can be useful in applications. 
They could a lmost all be described i n term of th e 1W 

surprise prinCiple. The usual list is: 

-Convex huU property. A curve is silid to have 
the convex hull property if it is ent.irely within 
the convex hull of the control vertices. 
- Variation diminishing propp.rty. Informally, 
this means that the curve is "smoother" than 
the polyline defined by the contr ol vertices. 
-Local control.The change induced by a change 
to a control vertex has only a local effect. 
-Conti,nuily.If, as is most.ly the case, a shape is 
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modelled piecewise from several parametric 
curves, it is desirable to have the value and 
ftrst few derivat.ives equal where the pieces 
meet. The notation is ClO] for zero order con
tinuity (the curves meet) and in general Cln ] 

for nth-order continuity. that is equality of the 
nth derivative. 

It will be seen in the following sections that these 
propert.ies are also relevant to the display algorithms. 
Without proof, we will sta te that the formulation given 
does not have the convex hull property. has the varia
tion diminis h ing property in some sense, and provides 
global control lo c ally (the concept of global vs local 
control is of little use if piecewise mode ling is used). 

ClO] continuity is easily obtained since the curves 
interpolate their e nd vertices. The equation for ensur
ing ell] (tangent) continuity is : 

-Po-4P I -2T I +5PI=-5P~+4P}_ -2TL +P; (1.4) 
2' 2' 2 2 

for t.wo curves defined by: (Po. Pl,: Tl,: PI) and 
2 2 

(P~. P;. T 'I' P;) . This does not give the user an 
2' 2' 

obvious way to control the continuity. Consider. how-
ever. the situation (more and more prevalent) where 
the user chos e s interactively the conLrol ve rtices. The 
system can. in the prope r mode . comfute the remain
ing vertice ~ to satisfy e l l] and/or C [2 cont.inuity. If all 
are chose n. a change in one will force a change in the 
others. In this case. the "weakest" should be changed 
(for instance h e r e the tangent. but this can be 
modified by the user). In this situation. the exact rela
tionship as given in 1.4 is not vc ry import.ant. as long 
a s the c hanges are predictable. 

Having seen how a particular basis can be chosen. 
we will now examine the motivation s a nd formulations 
of more traditional parametric curves and surfaces. 

2 . Curve and Surface Formulations 

2 . 1. Hermite Interpolation and Coons Surfaces 
Herrnite int.erpolation is specified by a set of 

points and derivatives to interpol a te . In the cubic 
cas e. these d e rivatives are first. d e rivatives. and the 
resulting c urve h as c ontinuity or position and of first 
derivat.ive (Cl!]) . 1n p '3.r ticular. let (PO.PI ..... . Pm ) b e 
m. + 1 points to be interpolated a nd ( pJ ,pi .... . P':' ) 
be th e corresponding valu e s of the first. derivative vec
tor. Parametrically, the 1,th curve segment is 
describ e d as the parameter u varies. Specifically, a 
curve segment can be written as 

I 1 

Qi (u)= 2: 2: gjk (u )Pi - I +k 
j =Ok=O 

The functions gj/«u) are the cubic Hermite basis func
tions 

g oo(t) =2t 3_3t 2+ 1 

gOI (t) =-2t 3 +3t 2 (2 .1) 

g 10(t )=t 3 -2t 2+t 
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g ll(t )=t 3_t 2 

which can be written in matrix form as 

where: 

2 -2 1 1 

-3 3 -2 -1 
H= 0 0 0 0 

1 0 0 0 

(2.2) 

One of the first methods fOT surface representa
tion was proposed by Coons [Coons67. Forresl72]. The 
basic idea is to create a surface by blending four boun
dary curves. A s imple Coons surface can be expressed 
as 

I I 

Q(u.v)= 2: li (u )P(i.v)+ 2: 1 J(v )p(u.j) 
i =0 j =0 

1 1 
- 2: 2: li(U)/j(v )P(i.j) 

i=Oj =0 

or in matrix form 

Q(u ,v )=[1 0(v.)1 I (u)] [ ~?~:~ l 
+[P(u.O)P(U.l)][ j~~:~~ 1 

[ r P(O 0) p(O,lll ~ o(v )1

J 
-/o(u)/l(u)]l P(1:0) P(1.1J[1I(v) 

Here P(u,O). P(u.l). P(O.v). and P(l,v) are the boundary 
curves; P(O.O). P(O.l), P(l.O) . and P(l.l) arc the corner 
points; and 1 o(t) a nd 1 I (t) are the blending funct ions 
(see Figure 2.1). Note that the ble nding fu8tions must. 
satisfy li(j)=Oij. where 0,,. is the Kronecker d e lta. 
This simple Coons surface does not constrain the 
c ross-boundary d e r ivative s ; thus. it is not possible to 
ensure 'continuity higher than posit io nal when us ing 
composite surfaces . 

P(1.1) 

P(1.v) 

P(O.l) P(l.O) 

p(O.v) 

Figure 2.1. Boundary curves and c orne r points 
for a Cnons surface. 
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For first derivative continuity this method is 
extended so that the user is able to specify the cross
boundary derivatives. This requires four blending 
functions. goo(t). gOl(t). 910(t) .and gll(t). The 
surface is now written 

, I I I I 
Q(u.v)= ~ ~ p(r .o)(i.v )gri (u)+ 2: 2: p(0··)(U.;}9./(V) 

i=Or=O /=0,,=0 
I I I I 

-2: ~ ~ 2: p (r")(i.j)gri(u)i111j(v) 
i=Oj =Or =0. =0 

or. in matrix form: 

f p{o.v~ 1 
Q( 11-.V )=[goo( u )gol(u)g 10(U ).g lI(U)] pr:.bf(~.v) 

p(I .O)(1.V) 

fgoo(v)l 

+[P{u.0)P(u.1)p(0.1)(u.O)p(0.1)(u.l)] gOl(V ) (2.3) 
9 \O(v) 
9 11 (v) 

-[goo( u )gol(u)g lo(u)g lI(u)] 

f P~o.O) P~O.l) P(O'I)~o.O)P(O'l)(O.l)lrgoo(v)l 
p 1.0) P 1.1) p(O.I) 1.O)P(0,1)(1.1 ) ~OI(V) 

p (l. )(O.O)pO . )((l,l)p(1.I) O.O) p(I.1)(O.l) 10(V ) 
p(I .O)(1.0)/J(I.O)(1.1)/,(1.1)(1.Cl)/AI.I)(I.l) [Jll(1J) 

where 

p(o,b)(u.i.vj)= aO +bp{u.v} lu=ui.v=vj 
auo8v b 

While the Coons formulation is u seful and very 
general. it requires the specification of a great. deal of 
data whj,ch lack intuitive interpretation. One way to 
simplify equation (2.3) is to use the following boundary 
functions: 

I I 
p(o,s){u. j)=2:; ~p(r,s){i.j}gir{U) (2.4) 

i=Or=O 

p(r,O)(i.v)= t t p(r,s){i..j)gj.(v) 
j=Os =0 

Substituting e quation (2.4) into equation (2.3). the 
three terms are now equal. and thus equation (2.3) 
reduces to 

I I I I 
Q(u.v)= 2: 2: ~ 2: p(r,s)(i,j )gri(u}g"j(v) 

i=Oj = Or =OIr = O 

or in matrix form 

where 

r P~O.O) P~O.l) p(o.I)(o.o)p(O,I)(O.l} 1 
_ p 1,0) P 1.1) p(O.I)( 1.0)P(0.1){1.1) 

p - p(l , )(O.O)p(1, )(O.l)P(I,I)(O.O)p(I,I){O.l) 
p(I,O)( 1. O}p(I .O)( 1.1)P(I,l)( 1.0)P(1, 1)( 1.1) 

The blending functions have to satisfy 

g 0\ (j )=g 1i (I)(j }=Oij 
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9 li (; )=g Oi (1) (;) =gO\ (2)(;)=g Ii (:Z)(j }=O 

These conditions are sat isfied by the c ubic Hermite 
basis functio ns which were given in equations (2.1) and 
[2.2). 

2.2. B~zier Curves and SUrfaces 
Rec a ll the binomial distribution from probability 

theory and statistics. The probability of exactly i, 
successes in m trials. where the underlying probability 
of success is u. is 

m 
i 

where i=O.l ... .. m. and (j,o;;u~l. (2.6) 

Consider now a control polygon form e d by the 
ordered sequence of control vert?:cBs. 

[Vo, VI ' "'' VmJ 

The probablility B~,m (u) can be related to these ver
tices by considering the following game. The player 
starts at the vertex Vo. With probability u . • h c or she 
moves to the next vertex. and with probablility 1-u 
stays at the curre nt vertex. Then Bi .m (u) is the pro
bability of being at thf' vertex Vi aft.er rn. trials. 
jo'rom t.hi~. t tlf~ (' X[H!(, t (,d posit.ion ; \rtJ.'r' TT/. t.1'i il ts rIlll St. 
be 

m 
Qm (u)= ~ B, .m (u) Vi (2.7) 

i=O 

Tn addition. since Bi ,m(U) is a probability density func
tion. 

m 
2:Bi .m (u)=l 
,=0 

The set of polynomials Bi,m(u) are called Bern
stein polynomials. and they form the Bernstein basis 
since they are a basis for the vector space of all poly
nomials with degree a t most m . The expression (2.7) 
for the expect.ed position can also be vi ewed as a He rn
sl.ein approxinwlion t.o t.he sequence of control ver
tices. This expression is a weighte d average of the 
m + 1 control vertices. with ,the Bernstein polynomials 
being the weighting factors. and defines an mth 

degree \J(\zicr curve rBclzier71] . Not,,, that eac h poly
nomial is nonzero over the entire domain O~11- ~ 1. • 
"'hich is why there is global. not loc a l. control. 

Consider now the cubic Bezier curvr:l. This means 
that m. =3 and Lhere is a control polygon consisting of 
t.he four control ve rtices [Vo. VI' V2• V3 ]. From equ ation 
(2.:::;). the Bernste in polynomials for this case are 

B O,3(U )=( 1-1J. )3=-u 3+3u 2-3u. + 1 

B 1,3(U )=311. (1-U )2=3u 3 -6u2+37L 

B 2,3{U )=3u 2{ 1-u)= -3u 3+311. 2 

B 3.3(U}=U 3 

These polynomials are plotted for l)~u~l in Figure 
2.2. 

Combining equ ations (2.7) a nd (2.8). the Bezier 
curve is 
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Figure 2.2. The cubic Bernstein polynomials for OSu~1. 

Qa(U)=( 1-u)3Vo+3u(l-u)2VI +3u2(1-u) V2+uSVS (2.9) 

These equation ::; c an be recast. in mat.rix notation. 
F rom e quation (2.7) . the curve can be expressed as 

r Vo 1 
VI 
V2 

Va 

From e quation (2.8). the polynomials can be written 
as: 

[110 .3(u)B l.a(u)H2.a(u )Ba.a(u) ]=[11. 311. 2u 1][B] 

where 

r -1 

B=[ ~3 
3 -3 1 
-6 3 0 
3 0 0 
o 0 0 

From (2.9). the c urve can be rewritten in the following 
matrix form: 

(2.10) 

The original motivation in the development of the 
Bezier formul a tion was based on the relationship 
betwe en the d e rivatives of the polynomial and the 
edg es of the control polygon. From (2.9) or (2.10). it 
c a n b e r eadily ve rified that 

Qa=Vo 

Qa(1)= Va 

Qs(l)(O) =3{ VI - Va) 

Q3(1 ){l)=3( V3 - V2 ) 

This shows a s trong r e la t ionship b e tween the control 
poly g on a nd t he Bezier cu rve. Th e c urve begins a t the 
first ve r tex ( Va) a nd ends at. the las t la st vertex (Vs) 
and is tangent to the c ontrol polygon a t. these vertices. 
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Figure 2.3 A BE!zier surface and its control vertices. 

A BE!zier surface is El tensor product of Bezier 
curves. It is defined by El Sl'lt of control vertic e::;. in 
lhrec-dinum~iollill x-y-7. space. whicb i ~ organize d as a 
t.wo-dim e nsional graph with a r e ctangular topology. A 
point on the surface is a. we ighte d ave rag e of t.he s e 
control vertic e s : 

or, in matrix form 

Bn .~(v) 

where 

V= (2. 11) 

In the case of m =n =3 • this is the bicubic BEl zier 
surface. where the basis functions are those defined in 
equation (2.8) . Comparing the matrix: formulations in 
equations (2.5) and (2. 11). 

HPH1=BVBf 

From this, expre s s ions can b e derived for the elements 
of the P matrix: in terms of the control vertices so a s to 
produce an identical surface. Specific ally, 

which evaluate s to 

P=H(-t)BVB1 H( - I) 

Vas 
Va3 

3( Vla - Vas) 
3( Va3- V2S) 
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3{ V05 - V02 ) 

3{ V33 - VS2 ) 

9{ V02 - V12 - VOS+ VIS) 
9{ V22 - VS2 - V23+ Vas) 

The following properties of Bezier curves and sur
faces should be noted. They have axis-independence, 
the variation-diminishing property for curves. the con
vex hu ll prope rty global (not local) c ontrol. and limited 
ability to ensure continuity between adjacent curves 
and surfaces. 

2.3. B-spUne Curves and Surfaces 
Splines were first introduced by Schoenberg 

[Schoenberg46. Curry47. Curry66 ] and are named 
from the devices used by drafbmen and shipbuilders 
to draw curves. A physical spliTle is used much like n 
French curve to fa ir in a smooth curve between 
spvciricd dal.a points. It. is h eld in place by attaching 
lead weights calle d "ducks". By varying the number 
and pos it.ion of the ducks. the spline can be forced to 
pass through the specified data points. A flexible ruler 
constrained to go through some points will follow the 
curve which minimizes the strain ene rgy betwee n the 
points. 

If t.he physical spline is considered to be a thin 
e lastic b eam. then the Bernoulli.-Eule r equation can be 
invoked. f'or sma ll. deflection s. the first. d erivative 
term in the curvature expression can be negle cted, 
and thu'l the c urvature can be approximated by the 
second derivative of the assumed curve. Assuming 
that the ducks act as simple supports. it can be shown 
t.hat the solution to this functional calculus problem is 
a piccewise cubic polynomial. ('ontinuou'l up to its 
second derivative a t the fix e d points . 

A spline is derined analyli en ll.y as a set. of po1.yno
mifl.ls over a a knoL vector. A knot V8ct.or is a vector of 
real nu rnbers. called knots. iIl non decreasing order; 
thfl.t is. 

U =[ue,uI' ... u q ] 

<;uch that 1.L; - 1~~' i=1.. ... q 

I\. spline of order k (degree k-l) is defined 
mathemat.ically as a piecewise (k-1)'st degree polyno
mial which is e[k - 2] continuous; tha t is. it is a polyno
mial of degree at most k - 1 on each int.erval [u sub i-1 . 
u sub i). and its position and firs t k-2 derivatives are 
continuous. 

The i'th B-spline basis funct.ion of orde r k (degree 
k-1) for the knot ve ctor [~' ''''~+k] will be denoted 
Ni.k{~ .. ... 1L;.+Ic;U) and can be expressed as the follow
ing recurrenc e relation: 

(u -u ... ) 
Ni.k{~'''·'~+k;U)= ( ) NU-l(U .... ... . ~+k - I;U)+ 

~+k-I-~ 

(~+k-U) 
( _ ) Ni+U'-I{~+I. ··· .U;+k;U) 
~+.t ~+1 

with (2.12) 
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~~U<'U(+l 
otherwise 

In words. equfl.lion (2.12) mea n s that the B-spline 
of order k in the i·th span is the we ighted average of 
the B-splines of order k-1 on the i'th a.nd (i+1.)'st 
spans, each weight being the ratio of the distance 
between the parameter and the end knot Lo the length 
of the k-1 spans. Note thal the computation of 
Ni.I"(~",,,U'+k;U) involves all the knots from 11.\ la 
~+k. but no others. as it should sinc e the widt.h of sup
port is k spans. 

CL' rry and Schoenberg [Curry47] showed t hat the 
N,.k(U) are inde e d a basis. so that any spline of order k 
or less defined over a given knot vector. can b e 
expressed as Q li near cornbination of B-splinc basis 
functions defined over the same kno t. vector cx t rmded 
at. bot.h ends by k-} arb it.rary knol.s. 

The only re st rictions on the specification of the 
knot vector are that the s ame value canno t appear 
more than k (the order) times and that thc knots must 
b e in nondecreasi.ng order. When the same knot value 
occurs more th a n once. this is caller] a multiple knot. 
Specifically. 1.I.;is a knot of mUltipl icity M if 

whereM~k 

The continuity at this knot is reduc ed b y M-l. 
Since the continuity at a knot would. ot.he rwise be 
e[k - 2]. this means that. in general. the continuit.y at a 
knot is e lk - M - I]. where M is the multiplicity of the 
knot. For example. a c ubic spJ.i.ne (k=4) usually has 
eontinuit.y cl 2J ; a t.riple knot (M=3) would prodLlr: (~ con
tinuit.y r leJ aL that. knot. Thu !;. disconl.inuiUes ;Ire 
e a s ily inl.rodu ced in a spline curve . 

Although thc valucs of the knots are so Ull(:on
strainer!. . an espcc jally useful special case is thilt of 
uniform knot spacing. where 1.1.; := i [Il a rsky8 2.1. For 
the case k=4-. this generates the canonical uniform 
cubic B-spline basi.s function: 

'U <U;, 

1L(~U <1.1.;+ 1 

tI ... + I~u <U,.+2 

1.I.;+2~U <ui+1 
U;+3~u<1.I.;H 

1.1.;+4~1.L 

where 1J.j ·=11. -U;,+j.j=i.i+l . .... i+3 

An important observation is that the shape of 
these basis functions are identical. independent of i; 
that is. all the Ni.Ie(?J. ) are tr a nsla t es of each other. 

From the basis functions it can be not.ed th at 
there ar'3 less than k nonzero basi:-: functions at. the 
extreme values of u. In order to consistently have k 
nonzero b asis functions (except at the knots them
selves). a s lightly modified version of the above knot 
'/ec tor is us e d. This knot vector has uniform knot 
spacing with t.he firs t and last knot value each 
repeated k times. 
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This case closely resembles the behaviour of Bern
stein polynomials (BE!zier curves), and if no interior 
knots are presented in the knot vector. the B-splines 
specialize exactly to Bernstein polynomials, The 
corresponding knot vector is: 

[00 ' , , 0 11,· · 1] 
, J \.. ._-."....._ --' 

k times k times 

To see t.his, note t.hat. equation (2.12) reduces to 

Ni,k (71. } = uNi ,k - I (u }+(1-u }Ni+I ,1c - I(U) 

where 

1Lt~U<u.;+1 
otherwise 

which is the recurrence relation for the Bernstein 
polynomials. 

As with Bernstein polynomials and BE!zier curves. 
B-spline basis functions can be used to approximate a 
seqllcnC(~ of cont.r·ol vcd,icC's. This e xpression is again 
a wcig ht.ed Olverage of eonl.rol vertices; speeifieally, 

m 
Qk (u)= ~ Ni,1c (71.) I'; 

;=0 

where t.he knot. vector is : 

Since there are m+ 1 control vertic es in the con
trol pol ygr:m , and each control vertex has a 
corr esponding basis function. t.here are m+1 basis 
funclions . Moving through the knot vector, each basis 
function is no(\zero over a successive set of k+ 1 knots. 
Thus, k+m+l knoL~ define m+l basis functions which 
con'espond t.o the m+1 c ont.rol vertices . From this, it 
can b 8 seen that t.he uniform knot. vector with multiple 
end knots is 

[00 . . . 0 01 . . . r rr ... r] 
'----...----' L-- -.... .~ \ j 

k -1 m -k + 2 k -1 

where r =m -k +2. That is, 

I 0 i=O, 
i=k -1. 
i=m+2, 

u.;= l i-k +1 
m-k+2 

k-2 
m+1 
m+k 

In the same manner that a Bezier surface was 
form e d from BElzier curves, a B-spline surface is a ten
sor product of B-spline curves 

m n 
Q/r; .1 (u ,1) } = 2:: L: Ni .k (11. ) N (j . 1) (V ) V\j 

i=O;=O 

Like Bezier curves, B-splines have axis
independpnce, t.he variation-diminishing property for 
curves, and the convex hull property. In ad.dition, B
splines h flve the advantages of loc al control (since 
eac h B-spline basis function is non zero on only k spans 
or k xk sudaces ) and e as e of rfl.3 inl. :) in ing high order 
c on t inuity. The formulation of B-splines curves or sur
faces can be given i.11 a maaner similar to equation 
2 . 10: 
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F"Igure 2.4- B-spline surface and control vertices. 

where: 

r 
z(u.)"[u"u'u 1J[SJI 

1-1 

s=l ~3 
3 -3 1 
-6 3 0 
o 3 0 
4 3 0 

And for the surface: 

where [S] is as above, and [V] is the matrix of control 
vertices as in (2.11). 

2.4. p'-SPline Curves and Surfaces 
The p'-spline [BarskyB1b] is a new mathematical 

techniqu8 for curve and surface representation that 
has been developed expressly for geometrical and 
graphical applications. Interaction with the user is via 
control vertices and shape parameters, while t.he 
underlying mathematical formulation is based on the 
constraints of cont.inuous unit tangent and curvature 
vectors. These fundamental georne t.ric m easures are 
more appropriate than traditional alg e braic ones 
based on derivatives . The use of geometric measures 
also adds degrees of freedom that can be capt.ured to 
provide furthe r control Q[ shape "ia two inhere nt shape 
parameters, (31 and fJ2' that are r e lat. e d to tension. The 
tI-spline representation also has the impor tant a d van
t.age of lo cal contro l. 

A tI .. s pline c u r-ve or surface is specified b y a ~ e t. of 
control verticp.s . /\. point Ol'J. the it" curve sE'g rne nt is a 
weighted averagp. of the four- control vertices 
vt+r,T = -2,-1.0, 1.. The coordinat.es or the point C)( (71.) 
on the iY' curve s('grncnt a r c the n giv(m by 
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Q, (u) = t b r «(Jl,(J2:U) Vir for 0 ~ u < 1. 
r= - 2 

As the domain parameter u varies from zero to unity 
the il" curve segment is traced out. 

The weighting factors are the scalar-valued basis 
Junctions evaluat.ed at some value of the domain 
parameter u, and of each shape parameter fJl and ~2' 

The fJ-spline basis functions were derived in 
[BarskyBlb]. They are 

b -2«(JI,fJ2:U)=2fJr(1-u)3/ 0 

b -1(fJJof32:7.L) = [2fJru [u 2-3u + 3] 

+ 2(3f-[v.3-3v. 2+2] +2111[u 3-3u +2] + 112[2u3 -37.L2+ 1]]/ <5 

b O«(3I,fJ2;71. )= [211 ~v. 2r 3-u ]+ 2(31 7L [::J-u 21 

+(32u 2[3-2u]+ 2(1 -u 3)]/o 

b 1(I1I,fJ2;u )=2u 3/ 0 

where 0 =2P?+4fJf+4fJI +fJ2+2 

A point on the (i,j)I" fJ-spline surface patch is a 
weighted averag e of the sixteen control vertices 
~+r .i+S' r = -2,-1,0,1, and s = -2,-1,0,1. The 
malhematical formulation for the surface Qij (u ,v) is 
then 

I I 

Qij (u,"_' ) = ~ ~ br (fJl,fJ2;v.) V.+r.i+s b~(fJl,fJ2"V) 
r= -2 ~= -2 

for 0 ~ u < 1 and 0 ~ v < 1. 

3, Computational Methods 

3 .1. Introduction 
1t is important to distinguish the different kinds of 

primitives u sed through a graphics sys t. e m . The termi
nology is not well sl'l.ndardized yel, a nd the boundaries 
still shifting, We will use here the following definitions: 

modP.ling primitives: the bu ilding blocks for 
the objects in the modeling systems. For 
example, they can be solids in a mechanical 
CAD sys tem, spheres in a molecule model, 
p arametric s urface.s in a shape design syst.em. 
grczphic primitives: the primitives used al the 
graphics package level, on which the viewing 
transformations, the clipping and the shading 
is performed. 
output primitives: t.he entities recognized by 
the output device (instructions to the display 
processor unit) . They can b e lines, points. pix
e ls in a "dumb" frame buffer. or more complex 
entit ies like fillcd polygons, or filled circles. 

If all the graphics systems ll scd parametric 
curves or surfaces as both graphic and output primi
tives, the rest of tbis paper would be mllc h shorter . 
Since no system uses parametric cur'/es and surfaces 
as output primitives, and few use t.hem as graphic 
primitives , we hfive to con~ider algorit.hms to convert 
parametric curves imd surfaces to the commonly used 
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primitives. Since most primitives are defined by a 
finite set of verLices (points in 2 or 3 dimensions) we 
will start by looking at met.hods to evaluate a point on 
a parametric curve or surface . 

3.2. Matrix computation 
A point. for a given value of the parameter u , CEln 

be computed di.rectly from the matrix representat.ion 
of the p arametric curve: 

IVol 
VI 
V2 

V3 

and similarly for t.he other coordinate(s). A direct 
evaluat.ion from t.his formula takes 2 multiplic a t.ions 
for the row vccLor, 12 mUltipl icat.ions and J.2 add itions 
for the vector-matrix multiplicalion, and 4 multiplica
tions and 3 additions for the fi!lal multiplications by 
the vertices. This is a tota l of 18 multiplications and 15 
additions. For th e case of the surfaces: 

[ 31 

x(u.v)=[u' u' u' 1] [M] [V] [MJT~,: 
this adds IlP t o G1 multiplications and 39 adds. If the 
c ontrol ve rtices are known, and the cornputation is 
done for a large number of points, then lhp. multip lica
tion [M] [V] or for the surface [M] [V] [MY can be 
done in preprocessing, at a cost of 16 multiplie r.tions 
and 12 adds, and t.hen for each point evaluation only 5 
multiplications and 3 adds are necessary. For a sur
face , the corre sponding flgures Clre 32 multiplicat.ion s 
and 24 adds in preprocessing, ilnd 19 multiplicat.ion s 
a nd 15 adds per )J oint evaluation. These n umb ers have 
t.o be multiplied by t.he numbe r of coordinat.es. 

If vector o r' mat rix multiplie rs arc available, these 
could lead to a Significant improvement in speed [Eng
land78]. It is inte resting to note that. 4 e lem e nt vector 
muLt.iplie r s. find 1· x 4· matrix multipliers al-e available 
b e cause of the llse of 4 x 4 homog eneoLls c oordinat.e 
t.ransformat.ion matrices . It makes c ubic equat.ions 
even m ore a ppropriate. lC a circuit is available that 
multiplies and sums 4 pairs of numb ers in p a r a llel, 
then th e p o int evaluation takes 5 steps, once the vec
tor [u 3 u 2 71. 1 1 J is computed. In the surface case it 
takes 1 Cl ste ps. 1f the vertices a r e known in advfince, 
these n umbers become 1 step and 5 steps, r e spec
tivc:>.ly. The evalual.ion of a point can then take 11 t.ime 
of the order of 11 ,Usecon d. 

3 .3 . Polynomial Evaluation 
If we rcarrange slighUy the ordp.r of comput.ation, 

we have 

[A]=[M] 

IVel 
VI 
Vz 
V3 

and we obtain an ordinary third degree polynominl: 
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x(U)=[US U2 u 1 1] 

Applying Horner's rule , this could be rewritten: 

x (u )=«a3u +a2)u +al)u +ao 

After the preprocessing (the computation of [An 
the number of operations is then 3 multiplications and 
3 additions (compare with 5 multiplications in the 
matrix approach) . But the price to pay is a certain 
loss of regularity in the ope rations. Note that since we 
are dealing with small size polynomials and matrices, 
more elaborate methods to lower the asymptotic com
plexity like Fast Fourier Transform for polynomial 
evaluation are not appropriate . However, methods like 
Winograd' s [Knuth69] or St.rassen's can be used to save 
on mat.rix multiplication even on 4 x 4 matrices. 

3.4. Table lookup 
Ofte n in practice, for reasons e laborated upon in 

section G. what is n eeded is a serir.s of point.s regulnrl y 
s paced in pararncl.r·ie space. JlI this case il t.able 
lookup technique allows substantial savings in compu
tation. I"or each value 'Uj of u needed. the value of the 
vector' [u 3 u 2 1.1.1 1] [M] is comput.e d and stored in a 
table . Then lo c ompute x {v.J. t.he vector is retrieved 
from the table using i as an index. Then only 3 multi
plications and 3 adds remain. If the vertices are 
known in advance, then of c ourse the final value itself 
is slored in the table. This be comes equivalent to 
precomputing a set of points on the curve. In the sur
face case, only one table is needed for u and v, if the 
same number of subdivision is needed for both. It is 
because 

fv 31 

[u' u' u' IJ [M J and [MJrfl~ 
are transposed of each other when 11. =v. In this case. 
the computations r emaining are 15 multiplications and 
15 adds. 

3. 5. Forward DifTerencing Techniques. 

When the whole surface is computed. ar significant 
portion., of a whole surface, at. equally s paced points. 
t.hcn it makes s e nsc to exploit the regularity of the 
eomp utation lo save OIl ope r at.ions. In other cont.ext.s, 
the sam e concept. is known in computer graphics as 
Goherence ( in this case "object cohe r ence" ). An old 
and well known technique is called forwal'd dift'erencing 
[Ralston65]. It uses the fact that the "11. tI. difference" 
of a n tl• degree polynomial is constant. The forward 
difference of a function / (u) is: 

t::./ (u)=/ (u +h)-/ (u) 

The sec ond difference is: 

t::.2f {u)=1::.J (v, +h )-t::./ (u) 

and so on to th", nil. forward difference : 

t::.n f (u)=t::.n - 1/ (u+h)-t::.n - 1f (u) 

In the case of a third degree polynomial: 
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X (u )=asu s+a2u 2+ a1u +110 

~(u)=3asu2h +(3a3h2+2a2h)u +ash3+a ,ah2+a ,h 

!!,2x (u) =6a 3h 2U + 6ash 3 + 2a 2h 2 

t::.3x (u )=6a3h3 

which is a constant for a given h. 

From the original definition of the forward 
dift'erence, we can compute 
/ (n + l)h)=/ (nh)+t::./ (nh). 

We now can use the following algorithm: We ini
tially compute 

x(O), !!'z(O), !!,2x (0). and 1::.3x(0) 

for a given h . 8ince !!,3x {u} is independent of u, we 
will write it t::.3x. The n for n = l. to 1/ h we compute: 

x{{n + l)h)=x(nh. )+~ (nh) 

Ax «'11. + l)h )= L\x (nh )+L\2,r. (nh) 

t::.~x «n + l)h) =t::.2x (nh) +t::.ax 

For each new point only 3 addit.i.ons are needed. 
This method h i'ls the drawback of having the roun doff 
errors accumulating during the computations , which 
c an make the last poinls computed quite inaccuraLe. 
To extend the technique to surfaces we have to c om
pute the forward differences of x (u ,v) twice, once as a 
polynomial of u ( v constant) and onc e as a polyno
mial of v (u cons tant). 

But cach forward difference is a polynomial in 
both u and 11 • and as such has a forward differ e nce 
for both. We t.hen have a 4x4 matrix of forwar'd 
differences. 

Starting with x(O.O) . the next. values x(h .O) , 
x(2h,0), . can be computed. using the forward 
diilercnces for 7.1.. Then x(O,h) . x(O.2h)... can b e 
c0mputed using t.he forward differences for v. Then 

x(O,h). x(h .h ). x(2h.h) .. . can b e computed. 

At each sLep. each row (if we go in the v , direc
t.ion) or column (i.f wc go in the ?J direction) has to be 
updated by r eplacing it by the sum of itself and the 
next row or c olumn. Each new point then cost.s 12 
additions. 

3.6. Recursive Subdivisi.on 

In the previoll s a pproach, the question was given 
x(u), compu Le x{u+h). This is an incremental 
approach. If instead we e.sk given x (UI) and x (u2)' 
compute x (u) with u, <u <u2. this is a subdivision 
approach. It also has a strongly hie rarchical 
approach. since x (u) can properly be viewed as a des-

u 1+u2 
~endant of x(u\) and x (U2) ' In particular, if u = 2 . 

it is have a mid-point subdivision. which can b e much 
simpler to comput.e. 

Catmull [Catmull74] firs t introduced this tech
niqu e for p ar'imctric curves and surfaces. 

As an example take the c ubic polynomial: 
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x (11. )=a3u3+a2U2+[lIU +aO 

As~ume we know the values of x(u+d) and x(u-Ii) . It 
is easy to show that: 

( )_ x(u+d) + x(u-d) ( 3 )d2 
X 11. - 2 - a2+ asu 

So the va1.uc at the mid-point x(u) is the average of 
the vC'.lues at the end points, minus a correction factor: 

d 2 
C(u .d) =(a2+3a3u )d2=x(2)(u) 2 

The last equality can be verified by computing the 
se cond derivative. The correction term can itself be 
o::omput.ed recursively by the same method. and the 
the cubic case it is a linear function of 11. which does 
not need any correction term. The a lgorithm for sub
division is then fLrst to compute ( d = 1 ): 

x(O), x (1). C(O.l)=x(2~(0). C(1 .1 )=x(2~(1) 

then in each following steps to compute (d=O.5 ): 

C(O.5.0.5)= C(O,l)+C(1.1) 
H 

x(O.;;)= x(O)+x(l) C(O.5,O.5) 
2 

and the new correction terms: 

C(O,O.5)= C(~,l). C(1.0.5)= C(l,1) 
4 

So to compute each new midpoint involves 3 adds (one 
lo compute the new correction factor) and 8 shifts. 
This is the fastcsl way \.0 compute a new point on the 
curve. 

Another way to look at the subdivision of a 
surface/curve, is : given a set of control points, gen
e rate 2 sets of control points that together generate 
t.he same curve as the original set. Pictorially the 
answer is given for the Bezier curve by the geometric 
construction for the case 11. =0.5 . If the original ver
tices are (Vo. VI' V2• Vs) and the two new sets of con
t.rol vertices are (Qo, QI' Q2. Qs) and 
(Ro. R t , R 2. R 3 ) then: 

Qo= Vo Ro= Q3 
Vo+ VI VI + V2 R2 

QI= -2-- R I = 4 12 
Q I VI + V2 V2+ 1'"3 

Q2= ~ -4-- R 2= -2--

Q3= Q2+RI_ Rs= Vs 
2 

This subdivision mcthod requires 6 adds and 6 shifts 
p er point. It has the advantage of c r e ating subsur
face's, ke eping the nature of the primitive used. A 
si.milar method can be applied to the cnnt.rol vertices 
of a FJ-s pllnc curve [LaneBOa). 

The preceding subdivision method can be applied 
recursively without in effect ever computing t.he points 
on the curve it.self. The proof that the series of com
puted control ve rtices c onverges lo the c urve is easy 
once the c onvex-hull property is applied. The more 
difficult probl~m of subdividing arbitrary B-splines, 
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including non-uniform ones. has been solved by the 
"Oslo" algorithm [CohenBO). It also computes new con
trol vertices, but can b e used to split the curves at 
arbitrary parameter values. 

4. Viewing Transformations 

4.1 . Rotation. Translation and Scaling 
In this section. we discuss parametric curves and 

surfaces as graphic primitives. that is as entities that 
are subject to g eometric computat.ions in general. and 
transformations in particular. The viewing transforma
tions. which ilre linear lransformations , and gene rally 
expressed as 4x4 matrix using homogeneous coordi
nates [FoleyB2, Newman79]. can a lways be expressed 
as a concat.enation of rotation, translation and scaling 
matrices. 

Similar to th e viewing transfor'mations, the 
instance transformations (going from the master o::oor
dinate system to the word coordinate system) can also 
be representcd a s a concatcnat.ion of t.hesc basic 
lransformaLion m a t.rices . 

It is easy i.o s how that for r ol.at.ion a nd sCeding, 
I.ransforming th p. points on the curve or surface is 
equivalent to Lrans forming first t.h c control matrix. 
and then using t.hi.s Lransrorme d mat.rix t.o compute 
the points . 

[x '(u)y ·(u)z '(u.)]=[x(u) y(u) z(u ) ][1'] 

where the primed coordin ates are for the t.ransformed 
points. and [T] is the 3x3 tram:formation matrix. 
Replacing the X(11. ),y(U) and Z (11.) by t h eir formulation 
in a cubic curve: 

fv:z: o Vyo v" ol 
[x '(u)y '(u)z'(u )]=[u3u2u l][M] V:z:! Vyl V:Z: I [1'] 

11;, 2 Vy2 Vz2 

Vz3 Vy3 Va3 

=[U 3U 2U l][M][ T'] 

where: 

The translation transformat.ion is usually reduced 
to a mUltiplication by a transformation matrix by 
using homogene olls coordinates, in esse nc e r educing 
point t.r a nslation in 3-D to veet.or Lransformat.ioD in 4-
D. See in particular [RiesenfeldBla] about t.bc nature 
of the homogeneous coordinates. 

We can by ext.ension apply the same technique to 
the control v e rt i.ces matrix. In the case where some of 
control ve rti ces are vectors. however, and not points in 
2-D or 3-D spac e , t.hen the usual extension to h omo
geneous c oordinates by adding 1 c\s the fourt h com
ponent is not valid. To keep them un a ffecte d by trans
lation. as they should be. the fourth c omponent should 
be 0 (in other words. the last row of the tr'ansformation 
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matrix is not used). Care should be taken, in this case, 

not to try t.o divide the fir st 3 components by the last, 

as is done after the perspective transformation (see 

below) . 

4 .2. Perspective Transformation 

In the classic perspec tive transformation after 

t,hc object.s are transformed to the eye coordinate sys

t e m (wit.h t.he eye at the origin), the new x and y coor

di.niltes a re obtained b y dividing the x and y coordi

nates by the z coordinate: 

D x. D Y. 
x~ =: S;;; z. Ys = 8

11 
z. 

..,here D is the d istanc e eye-window, and 8." S1l the 

window size in the x a nd y direction. It can be shown 

ensi ly that the transform of a straight line segme nt is 

11 str'aight line segment (but they do n ot have the same 

parametrisation) . 

In the case of a cubic curve or surface, the 

t.ri1n sform 

( ) 
Y. (u) D 

Ys 1). = z.{u} 8
11 

is not a cubic polynomial. Therefore it is not 

r igorollsly corrcct. t o a pply the PCf's p cctive t.rilnsfor

mation on the control vertices and. then compute the 

sur'[ncc rro m Lhc rr,s ult.. J~ort.unatdy, in most cir

c umsLance s th c difIcre nce will not be visua lly detect

ab tc. anti t.his is c omm.only done. 

Befor e leaving the subj ect of transformations, 

c lipping should b e men t.ioned. S imple tests to verify if 

the whole surface surface is in or out are possible if 

the formulation used has the convex hull property 

s ince in this case if all the control vertices are in (out) 

then the whole s urface is in (out.) . In the c a se where 

some ve rLices are in and other out, then more e l a

borate lests are ne cessary , and one should us e some 

of the techniques described in t.h e next section on 

dis play algorithms. 

5. Display Algorithms 

!).1. Polygonal Approximations 

The d i!iplay algorithms can havc t"A ) purposes: to 

trans fo rm the p a rametric curves a nd surfaces into 

I{ r a ph ic prim it.ives, or t.a transfo rm lh (,TTl into oUlput. 

pri.mitives. In the firs t. case, p e r hnps they should no Of: 

ci'\ llcd. di!ipl .... y algorit.hmH. To d i!iplay t. h e graphic prim

itives, they in turn have lo b e c onverLed into output 

primitives. (Note that some times the c onversion is 

trivial: oft en straight line segme nts are both the 

gr?phic and t.he oul put primitives.) If the parametric 

curves and surfaces are use d as graphic primitives, as 

discusse d in the pre vio u s sec tion, t hen the sec ond 

t.ransformation still has to b e a pplied. 

The first method used to display parame tric sur

face s i.s to s u bdivide them int.o polygons, generally qua

drilateral or triangles, and then u se t. h e polygons 

obtainc d as graphic primit.iv(' s. if n ecc!isary applying 

68 

the required transformations, and displaying the 

polygons, using onc of the many algorithms available 

for polygon display [Newman79] [FoleyB2]. 

The methods to compute the p oints on the surface 

have been discussed in section 3. It is h e re clearly 

advantageous to subdivide the surface equally in 

p arametric space, and consequently to us e I.able 

lookup or forward differencing . 

If we U!i f! only one k ind of r ('g ular polygon t.o sub

d ivide the surfacl'] in parametr ic space, then only t ri

angles and squares are geometrically possible (hexa

gons will leave some unfille d triangles at the 4- corners 

and boundaries). Subdivision inlo qu a drilaterals offers 

the a dvantage of covering t.he s urfa ce with les !i line 

segme nts, a nd of being more pleasing to the eye (only 

lines approximating isoparametric c urves a re seen ). 

This should be the preferred m et.hod with a line draw

ing system. 

T:1e drawback with parametric squ a res is tha t four 

poin ts on the su r face are not n ecessaril.y coplanar. 

This means that from some viewing position the qua

drilateral in scree n spa c e might n ot. be convex. a nd 

even not s imple {i.e. two e dg es can cross} . This would 

caus e difl'iculty to most filling algol'it.hms u sed For' sub

sequenl displl~y sinGe some dei\l () nly wit.h convex 

polygons, and most cannot deal with non-simple 

potygons. In t.his Cil~Q . a triangUla tio n is preferablE!, as 

any 3 poin t s are l·oplanar. Rema in fl the choic~ of thc 

suudiviHi on fador. Since adaptive cnct.hods will b e dis

cussed in t.he n(,xt subs ections, we wil.l here only (,O Tl

sider a priori. de l.erminat ion o f the s ubdivision fi'lct.or . 

One solution is to let the user pick it (l ow for quick 

display. high fo r final version). If it is to be determin e d 

by the system, the two main considerations should b e 

the size of the surface on sc r een and t.he curvature cf 

t.he sur[1\ce. It should be remembered, however. t hat 

equal distance in parametric space does not. m ean 

e qua l dist.anc e in world and/ or screen sp",ce. If a 

roughly constant distanc e Prj;..t between sample point.s 

is wanted, then one can apply the viewing lransforma

tions to the [our corners of t.he s ur face , and g ive n the 

m a ximum distance dmal< between t.h e se on the sc rce n. 

compule n , the number of intervals on a side b y: 

n =Ir d max I Patsl 

The curvature of the surfacc is a fact.cr, since we a r e in 

!!tTecl'. doiog a piec(!wisc linear approxim at.ion (lf a poly

nom ia l s urface . 

One simple wa y to re la te the subdivision ract.or to 

the curvature in t he case of Eezier a nd E-splin e rormu 

lation is through the control points. In the c ase of 

Et!zier: 

x(2)(O}=6[( Vo- V1)+( V2- VI)] 

S (2)( 1)=6[( V1- V2 } +( V3 - V2 )] 

in the case of B-spline: 

x (2) (O)=( Vo- V1)+( V2 - VI} 

x (2)( 1}= (V1- V2) + (1'-~- V~) 
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The number of subdivisions should be inversely related 
1.0 the lengLh of these vectors. 

5.2. Scanline Algorithms 
In recent years there has been a change in many 

applications from line drawing systems (refreshed or 
not) to raster systems. In terms of output primitives, 
this means going from points and lines to pixels and 
scanlines (this also means shading and colours - more 
about that later). As a consequence, algorithms were 
developed to convert graphic primitives to pixels. In 
particular algorithms to convert polygons to pixel 
scanline segment by scan line segments were designed 
[Newman 79, Foley BO]. These algorithms basically 
consist of 2 loops, one for the scanlines (the Y direc
tion) and the other for each pixel on the scanline (the 
X direction). The problem is to determine the int.er
section of a plane defined by the eye and the scanline 
in screen coordinate system with the object to be 
"scan converted". At the same time the Z value of the 
intersecLion for each pixel is computed, in order to 
determine the priority of the objects incident on that 
pixe!. To simplify computation, usually an incremental 
approach is used. In the case of linear objects like 
polygons, t.his rn uans simply t.hat. art.pr finding t.he tiTS!. 
intersection (the polygon vertex with the highest Y), 

the cndpoints are updated using the ~~ slope for 

each edge. When a vertex is found signalling a change 
of intersecting e dge, then tbe slope of the new edge is 
used. If new convex polygons are allowed, there can be 
more than one active span per polygon at a given scan
line. Adapting this technique to the scanning of a non 
linear surface surface several problems occur: the 
highest. pn~nt on the surface need noL be a point on the 
bounda.ry. The boundary edges are not the only ones 
that det.ermine the scanline intersection, and the 
silhoueLte that define them is not a third degree curve. 
The silhouette is either a boundary or the locus of 
points where the Z-component (in the eye coordinate 
system) of thc normal to the surface is O. New spans 
are introduced by local maxima, and spans terminated 
at local minima. 

Two t.ec hniques t.o solve these problems have been 
published by Blinn and by Whitted [La n e BOb). In Blinn 
a lgorithm, the major tool t.o comput.e the intersection 
is Newton iteration. This is of course an approximation 
m eth od, but ~_he coherence of the s urface makes it 
easy to gct. accurate first guesses of the solutions and 
the it.erat.ion C'nnverges quickly. They are special 
cases however, such as saddle points, simultaneous 
maxima in the silhouette and the boundary, that have 
to be chec k ed. There can also be si.ngu lariti e s wherr: 
the Newton iteration method fails. 

In Whitted algorithm, the scanning proceeds iikp. 
for the scanl1ing of a polygon, except that the edge s 
are d.escribed as cubic polynomials. Additional edge c; 
a r e needed if the curvature along one parameter is 
high. Th'? problem of the silhouette edge is solved b y 
a pproxim ating I.hem by cubic polynomial, oblailled by 
Hermite interpolation between two points on an edg e 
where the Z-component of the normal vector is zero. 
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The problem here is that numerous special cases make 
the generation of the silhouette edges fail. After all 
edges are created, the scan c onver sion processor' firsL 
finris thei. r extrema if they have nny (by solving 'lua
dratic equation) a nd break each edge into segments 
monoton ic in Y. Then the scanning is done using New
ton iteration to get the value of the parameter at the 
intersection. This also might fail to converge. 

Scanline algorithms on the whole are fairly pon
derous, long and hard to code, and suffer many excep
tions and failures. 

5 .3. Subdivision Algorithms 
In section 3, we pointed out the two main 

approaches to the evaluation of points by increment 
and by subdivision. For display purposes the sam e 
dichotomy remains, but now the algorithms are driven 
by external considerations. In the previous methods 
the factors controlling the incrern ent st.eps were 
screen resolulion and surface curvature. In the subdi
vision methods the same factors will clrive t.he subdivi
sion. 

The m e thods differ by the subdivision technique 
used, and hy t.he c riterion used to s!.op I.he subd ivision. 
In Catrnull's original m ethod [Cut.mu1l74) ce lll.ral 
differencing is mled. and the criterion is when the [our 
corner points are inside a p ixe!. While the subdivision 
step is very fa s t, the method requires a subs tantial 
amount o[ storage (O(logN) for N subdivision on each 
side). The test value to end the subdivision is normally 
the size of the subsurface, but since the correcting 
factor C(u,d) nee ded is the second derivative, it could 
conceivably b e used t.o test flatne ss. 

Instead of sutdividing down to the pixel size, one 
could, stop when the subsurface is "close enough" to a 
polygon to b e displayed as such. In this case, we use 
polygons as oUlput primitives instead of pixels, even 
though of course a subsequent procedure can scan 
convert these polygons to pixel. Ca'"pp.nte r and Lane 
[Lane80b] used this t echnique. Their subdivision 
method computcs t.hc new control points of each of t.he 
subsurface as shown in 3.6. The stopping crit.e r ion 
uses the convex hull property of t.hc f1p zic[' s ur"f"ces. 
The test [or flatness is done on t.h e control verbces, 
ins lead of on the surface itself. The distance from 
inside points of the control network to the plane 
defined by the four corner point.s can b e used as a 
measure . The main drawback of the method is that 
cracks appear on the surface, if Cl subsurface is s ubdi·· 
vided, while anoLher subsurface with a common edge is 
not. 

A third variant propo!"e d by Clark [Clark79] uses 
the same subdivision as Ca Lmull does, central 
ditrerencing, but uses the correction t.erm 

d 2 
C(U,d)=X(2)(U) ""2 

liS the stopping condition. In the Bezier curve 

x (2)(O)=6[ (Po-? \) +(PC l' \) J 
x (2)( 1) =6[(P3-P2 ) +( P t -Pa)] 
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so that 

So the smaller C( u. ,d) is the closer to a straight 
Line (Vc VI V2 Vs) is. Note that this should be considered 
in re la tion with the resolution of the screen and the 
length of (Vo VI V2 Vs). Clark's termination tests are 
done first on the boundary curves along the u. = 1 and 
u. =0 curves, which one subdivided until they meet the 
"fiatness" (.!riterion, then on the v=O, v=l curves 
treated the same. Then the test is carried out to the 
middle of the surface, by using the cross derivative 

8
4
x(u.,v) at the four corners as the test value. By 

8u 28v 2 

subdi.viding along the boundary curves first., and then 
not subtracting a correction term if any further subdi
vision is needed (because of the centre of the surface) 
Cla rk's algorithm avoids the "cracks" along the boun
dary curves. 

The Carpenter-Lane algorithm can be extended to 
arbitrary B-spline formulations by using the Oslo algo
rithm for the s ubdivision. It should be also noted that 
subdivis;on can be used to clip (especially when the 
formulation has the convex hull propert.y, because 
then if the clipping plane does not intersect the con
trol vertices, it does not intersect the curve or sur
face) and. to c ompute intersections of two surfaces (as 
a step in a bidden surface algorithm, for instance). 

6. Conclusion 
This survey of parametric curves and surfaces and 

their aJlsociated computational techniques is far from 
complete. Some of the topics, important for imple
mentation, but left out here are: 

-transformation form one type of formulation 
to another [BarskyBlc] 
-computations related to lighting models. in 
particular normal vector computations 
-sec ondary lighting effects, like shadows and 
refraction [WilLiams7B, WhittedBO] 
-mapping of scalar va lues onto the parametric 
surface, for texture !napping [Blinn76, Blinn7B] 
or sLochastic modeLin ~ [FournierB2]. 
-relationship with other surface representa
tions, in particular quadric and s uper quadrics 
[BarrBI] 
-t.echniques , mainly interactive, to effectively 
design objects with parametric curves or sur
fa~es for the purpose of CC'mputer Graphics 
arplications, with a repertoire of control ver
tic es for st.andard shapes . 

A subsequent paper will address these issues. Jt is 
our hope that this partial survey will give the reader a 
reneweo interesl. in pararnrt.ric curves and surfaces, 
and cOrlvinc(, 11( ' m I.hal I.hey a r c r;owcrru l, yct. rnla
lively easy to use as building blocks for cur imaginary 
universe. 
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Figure 5.3 Object made of 4 B-spline surfaces 
with their control vertices. 
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F"tgure 5.1 Glass made of 12 BE!zier surfaces. 

Figure 5.2 Control vertices for the glass_ 
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