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ABSTRACT 
A algorithm for calculating the set theoretic combinations, such as union, intersection and 
difference, of two polyhedra is described. The polyhedra are in the Eulerian surface description 
format, specified by their edges and faces. They can have multiple components and nested holes. This 
algorithm uses an adaptive grid to handle complex objects with thousands of faces without the overhead 
of comparing every pair of faces to find which pairs intersect. It produces a list of new faces with 
tags indicating which of these faces are included in each of the set combinations, so that all the 
combinations of two polyhedra are produced at once with no extra cost. 

KEYWORDS: polyhedron intersection, polyhedron, intersection, union, set operation, Eulerian operation 
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INTRODUCTION 

As computer aided design progresses, it is 
becoming apparent that there are various low 
level operations that are common to several 
applications and whose execution time is an 
important factor in these applications. One 
such low level operation is combining two 
polyhedra to obtain the intersection, union, or 
difference. Polyhedron intersection is used in 
places such as: 

1) Solid modelling, where the user is 
forming complex objects from a small set of 
primitives, 

2) NC tool verification, where we wish to 
know the volume cut out of an object by a 
drill, 

3) Interference detection, such as fitting 
parts together, where we wish to know 
whether two parts are trying to occupy the 
same space. 

There are several solutions to this 
problem, each with various advantages and 
disadvantag~s. Some of them are: 

Eastman and Yessios [6] give a general 
algorithm for combining 2-D polygons. It 
handles polygons with nested subpolygons, and 
also cases where two polygons are partially 
coincident, although this is messy. It works by 
finding all the intersections between the 
polygons' edges, and then "threading" or 
traversing around the pieces of edges to 
determine the resulting algorithm. This method 

is linear in the complexity of the input and t he 
output, provided that an efficient edge 
intersection routine is used. However, it is 
inherently sequential, and would be difficult to 
execute in parallel. A more critical problem is 
that if this method is extended to 3-D, the 
threading becomes much more difficult and 
error-prone. The nature of threading is such 
that one wrong decision renders the rest of that 
thread of edges (or faces in 3-D) completely 
wrong, so special cases must be handled 
carefully. 

Maruyama [15] gives a procedure for 
determining whether two polyhedra intersect by 
comparing the faces pair by pair. However, he 
does not determine the intersection, only 
whether it is null. We use an extension of that 
method in this paper. 

Baer , Eastman, and Henrion [1] give a good 
summary of geometric modelling systems, which 
"shape operations" (i.e. intersection etc.) 
they perform, and how they do it. 

Lozano-Perez and Wesley [12] describe 
collision avoidance of moving objects, which is 
an operation where this sort of algorithm can be 
useful . 

Tilove [19] considers important questions 
of what intersection and so on mean in the 
abstract, and introduces "regularized set 
operators" to answer them. He also gives 
recursive methods of intersection and union of 
objects defined as as combinations from a small 
family of primitives. These methods are used in 
P.A.D.L., one of the best known geometric 
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processors. However. this method of 
constructing objects can require many primitives 
to be added and subtracted to form some quite 
simple objects. Each face of the object might 
be the result of a complete primitive component 
so the database can need a complete object for 
every original face. In addition. some quite 
simple operations. such as determining the 
volume of the object. are impossible to do. 
except by Mbnte Carlo techniques~ Finally. this 
method has not yet been extended to intersecting 
objects with thousands of faces. 

Boyse [4] gives an algorithm for 
determining whether two objects interfere. where 
one of the objects can be moving along a 
straight or circular trajectory. His objects 
are composed of vertices. straight edges. and 
flat faces. so for two objects to interfere it 
is necessary and sufficient for an edge of one 
object to pass through a face of the other 
object. This he tests for. However. this does 
not extend to producing the intersection. 

If one of the objects is a convex 
polyhedron. then we can use the fact that it is 
the intersection of a number of semi-infinite 
half-spaces. one for each face. by intersecting 
them against the other polyhedron. one by one. 
This is easier if the other polyhedron is also 
convex. However. the only way that this method 
generalizes to non-convex objects is to 
partition them into convex pieces. which 
increases the complexity. 

Another. completely different method is 
that of Meagher [16] who approximates the object 
by an octree of different sized cubes. This has 
the advantage that no floating point operations 
are needed to combine the objects. but also the 
disadvantage that the surface of the object is 
not represented exactly so that shading is 
complicated and poorer. 

Baumgart [2. 3] has a good geometric 
manipulation system with polyhedron combination 
operators. using a different algorithm. Braid 
[5] has another polyhedron combination 
algorithm. Parent [17] describes another one. 

An independently developed algorithm 
similar to the one presented here. except that 
it does not use an adaptive grid. has been used 
for some time in P.A.D.L. [21]. It has been 
presented at several short courses. but has not 
been described in the open literature. 

Another independent similar algorithm is 
described in [20]. although Franklin has been 
unable to obtain a copy. Again. it does not 
include a means of handling complex objects. It 
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has been implemented. [18.22]. but cannot 
handle two objects with a common face. or an 
edge of one lying in a face of the other. 

The principal contribution of the algorithm 
presented here is that. through its use of an 
adaptive grid. it can process scenes with 
thousands of faces. In addition. unlike some 
other algorithms. it produces all the boolean 
combinations at little more than the cost of 
producing one. Since there are no complicated 
data structures such as pointers. it is easier 
to implement in low level languages such as 
fortran. Of course it can handle nested holes 
and multiple components. 

This algorithm is part of the Kepler 
geometric manipulation system described in [11]. 
It is now being implemented. An earlier 
algorithm for polygons was implemented in 1973. 

POLYGON COMBINATION ALGORITHM 

In order to better understand the 
polyhedron intersection algorithm. we will first 
present a polygon intersection algorithm that 
uses the same principles. It is: 

1. Overlay an adaptive grid on the scene. whose 
fineness is a function of the number and length 
of the edges in the input polygons. Pa and P~. 
Adaptive. or variable. grids are described in 
[8. 9. 10]. 

2. Initialize an empty set. S1' that will hold 
ordered pairs of the form (Cell. Edge). 

3. For each edge in either polygon. determine 
which cells it passes through. and add ordered 
pairs to S1' We are not cutting the edges into 
pieces where they cross a cell boundary. as in 
Warnock's algorithm; we are merely noting which 
cells each edge passes through and adding an 
element to S1 for each one. 

4. Sort S1 by Cell so that we have in one place 
all the edges passing through each cell. 

5. Initialize an empty set. S2' that will hold 
ordered pairs of intersecting edges. 

6. For each cell. C: 

a) Intersect all the edges of Pa in C with all 
the edges of P~ in C. 
b) For each pair of edges. E1 and E2• found to 
intersect. write two ordered pairs. (E1 • E2) and 
(E2• E1) to S2' Overlapping collinear edges are 
considered to intersect. 
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7. Sort S2 by the first edge of each pair. so 
that we have in one place all the edges 
intersecting each edge. 

8. Initialize an empty set. S" that will hold 
segments. A segment is a whole edge or a piece 
of an edge of Pa or P~ that will not be further 
subdivided. and that may be used in the 
resulting polygon. There are two types of 
segments: those that come from an edge of only 
one polygon. and those that are common to an 
edge of both polygons because those edges 
overlapped. For the former type. store not only 
the segment's endpoints with it. but also which 
polygon it came from. For the latter type. 
store not only the endpoints. but also whether 
or not the two edges it came from are oriented 
in the same or in opposite directions. 

9. For each edge. E. find the other edges that 
intersect it. from S2' Find the pOints at which 
they intersect E. sort those points along E. and 
use them to split E into segments. If another 
edge is collinear with E. then it is considered 
to intersect E at each of their endpoints. If 
the segment is not the result of collinear 
edges. then if one endpoint of S is an 
intersection. then we can determine whether S is 
in the other polygon by examining the direction 
of the other edge in the intersection. Else we 
must do a point inclusion in polygon test. Add 
each segment to S,. 

FIGURE 1: SPLITTING Two POLYGONS' EDGES INTO SEGMENTS 
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-----------------------------------------------
I OPgM!!Q!L~ggRED I I I I 
IPa or Ps • I I I I 
IPa and P~ I • I I I 
IPa and not PI! I I· I I 
IPI! and not Pa I I • I I 
IPa exclusive or PI! I I I I I· I 
1-------------------------+---+---+---+---+---+ 
IED2g_~g~~M!~_!Q_!Mf~Y~g I I 11 11 II 1I IOn Pa inside Ps I I + --
IOn Pa outside PI! I + I I + I I + I 
IOn PI! inside Pa I I + I - I I - I 
IOn PI! outside Pa I + I I I + I + I 
IOn both. in same direct. I + I + I I I I 
IOn both. in opposite I I I I I I 
I directions I I I + I - I I -----------------------------------------------

Table 1 

Which Segments To Include For Each Result 

For example. see figure 1. which shows 
the segments caused by combining two simple 
polygons. In it. Pa has four vertices and PI! 
eight. Together. their 12 edges form 13 
segments. of which two are common to both 
polygons. S. includes edges of Pa and PI! in the 
same direction. while S10 includes edges of Pa 
and PI! in opposite directions. 

10. Depending on the particular result desired. 
select the appropriate subset of the edge 
segments in S,. as shown in table 1. To use the 
table. select the operation desired. read across 
that row to the column marked ".". and then read 
down that column. For each row below with a "+" 
or "-". read to the left to find the type of 
segment to include. A "+" means to include that 
type of segment in the same direction as it 
appeared in the input polygon. while a "-" means 
to include it. but reverse its direction. If 
the segment is on both polygons in opposite 
directions. then "+" means to include it in the 
direction in which it is on Pa • and "-" means 
the other direction. 

For example. if we want Pa and-not PI!' we 
will include all segments on Pa outside PI!' all 
segments on Pp inside Pal but reversed in 
direction. and all segments on both Pa and PI! in 
opposite directions. included in the direction 
that they are on Pa . 

If we desire to have the edges of the 
resulting polygon in order. then we can do the 
following steps: 
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11. Initialize an empty set. S •• that will 
cont a in ordered pairs of a vertex and a segment 
ending on it. 

12. For each segment that was selected. add two 
ordered pairs. for its two endpoints. to S •. 

13 . Sort S. by the vertex to get all the 
segments on each vertex together. 

14. Further sort all the segments on each 
vertex in clockwise order around the vertex. 

15. Finally traverse the resulting planar graph 
to pull out all the regions in order. These are 
the components of the resulting polygon. 

To better understand this algorithm. it is 
fruitful to consider the successive sets of data 
that are created . They are: 

1. {Input edges} 
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2. {Cell. Edge in it} 
3. {(Edge. Intersecting edge)} 
4. {(Edge. (All intersecting edges})} 
5. {Segments} 

Fa's INTERSECTI ON ~ 
WITH THE LI NE 

LINE OF INTE RSECTiON 
6. {Selected segments} OF PLANES OF F" AND ------t-H-~-+--­
7. {(Vertex. Segment at it)} Fa --

CUT -LINES 8. {(Vertex. (All segments at it})} 
9. Edges of resulting polygon in order. 

F,, ' s INTERSECTI ON WITH 
THE LINE 

POLYHEDRON COMBINATION ALGORITHM 

The 3-D version of the algorithm is similar 
to the 2-D version. albeit more complicated. 

1. Establish a 2-D coordinate system for each 
face plane. This will allow us to refer to 
points in the plane of a face with coordinate 
pairs and to use all our 2-D graphic routines 
such as point-in-polygon testing. Also 
calculate the transformation matrices between 
2- D and 3-D. 

2. From the number and area of the faces. 
determine the expected number of pairs of faces 
that intersect. and from this calculate the 
resolution. B. of a 3-D grid to lay over the 
polyhedra. Pa and Pp. 

3. Initialize an empty set. S1' that will hold 
(Cell. Face) ordered pairs. "Face" means not 
only the corner vertices of the face. but also 
which polyhedron the face belongs to. 

4 . For each face in either polyhedron. 
determine which cells it passes through. and add 
elements to S1' For speed. we can enclose the 

FIGURE 2: FINDING THE CUT-LINES FROM THE 
INTERSECTION OF F" AND Fa 

face in a box and use all the cells that the box 
passes through. since a few extra cells don't 
matter. Alternatively. a form of Bresenham's 
algorithm can be used to find the ~xact cells. 

5. Sort S1 by cell number to get in one place 
all the faces in each cell . 

6. Initialize a set. S2' that will contain 
ordered triples of the form (face. cut-line. 
other face). A CUT-LINE is a line in the plane 
of the face across part (or all) of it. but not 
extending outside the face . The cut-lines will 
later be used to cut the face into facets. The 
other face is the face that intersected this 
face to create the cut-line. 

7. Initialize a set. S,. that will contain 
triples of the form (face. edge. cut-point). 
The edge is an edge of the face. The CUT-POINT 
is a point on the edge where a cut-line meet s 
the edge. Cut-lines don ' t have to end at edges 

Graphics Interface '82 



of the face (they can stop at a point inside the 
face), but many do end at an edge. 

8. Initialize a set. S •• that will hold facets. 
A facet is a part (or all) of a face. and itself 
has straight edges and is planar. The sets of 
faces of all the resulting polyhedra are subsets 
of this set of facets; that is. the facets will 
not have to be further subdivided. Just as 
there were two types of segments in the 2-D 
case, there are two types of facets: those that 
come from a face of only one of the input 
polyhedra. and those that are common to two 
overlapping faces. For the former type. each 
facet will know which polyhedron it came from. 
and whether it is inside or outside the other 
polyhedron. For the latter type. each facet 
will know whether the two faces it is on face in 
the same or in opposite directions. The facet 
will be oriented in the same way as the face of 

Pa · 

9. For each cell. test all the faces. Fa. of Pa 
in it against all the faces. F~. of P~ to find 
which pairs intersect: 

a) Assume that the faces are not coplanar. (If 
they are. go to step (k).) Calculate the line 
of intersection of the planes of Fa and F~. 

b) Establish a 1-D coordinate system on it. and 
calculate the matrices needed to transform 
between it and the 2-D systems on Fa and F~. 

c) Calculate the equation of the intersection 
line in the 2-D systems of Fa and F~. 

d) For each face. determine the parts of that 
line that fall within the face. This is similar 
to point-in-polygon testing. and involves 
intersecting the line against all the edges of 
the face. 

e) Convert the two included ranges of the 
intersection line back to the line's 1-D system. 

f) Intersect the ranges of the two faces to get 
the common range. This is done by sorting all 
the endpoints together along the line. and then 
sequentially passing along them. while keeping 
track of which ranges we are currently in. This 
common range has zero or more intervals. If it 
has zero. then the two faces don't intersect so 
we can proceed to the next pair of faces. 

g) Convert the common range back to the 
coordinate system of each face. Each interval 
is a CUT-LINE of the face. 

h) Add this cut-line to S~. 
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i) Each endpoint of an interval of the common 
range is on an edge of either Fa or F~ (or both 
if the edges happen to intersect). Add the 
appropriate record or records to S,. 

j) Go back and process the next pair of faces. 

Figure 2 shows how two faces are 
intersected to create cut-lines in both of them. 
Pa with S vertices is intersecting P~ with 3. 
The line of intersection of their planes is 
shown at the bottom of figure 2. It cuts Pa in 
two places and P~ in one place. The 
intersection of these two regions gives two 
cut-lines. which are shown heavier at the bottom 
of figure 2. Figure 3 shows those two cut-lines 
drawn on each of Fa and F~ separately. After 
other cut-lines are found on Fa and F~. the 
faces will be partitioned into facets. 

k) If Fa and Fa are coplanar. then use a simple 
extension of the polygon combination algorithm 
presented in the previous section to find all 
the regions into which Fa and Fp partition the 
plane. This is the polygons Fa-or-F~, 
Fa-and-F~. Fa-and-not-Fa, and Fp-and-not-Fa . 
Some of them may be nu1l,and some may have 
multiple disjoint components. If Fa and F~ do 
not intersect even though they are coplanar. 
there will be no components. Add each component 
as a separate facet to S •. 

10. Sort S~ by face so that we have in one 
place all the cut-lines on each face. and which 
other face caused each one. 

11. Sort S, by face (major key) and edge (minor 
key) so that we have in one place all the 
cut-points on each edge of each face. 

12. Repeat for each face. F. to determine the 
facets that partition it: 

FIGURE 3: THE CUT-LINES IN EACH OF Fa AND Fs 
CAUSED BY THE OTHER 
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a) Initialize an empty set, Ss' of segments in 
the plane of F. 

b) For each edge, E, of F, read the cut-points 
on it from S" sort them in order along E, and 
use them to partition E into segments. 

c) Add these segments to Ss' 

d) Read cut- lines on F from S~ and add them to 
Ss' 

e) Ss is now a set pf segments defining a planar 
graph in the plane of F. Its regions are the 
facets of F. Determine them; that is, 
determine the vertices in order around the 
perimeter of each facet. This can be done in 
linear time by a trave.rsal algorithm similar to 
that used for finding the vertices of the 
in tersection polygon in order . Each edge of 
each f acet results from either a part of an edge 
of the original face, or from a cut-line on the 
face. 

Figure 4 shows the three segments that 
partition Fa after four faces in all have 
intersected it. 

f) Determine whether each facet that is on only 
one polyhedron is inside or outside the other 
polyhedron. If any edge of the facet results 
from a cut-line, then we can determine this by 
comparing the face against the face of the other 
polyhedron that caused the cut-line. Otherwise, 
we must select a point inside the facet and test 
it against the other polyhedron using a point 
inclusion in polyhedron test . If we preprocess 
each polyhedron by projecting it onto a 2-D 
grid, then this test can be done in time 
proportional to the depth complexity of the 
polyhedron (i.e. 2 for convex polyhedra). 

g} For each facet, add an appropriate element to 
S •. 

13. With S., we can determine any of the 
boolean combinations of Pa and P~: Use table 1, 
as in the 2-D case, to select the appropriate 
facets. 
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TIMING 

Since this algorithm makes successive 
sequential passes through the data, the 
execution time is proportional to the number of 
elements in the various sets being processed. 
For many input scenes, this will be linear in 
the number of edges, although some inputs will 
cause it to take quadratic time. In many of 
these cases, a hierarchical grid will speed it 
up again. Nevertheless, since it uses an 
adaptive grid which has been demonstrated to 
handle scenes with up to 10,000 objects in 
linear time, the polyhedron combination 
algorithm can be expected to execute quite 
efficiently also. 

SUMMARY 

The techniques shown here can be extended 
in several ways. For example, the only 
conceptual difference with intersecting objects 
that have curved faces, such as bicubic patches 
[7], is that two curved faces can intersect even 
though none of the edges of either face pass 

FIGURE 4: Fo AFTER BE ING CUT BY 4 FACES, CAUSING 
14 SEGMENTS AND 3 FACETS 
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through the other face. There are of course 
some non-trivial numerical analysis problems 
involved. 

Another extension is to higher dimensions. 
since with the configuration space approach [13. 
14]. an object that can be oriented in different 
directions in 3-space is equivalent to an object 
in 6-space whose orientation cannot be changed. 
Therefore. determining interference requires 
polytope combination algorithms in higher 
dimensions. 
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