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ABSTRACT

This summary outlines the results obtained by using a number of different types of smooth

curves for modelling the backbones of chromosomes,

an important step in image analysis of

chromosomes. Of the curves investigated, only the cubic spline provides adequate flexibility
while retaining smoothness., The full paper is to appear in Analytical and Quantitative Cytology.
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SUMMARY

In computer-aided systems for chromosome
analysis, features are extracted from the image
of a chromosome spread which allow the
identification of individual chromosomes in the
sample or the detection of fine chromosomal
structures. 1In the case of visual analysis of
human chromosomes stained to reveal a banding
pattern, the banding pattern is used to uniquely
identify each chromosome in a cell. The bands
lie perpendicularly to the medial axis or
backbone of the chromosome; thus, in a
computer-aided system for chromosome analysis,
the integrated optical density (i.o.d.) profile,
which is formed by summing the densities on
vectors perpendicular to the medial axis and
centered at each point on the axis, can be used
as a feature reflecting the banding pattern of a
chromosome. The i.o.d. profile is also valuable
in the identification of homogeneously stained
(unbanded) chromosomes, by enabling the
chromosome centromere to be located.

In order to calculate the i.o.d. profile,
the backbone of the chromosome must first be
modelled by a smooth curve. From such a curve
points lying at regular intervals along the
backbone can be interpolated,ard the orientation
of vectors centered at these points can be
calculated in order to form the profile. 1In
order for the i.o.d. profile to accurately
represent the banding pattern of a chromosome,
the curve must closely follow the actual back-
bone of the chromosome and must have smoothly
varying first and second derivatives.

A number of different types of curves for
modelling chromosome shapes has been
investigated, Two types of curves have commonly
been used in existing systems for human

chromosome analysis: 1) straight line
approximations, and 2) parabolic or low-order
polynomial approximations. A straight line
approximation is found by calculating the
principal axis based on the contour points
(Figure 1(a)). A parabolic approximation is
obtained when this principal axis is modified to
a parabolic axis (Figure 1(b)). Alternatively,
points on the backbone of the chromosome may
first be found by a skeletonization process and
a low-order polynomial may be fitted to these
points (Figures 1l(c) and 1(d)).

Our studies of plant chromosomes have shown
that these chromosomes tend to be long and often
severely bent, and consequently require a rather
flexible modelling curve. Both the straight line
and the polynomial approximations have been found
to be insufficiently flexible to closely follow
the backbone of such bent chromosomes. The
piecewise cubic polynomial known as the cubic
spline provides the required flexibility, while
having continuous derivatives. Fitted to knots
selected from the skeleton points, this curve has
been shown to closely follow the chromosome
backbone. In some cases, however, extraneous
inflection points between knots may cause the
curvature and slope of the curve to vary too
quickly; as a result, the vectors used to form
the i.o.d. profile do not lie at appropriate
angles relative either to the chromosome or to
each other. A modification to the regular cubic
spline, described by A.K. Cline, in which the
curve is fit "under tension" has been found to
adequately smooth the derivatives of the curve.
The method involves imposing tension on the
curve, as if pulling on its ends, in order to
restrict the amount of curviness allowed, thereby
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removing unwanted inflection points. The amount
of tension applied may be varied: as it
approaches zero the curve approaches the regular
spline and as it becomes large,the curve becomes
nearly a polygonal line. Cline suggests a
standard value of 1.0 for the tension factor;
this value has given good results when used for
the chromosome samples (Figure 1l(e)). Recent
results indicate that, when the knots are
well-chosen, the regular cubic spline givesthe
same curve as the spline fitted under a tension
factor of about 1.0. The tension factor does,
however, provide an improvement when the knots
are not well-positioned.

Initial investigation of banded human
chromosome samples, as shown in Figure 1,
indicates that many of these also require the
flexibility provided by the cubic spline curve.
In particular, chromosomes which are abnormally
long due to insertions or duplications of
chromosomal material tend to exhibit multiple
bends and therefore cannot be modelled by

straight line or parabolic approximations. If
the structures of these abnormalities are to be
analysed in detail, it is particularly important
that the i.o.d. profiles accurately reflect the
banding patterns of the chromosomes. Figure 2
shows the i.o.d. profiles obtained from each of
the curves of Figure 1; although most of the
profiles exhibit a similarity in overall form,
differences in details can be seen.

While the straight line or low-order
polynomial approximations have been found to
adequately model some chromosome shapes, in
particular those simple chromosomes which are
short and only slightly bent, they are not
general enough to fit the wide variety of
chromosome shapes encountered. The cubic spline
curve, on the other hand, is sufficiently
flexible to model both the simple chromosomesand
those more severely bent; at the same time, the
cubic spline provides the smoothness of first
and second derivatives required to form an
accurate i.o.d. profile.
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Figure 1. Contour of normal banded human chromosome with modelling curves.
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Figure 2. Integrated optical density profiles calculated using curves of Figure 1.
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