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ABSTRACT 

Humans and animals are extraordinarily complex mechanical systems whose articulated movements are 
difficult to represent, control, and display. This paper describes a method for representing articulated 
figures as skeletons, for use with a skeleton animation system currently under development. Our 
implementation includes a translator for mapping structured descriptions of skeletons into an internal 
representation, a movement processor which accepts input from movement scripts or motor control pro
grams, and a graphical processor which allows debugging, display, and real-time playback of motion 
sequences. Output from the graphics processor can be interfaced to a variety of display algorithrr~ so 
that 3-D shaded and anti-alia sed animation can be produced using data generated by the skeleton 
a nima tion s ys tern . 

KEYWORDS: computer animation, movement 
representation, human movement simulation, 
graphics transformation systems. 

1. INTRODUCTION 

Despite many aC:vances in graphics tech
nology, the world of three-dimensional computer 
graphics is with few exceptions a desolate one. 
The reason is that humans and anima:s are extra
ordinarily complex mechanical systems whose 
articula ted movements are difficult to represent, 
control, and display. The human figure, with 
over 200 degrees of freedom, is capable of motion 
so complica ted tha t we are s till learning how to 
measure and define it. If natural-looking, three
dimensional figures are to appear in computer
generated animation sequences, the burden of 
specifying motion in detail will have to be left 
to the animation software. Otherwise, articu
lated motion will remain prohibitively expensive 
and tedious. 

Many animals (and mechanisms) can be 
abstracted as "skeletons". The essential quali
ties of motion can be captured adequately by a 
simplifieid figure modeled as a collection of 
connected, rigid segments. In contra s t with 
"s tick figure" repres en ta tions, ske leton rep-
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resentations may be arbitrarily complex, so that 
users may model the actual skeletal structure of 
humans or other vertebrates. The ambiguities 
and perceptual difficulties associated with stick 
figures can be avoided with skeletons, since the 
user can represent both multiple segments and the 
curvature of bones. For example, longitudinal 
rotations of the human forearm are easily distin
guishable when both the ulna and radius are 
present in the model. If, in addition, the display 
system can generate perspective views, observers 
generally have little difficulty in interpreting 
movemen ts of the skeleton. 

Reproducing the actions of muscle masses, 
soft tissue, and clothing on a figure presents a 
further set of difficulties which, in our view, can 
be approached independently. Once skeletal 
movement systems are well-understood and imple
mented, we believe, software ca n be developed 
to map polygonal or higher-order surfaces onto 
moving skeletons. 

We are developing a goal-directed skeleton 
animation system that will allow artists, animators, 
and other non-computer specialists to define, 
control, and display complex motion of articulated 
skeletons. The current implementation includes 
a translator for mapping -structured descriptiol1s 
of arbitrary skeletons into an internal representa
tion, a movement processor which accepts input 
from low-level movement scrip ts or motor c ontro) 

Graphics Interface '82 



programs, and a graphics processor which con
trols the display, debugging, and real-time play
back of motion sequences. A human skeleton 
has been defined, and we have completed work 
on a motor control program for generating straight
ahead gait over level, unobstructed terrain. 
Output from the graphics processor can be inter
faced to a variety of display programs, so that 
high quality three-dimensional shaded and anti
aliased animation can be produced using data 
generated by the skeleton animation system. 

There are a number of approaches to por
traying complex motion. Key-framing (4,11), a 
technique drawn from conventiona 1 anima tion, is 
general with no restrictions on the kinds of 
figures that can be animated. However, it is 
essentially two-dimensional and difficult to 
extend to three dimensions. The same is true of 
Baecker's P-curves (2) , intended to provide the 
animator with greater control, and of Reeve's 
recent extension (8). All of the above allow the 
representa tion of arbitrary figures but require 
explicit and detailed motion descriptions from the 
animator. Wessler's three-dimensional system 
(12) was based on a modifica tion of key-framing, 
and was restricted to the portrayal of a human 
figure executing a series of stylized gaits. 
Hartrum (5) constructed a sI/stem based on physio
logical data which could generate sequences 
showing a walking human "stick figure". His 
work could not be extended to other kinds of 
figures, nor could the walk be easily altered. 
Badler's work (1) is based on the Labanotation 
movement description language. Labanotation 
offers the animator a very wide movement voca
bulary, but it is not clear tha t it can readily be 
extended to describe the movement of other, 
possibly imaginary, figures. While it is not a 
figure animation system per se, the GRAMPS 
graphics system (7), with its facilities for 
defining articulated objects is closest in spirit 
to the ideas we present here. 

In this paper we discuss our approaches 
to representing skeleton descriptions and 
skeletal motion, and give some extensions to 
the standard tree-traversal algorithms for cal
culating graphic transformations. The system is 
general and can operate on arbitrary figures. 

2. SKELETON DESCRIPTIONS 

What are the minimum requirements for a 
skeleton description? Articulated motion is 
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usually implemented (6) by constructing a trans
formation tree in memory where each node repre
sents some primitive transformation on an object. 
Obj ects nes ted more deeply in the tree will be 
transformed by matrices stored at ancestor nodes 
when the tree is traversed. At the very lea s t, a 
skeleton description must name all the joints or 
segments in the skeleton and specify how they 
are to be connected in order to construct a trans
forma tion tree. 

Since our system is to be accessible to 
non-expert users , the description must be both 
human-and-machine-readable so that animators 
may readily define new figures. In addition, 
skeleton descriptions must be conveniently modi
fiable and estensible to give the animator maxi
mum freedom to alter figures as work on a sequence 
progresses. 

Most programming languages provide facili
ties for describing nested control and data 
structures. We have chosen an analogous lin
guistic representation for skeletons, based on a 
context-free grammar that is Simple enough to 
allow compact representa tion of rea 1 sekeltons, 
yet general enough to a llow arbitrary complexity. 
The use of a language for skeleton representation 
has several advantages. It will not be unfamiliar 
to users of programming languages and anima tion 
languages. In the sense that it is a naming of 
parts of the body it is not unlike a "natural 
language" description. And finally, the descript
ion can be altered and extended easily with any 
text ed itor . 

Like programs written in a number of 
structured programming languages, skeleton des
criptions have two parts: a declarations part and 
a description part. In the declarations part, the 
user specifies certain data to be maintained at 
each node. Each joint may rotate about up to 
three local coordinate axes, specified 'x', 'y', 
and 'z'. For convenience, these are intially 
taken to be parallel to the global coordinate 
axes. In addition, the user provides a set of 
rotational constraints for each axis of rotation. 
Figure 1 shows a portion of the declarations part 
of the skeleton description for a six-legged dragon, 
lis ting the degrees of freedom for each jOint and 
the associated constraints . 

In the description part the user speCifies 
the transformation hierarchy using two structures: 
the "compound", which defines a joint where two 
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/* Dragon declarations */ 
body: x 0 360 y 0 360 z 0 360; 
/* Rotations of the skull */ 
skull: x -60 60 y -180 180 z -60 60; 
/* Actions of the jaw * / 
jaw: x -60 0 y -10 10; 
/* Actions of the shoulders and hips 
6-limbed dragon has "front shoulders", "mid 

shoulders", and "hips" */ 
l_fshoulder: x -90 180 y -60 60 z -45 180; 
r_fshoulder: x -90 180 y -60 60 z 45 -180; 
l_mshoulder: x -90 180 y -60 60 z -45 180; 
r_mshoulder: x -90 180 y -60 60 z 45 -180; 
I_hip: x -90 180 y -60 60 z -45 180; 
r hip: x -90 180 y -60 60 z 45 -180; 
1* Actions of the elbows and knees */ 
l_felbaw: x 0 -ISO; /* "hinge" joints */ 
r_felbow: x 0 150; 
l_melbow: x 0 -150; 
r_melbow: x 0 150; 
l_hknee: x 0 -150; 
r_hknee: x - 150; 

FIGURE 1 
Portion of the declarations part of the des

cription of a dragon 

or more segments meet, such as at the pelvis or 
wrist; and the "limb", which defines a sequence 
of connected segments. Compounds and limbs 
may be nested to any level. 

Compound joints are indicated by "begin
end" blocks, where the first string after begin 
is taken to be the name of the compound joint 
and all strings up to end are the na mes of de
pendent jOints. For example: 

begin wrist thumb index middle ring little end 

defines a wrist joint with five movable (though 
rigid) fingers. In this compound, the dependent 
jOints are taken to be each attached at the, wrist, 
rather than attached sequentia11y, as in a limb. 
A limb is indica ted by a set of strings enclosed 
in parentheses, e.g. 

(indexl index2 index3) 

defines a three jointed finger. A whole hand 
could be defined by 
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begin wrist 
(thumbl thumb2) 
(indexl index2 index3) 
(middlel middle2 m 
(ring 1 ring2 ring3) 
(littlel little2 little3) 

end /* wrist */ 

The description part, then, is simply an indented 
listing of joint names delimited by the appropriate 
parentheses and begin-end pairs. Figure 2 shows 
a description of a Simplified human skeleton. 

begin body 1* mandatory top node */ 
begin pelvis /* hips and spine "depend on 
pelvis */ 

(1 hip 1 knee begin 1 ankle 
{Cballoffoot I_toe) -
(I_heel) end) 

(r_hip r_knee begin r_ankle 
(r_balloffoot r_toe) 
(r heel) end) 

begin spine /* unarticulated spinal column */ 
(I_clavicle I_shoulder I_elbow begin I_wrist 

(l_thumbl 1_thumb2) 
(1 indexl 1 index2 1 index3) 
(Cmiddlell_middle21_middle3 ) 
(IJingl 1_ring2 1_ring3) 
(I_littlel 1_little2 1_little3) end) 

(r_clavicle r_shoulder 4_elbow begin r_wrist 
(r_thumbl r_thumb2) 
(r indexl r index2 r index3) 
(r=middlel r_middle2 r_middle3) 
(r ringl r ring2 r ring3) 
(r)ittlel-;:_little2 r_little3) end) 

(skull jaw) 
end /* spine */ 

end /* pelvis */ 
end /* body */ 

FIGURE 2 
Description of a Simplified human skeleton 

To keep the tree traversal algorithms 
Simple, the output of the parser is a binary trans
formation tree containing a node for each named 
joint. When necessary the parser inserts extra 
nodes at compound joints which transforms them 
into a series of binary subtrees as in Figure 3. 
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FIGURE 3 
Extra node (e) is inserted to generate a 

binary sub tree 

Users may thus create skeletons of arbitrary 
complexity since there are no constraints on 
the branching factor at any joint. 

In addition to the transforma tion tree, the 
parser genera tes a symbol table with entries for 
each joint which contain information from the 
declarations part of the skeleton description, 
i. e., the number and names of each degree of 
freedom (1. e. , axis of rota tion), and the ro
tational constraints for each degree of freedom. 
The initial coordinates of each joint, input from 
a second file, are a Iso stored in the symbol 
table. Metric information (joint coordinates) is 
input independently of the topological description 
in order to insulate skeleton descriptions from 
the varying display spaces of data generation and 
display programs. The current rotation angles, 
transformation matrix, joint coordinates, and 
additiona 1 "bookkeeping" informa tion are a Iso 
maintained in the entries for each joint. 

These data structures -- the transformation 
tree and the symbol table -- are the objects on 
which all other parts of the movement system 
operate. Motor programs and user movement 
scripts update the rotation data at each joint. 
The movement processor traverses the tree and 
computes new coordinate axes and position 
coordinates for each jOint. The display pro
cessor generates a vector display directly or 
outputs data suitably formatted for one of 
several available raster display programs. 

3. MOVEMENT REPRESENTATION 

Our movement simulation is based entirely 
kinematics, without attempting to model the 
effects of physical forces on the skeleton. A 
large and useful movement subset for any figure 
can be completely specified kinematically; 
dynamic simulations could be added where 
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necessary. Velocities and accelera tions can be 
computed from changing joint angles. If the mass 
of a figure were taken into account, it would be 
possible to compute a parabolic trajectory to 
simula te a leap, for example. More difficult 
motions would require more detailed informa tion 
on the physica 1 properties of the figure, e. g . , 
the masses associated with each body segment. 
Thus the kinematic Simulation could by system
atically extended to generate ballistic movements. 

Human locomotion (and in general, 
vertebrate locomotion) is entirely the result of 
rotary motion about the joints (10). The apparent 
translation of the figure through space is the 
result of rotations about the many links of a complex 
kinematic chain. At times, anendpoint of the 
chain may be a fixed center of rotation; at other 
times, the same endpointmay be free-swinging. 
Centers of rotation may shift within the chain as 
well. In human walking, for example, the pelvis 
rotates about alternate hip joints as the figure 
progresses through stance phase, then swing 
phase, then stance again. The path traced out by 
the body's center of gravity is sinusoidal and 
not linear. A simple pre-order traversal of the 
transformation tree will not capture these funda
mental properties of creature motion unless some 
provision is made for altering centers of rotation 
as the figure moves. Ad hoc solutions based on 
the geometry of a particular figure are of course 
feasible (5,12). For animating arbitrary skele tons, 
however, a more genera 1 trea tmen t is required. 

3.1. TYPES OF ROTATION: BENDS AND PIVOTS 

Each body segment will have, let us say, 
an initial or proximal endpoint, and a dis tal 
endpoint. In some cases, there may be more than 
one distal endpoint. It may be convenient, for 
example, to define the initial endpoint of the 
pelvis as being midway between the hips. Either 
end of the pelvis then becomes a "dis ta I" end
point. Now at each node of the transformation 
tree we ca n spec ify a cen ter of ro ta tion a swell 
as an angle of rotation for each degree of freedom, 
giving several pos sible kinds of rota tion. 

We will say a "bend." is any rotation about 
a proximal endpoint. All non-supporting move
ments, such as swinging the arms or legs freely, 
turning the head, and so on, can be implemented 
as bends. A rotation abou t a distal endpoint we 
call a "pivot", such as the various rotations of the 
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pelvis about the hips as support alternates be
tween limbs during locomotion. 

Transformations can also be assigned to 
the top node, "body", for global (whole figure) 
movements. We can thus specify global bends and 
pivots as well. A global bend corresponds to a 
rotation of the entire body about its center of 
gravity (the body's "proximal endpoint"), as in 
diving or tumbling. In locomotion, the body ro
tates over various support points, and this can 
be implemented using appropriate global pivots 
about the heels, toes, and balls of the feet in 
addition to loca I bends and pivots. 

In general, non-support movements are 
implemented using bends, while support move
ments can be implemented using global pivots 
or a combination of local and global pivots. The 
process is analogous to shaping the movements 
of a flexible doll or mannikin. To execute a 
kneebend, for example, the body is pivoted 
forward about the ankles, backward at the knees, 
and forward at the hips. The result is that the 
feet remain stationary and the body appears to 
drop into a squat. If local bends alone were used, 
the body would appear to hang in space with the 
feet drawn upward, and additional downward 
translation would be nEcessary to correct this. 
For more involved support motions, such cor
rections may be non-linear and difficult to deduce. 
The use of global pivots eliminates ruch diffi
culties since the correct movements of the figure 
through space are automatically generated. 
Significantly, this means that we can simulate 
the interaction of arbitrary figures with their 
environment. Re liable da ta on the pos ition of 
the figure is generated automatically by the 
movement processor and is continuously available 
to motor control programs. This is essential for 
goal-directed simulation where the animation 
software is expected to genera te the pa th of a 
moving figure through a possibly complex 
environment. 

3.2. THE TRANSFORMATION TREE: PROGRAM 
ACCESS AND TRAVERSAL 

The skeleton transformation tree may be 
accessed in two ways. First, an interactive 
user interface is available to call up a skeleton 
and manipulate it "by hand", i.e., by entering 
keyboard commands to rota te various joints. 
Input may be redirected to disk so that long 
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sequences of movement commands ,nay be 
entered automatically. Second, motor control 
programs may generate movement commands. 
In either case, write access to the skeleton data 
base is restricted to calls to a Single movement 
primitive called "bend". Requests to bend 
specify, among other things, the joint to rotate, 
the joint to rotate about (proximal or distal end
point, called the "pivot" joint), and the angle 
of ro ta tion . 

Each call to bend invokes a partial tree 
traversal which begins with the rotating joint 
and continues until the leaves of the tree are 
visited. Whenever a pivot is requested (i. e. , 
the pivot joint is a distal endpoint of the ro
tating joint), the subtree whose root is the pivot 
joint is not traversed . Thus the pivot joint 
remains stationary, while the moving seC5ment 
(or the whole figure) rotates about it. 

Local coordinate axes and the current posi
tion of each joint are maintained explicitly in 
the symbol table. For each traversal, we com
pute the following transformation: translate to 
the current location of the pivot joint (proximal 
or distal), rotate about the given degree of 
freedom (axis), and trans la te back. The rota tion 
matrix provides for rotation about arbitrary axes (9). 
As each node is visited, the local coordinate 
axes and joint coordinates are transformed by 
this matrix and stored. Thus the data base 
always reflects the current location and orientation 
of all the body parts; skeleton movements are 
always with res pect to the current configuration; 
and bends, pivots, and global pivots may be 
requested in any order. 

4. CONCLUSION 

The skeleton anima tion s ys tem provid es 
the user with convenient access to articulated 
objects -- the skeleton software is entirely 
responsible for maintaining the integrity of the 
skeleton so that the user cannot input a command 
that would cause, say, the skeleton's arm to 
fall off. Moreover, motion is abstracted a t a 
higher level: the user can think of movemen t in 
terms of joints and body parts rather than 
primitive objects and transformations. 

In the long term we see the role of the 
compu ter a nima tor becoming more like tha t o f a 
director of cinema or the theater as we strive to 
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give a measure of autonomy to the figures and 
objects we simula te. The work described above 
constitutes the set of movement primitives for 
our skeleton animation system. We are committed 
to the implementation of goal-directed systems 
using these movement primitives. The resources 
of robotics and artificial intelligence thus be
come increasingly necessary tools. 

We have discussed the application of 
robotics control techniques to animation systems 
elsewhere (13). Ultimately, we are striving for 
a system which will accept "natural language" 
scripts as input to the animation controller, which 
coordinates the motion of predefined skeletons. 

Using the movement primitives described 
above, a set of hierarchically organized motor 
control programs, and a skeleton defined in our 
skeleton description language, we are able to 
generate realistic sequences of straight-ahead 
gait over level, unobstructed terrain. Each 
frame takes 2-3 seconss to compute on a VAX 
11/780. The internal buffer of our stroke-refresh 
display can store about 130 frames which we can 
then play back in realtime -- an enormous help 
in debugging the movement controller. Figure 4 
shows a typical display. Figure 5 shows a com
plete sequence of 88 frames played back with the 
"trace" fea ture on. With tracing turned off, 
sequences can be played back forward or in 
reverse; the figure appears to walk forward and 
at approximately normal speed. Figure 6 shows 
a more detailed skeleton in a scene displayed on 
a raster monitor using the ANTS animation 
language (3) and walk control data generated by 
the skeleton animation system. A figure com
posed of polyhedra or other volume elements 
could be controlled using the same da ta. The 
single frame was extracted from a sequence 
showing the skeleton walking across a plane 
with several objects in the background. 

The skeleton description language pro
vides the animator with a new tool for defining 
articula ted figures. Moreover, the movement 
primitives we have implemented (bends and 
pivots) enable the animation system to correctly 
generate the complex motions we take for granted 
in the rea 1 world. 
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FIGURE 4. Human figure in a typical frame 
generated by the walk controller. 

FIGURE 6 . Single frame from an anima ted se
quence displayed on a raster monitor, 
showing a more detailed skeleton 
controlled by data from the skeleton 
animation system . 
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FIGURE 5. Trace of 88 frames o f a wa lk 
sequence. 

FIGURE 7. Four views of a walking s ke le ton . 
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