An Object Editor for a Real Time Animation Processor

S.P. Ressler

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The object editor allows one to use the real time capabilities of an anima-
tion processor to create and/or modify graphic objects. These objects can sub-
sequently be used in other application programs. The editor enables the user to
change the definition of objects, which are being processed and displayed by the
animation processor, in an interactive manner. One is presented with a "rubber
solid", which is completely manipulable. The user is also given the option of
displaying duplicate objects, thus enabling two independent views of the current
object. Objects, or pieces thereof, which appear to be quite solid can be
stretched and/or squashed in real time.

The animation processor does hidden surface calculations in real time
while the object editor modifies the description of the object, resulting in a
dynamically changing image. This editor is not meant to be a production line
system for interactive object design, rather it is a research tool for exploring the

possibilities of interactive object manipulation.

1. Introduction

The function of the ~bject editor is to allow a user to
manipulate the description of an object while it is being
displayed. Display of the object is performed by the animation
processor (AP)[1]. The term object as used in this paper is a
collection of x,y,z coordinates which define a group of polygons
that can be manipulated and referred to as a single entity. An
object in space has a single location and orientation (attitude),
which are part of its data structure. The object editor as it
exists is not meant to be a production line design tool, rather it
is a research tool for exploring the pos:ibilities of real-time
interaction with computer generated objects.

2. Problems & Questions

In designing the interface through which a user is to
interact with the system some questions arose as to the nature
of that interaction, specifically as they relate to the usage of a
real time animation system. This particular system provided an
opportunity to explore and define some graphic tools which are
appropriate for a real time capability.

The AP system software enables one to assign and define
the functions of the joysticks, sliders, and buttons in a simple
and straightforward manner. The existence of firmware to
allow one to rotate and position the objects under the control of
these input devices was also part of the system software as well
an numerous Macros in the language which facilitated manipu-
lation of the data description of the objects.[2] The type of
questions therefore asked in the design of the object editor
were ones concerned with the high level user interaction with
the system. What kinds of physical to functional organization

of the input devices are most usable? How can one remember
which devices serve which functions? What kinds of visual to
functional mappings can be done with a real time system?
Assuming that real time systems will become more prevalent,
what kind of useful graphical tools can be defined which are
only possibie and practical on a real time system?

3. User Interaction

The user interacts with the system by using the joysticks,
buttons and sliders present on the AP (see figs 1 & 2). Many
of the operations used, have been multiplexed onto the buttons
located on the base of the joysticks. One button has a select
mode function which changes the functions of the other
buttons. Feedback for the current mode is seen immediately
on the graphics screen via blinking status indicators, and on the
terminal which presents auxiliary text information (see fig 3).
The two circular images on the terminal correspond to the two
Jjoysticks, as viewed from the top. The surrounding words are
labels which correspond to the buttons located on the joysticks.
The words are dynamic labels and as the functions of the but-
tons change so do the labels on the terminal.

The decision to have most of the functions on the buttons
was made because they arc very discrete controls, which make
them easy to use. The sliders which can also be used, provide
a means of quickly doing something, (i.e. positioning the
object) but they can get clumsy for accurate activities. One can
effectively use the buttons, to single step actions if desired
The speed at which the buttons affect things is controlled by a
slider. The use of a "speed" slider combined with the buttons

Graphics Interface '§2

Figure 1: Joystick with buttons

make these controls very usable, for most of the system’s func-
tions.

The user is given the choice of several modes which fol-
low a logical order, smaller operations to larger. Selecting one
or another mode affects the functions of the other buttons in a
very straightforward manner. The functions of the x,y,z buttons
change depending on the context of the mode but always serve
to affect the x,y,z dimensions independently. These particular
buttons cause an action to occur as lung as they are pressed and
stop the action when released. For example in point mode the
X,y,z buttons serve to move a single point (the current one).
In polygon mode the same buttons will move the current
polygon, which can be identified by hitting the show poly but-
ton. In volume scale mode the buttons act as scaling controls
and change the scale of the volume box in the three dimen-
sions. By keeping the idea of x,y,z symbols separate from the
specific function (movement or scaling), the user need only
remember which buttons are for x,y and z and will determine
the specific function by observing the current mode, from the
status indicators.

The joysticks are used to control the orientation of the
objects. One joystick controls the primary object and the other,
if desired, the duplicate. Since we are dealing with a real time
environment the need to precisely specify the orientation of the
object, is eliminated. One simply moves the joystick that is con-
trolling the orientation of the object, to the desired view. The
object can also be made to rotate continuously while other
operations are performed. Throughout the entire system an
effort has been made to provide the user with as much visual
feedback as possible. The system as a whole has many vari-
ables which the user has to deal with and this feedback is not a
luxury but a requirement.

4. System Capabilities

Most of the various capabilities of the system are
presented to the user in the form of several modes. These
modes are selected via the mode select buttons, which cycle

41

1]

LRI I 1]

menas)] EEjD]

-48 49 50 51 52 S3 S4 S5 56 57

Figure 2: Slider Board

one through the modes either forwards or backwards. The pos-
sible modes are: point, polygon, volume and addition. The
mechanism used to select or step through the data description
is via the stepping button. This button will step you along point
by point when in point mode, by polygons when in polygon
mode. It makes no sense to step along volumes so the stepping
button does nothing when in volume mode. If a capability
makes no sense, then the button will do nothing. Again the
symbolic idea of stepping is separate from the exact function of
what we are stepping through. If the system is in polygon
mode, thecopy button copies polygons. If it is in point mode,
the delete button deletes a point.

Feedback for the various modes comes in various forms.
When in point mode a blinking dot visually appears at the point
where one is currently located in the data description. The
current polygon can be identified by pushing a button which
causes it to blink. Addition mode is a little different then the
others. It adds pieces to the object, rather then modifying exist-
ing pieces. This is different from copying because completely
new points are added. When in addition mode four of the joys-
tick buttons get redefined to enable the addition of a dot, vec-
tor, rectangle, or cube.

One interesting aspect of the system is the graphical
interaction while the system is in volume mode. A box is
present on the graphics screen which is used as a device to
select areas or volumes of an object which are not necessarily
contiguous in the data structure but which are visually related.
The desired portion of an object to be moved or scaled can be
selected by moving the volume selection box. All points which
appear inside the volume box will become activated. After the
desired points have been selected they can be moved or scaled.

Graphics Interface '82

The scaling is done so the points move away from the center of
the box. This particular graphical tool is most appropriate for a
real time system because the movement of the volume selec-
tion box around the desired points would be a clumsy task if
one could not move the box and rotate the object quickly. It is
also a quite intuitive and visual way to manipulate objects and
functions in a manner analogous to the classic rubber band line,
except in this case one can think of the area being manipulated
as a rubber solid. The user is given the capability of playing with
an object by stretching and squashing all of its parts until the
object looks visually appealing. This technique should be quite
useful for any real time system that needs a visual way of
selecting and manipulating areas of points.

Animation Processor %0 Object Editor

Slider Functions

47 ... save obj into file

48 ... x y z speed

51 = S4& active polygon color
$SS = 58 background color

Mode: araa Select
Sign: ¢
Entar file name:

Show Poly Y
oo \ 7 A \
Copy / \Del X 7/ \7
R \ / ——— \
| / \ | 1 / 1
Step| | | Sig Modepos | h p— ’l Modeneg
\ / \ /
\ / N e /7

Joystick 1 Joystick 2

Figure 3: Information on Terminal

S. Implementation Environinent

The object editor exists as one part of a complete anima-
tion system currently under development. The AP is run
together with an LSI 11/23 and share a common memory and
bus. The system uses a Micropolis winchester disk for storage
and runs stand alone. The AP software is primarily an anima-
tion language which is written in C [3] under UNIXt V7, using
YACC and Lex. This animation processor language written by
Carl Christensen, was used to write the object editor. The edi-
tor also functioned as a a large scale test bed for various aspects
of the language.

6. Getting Hard Copy

Another facility in the object editor is the ability to take a
"snapshot” for creating Unix type plot files. The images created
by this method are simple one color line drawings. Moving one
of the sliders causes the system to ask for a file name. The
display list of the animation processor is then placed into that
file. To create a plot file say toplot file and a file will be created
with the name you gave appended with a .f . This is a Unix
device independent plot file and can be used to produce plots
on any of the devices supported by plot.

tUnix is a Trademark of Bell Laboratories.

223

7. Conclusion

A system for the graphics manipulat.on of objects has
been demonstrated. The use of a real time system for design
presents one with tremendous possibilities for a more creative
form of design. A user need not be as concerned with exactly
the numbers to type in to get some graphic form to look just
right. You simply twist and turn some devices until it looks
good. There is however a great need for defining how the user
should interact with such a system in ways which prove to be
useful. One such tool, a volume manipulation device, has been
demonstrated and should be applicable to any real time, graph-
ics system. The usefulness of this device as well as the system
is based solely on the author’s opinion and has yet to be tested
in a productions sort of environment. Many more such tools
are needed until a system which is friendly, and powerful will
exist.

8. Acknowledgements

Thanks to Carl Christensen who wrote the animation pro-
cessor language and was always willing to answer sticky ques-
tions and add needed features. Much thanks also to David
Baraff who wrote the hidden line routines which were used in
the Appendix.

References

[1] H.G. Alles, W.C. Fischer, An Animation Processor for
Action Oriented Three Dimensional Color Graphics to be
published.

[2] C. Christensen An Animation Processor Language to be
published

[3]1 Kernighan and Ritchie, The C Programming Language,
Prentice Hall, 1978.

Graphics Interface ‘82

Mode: Volume Select Mode: Volume Points Scale
Feedback Volume cube blinks blue. Feedback Line above open square in status indicators
Description: Moves the volume cube around to enable the blinks.
selection of any point inside the cube, for Description: Points inside the volume cube are activated for
further manipulation, in volume pts move or scaling.
volume pts scal A oo :
P < Mide N Usage: The x,y,z buttons on the joystick scale all points
Usage: The x,y,z buttons on the joystick move the inside the volume cube in the x,y,z directions.
volume select{on c1‘1be in the x,y,z'dlrecnons. The scaling is always towards or away from the
The speed slider is active, and sign affects center of the volume cube. The speed slider is
movement direction. active, and sign affects the direction of the scal-
ing. All points will scale regardless of whether
or not only part of a polygon is in the volume
Mode: Volume Scale cube.
Feedback Volume cube blinks green.
Description: Scales the volume cube so more flexible volume
can be selected.
Usage: The x,y,z buttons on the joystick scale the
volume selection cube in the x,y,z directions.
The speed slider is active, and sign affects
movement direction.
@ before after
Mode: Addition
— acile Feedback Dot, vector, rectangle and cube in status indica-
tors blinks. Terminal display the dot, vector,
) rectangle and cube button.
Mode; ¥glume Eqints Movcmen.t Description: Allows the addition of a dot, vector, rectangle
Feedback Open square in status indicators blinks. or cube to the object description.
Description: Points inside the volume cube are activated for Usage: The buttons on joystick 1 get redefined when
movement. this mode is entered, to be dot, vector, rectan-
Usage: The x,y,z buttons on the joystick move all gle or cube addition buttons. Press one of these
points inside the volume cube in the x,y,z buttons once and the corresponding shape will
directions. The speed slider is active, and sign appear at the center of the object (location
affects movement direction. All points will 0,0,0). Enter one of the movement modes to
move regardless of whether or not only part of subsequently move this new shape to its desired
a polygon is in the volume cube. location.
before after before after cube agddition

Graphics Interface ‘82

Mode:
Feedback

Description:

Usage:

Appendix: Mode Descriptions

Point

Blinking dot in the status indicators. Blinking
dot at the current point.

Enables the manipulation of any single point in
the object being edited.

The x,y,z buttons on the joystick move the
current point, in the x,y,z directions. The
speed slider affects the speed of x,y,z move-
ment. The sign button is a toggle between plus
and minus. Point movement is in the sign direc-
tion for each axis. The sign is displayed in the
status indicators and on the terminal. The copy
and delete buttons will copy and delete a single
point. The point is selected via the step button
which will step forwards if the sign is plus and
backwards if the sign is minus. Point stepping
will "wrap around" through the entire object
description.

original

Mode:
Feedback

Description:

Usage:

Polygon

Blinking solid square in status indicators. Show
poly button blinks current polygon.

Enables the manipulation of any polygon in the
object being edited.

The x,y,z buttons on the joystick move the
current polygon, in the x,y,z directions. The
speed slider is active, and sign affects move-
ment direction. The copy and delete buttons will
copy and delete a single polygon. The current
polygon is selected via the step button which
will step through the object description a
polygon at a time in the sign direction. The
show poly button is a toggle to blink and
unblink the current polygon. (Note: Make sure
to unblink the polygon before moving on to
another polygon, as color information can get
lost)

copy

delete

original

move

Graphics Interface '82

copy

delete

