295

Constructing Graphical User Interfaces By Example
La Création des Interfaces Graphiques Par Exemple v/‘"

Henry Lieberman

Artificial Intelligence Laboratory
and Laboratory for Computer Science
Massachusetts Institute of Technology

Tinker is an experimental programming environment for Lisp which
makes use of graphics in two novel ways: First, a high resolution
display and a mouse allows Tinker to replace most typed
commands with menu selection operations, and use multiple
windows to display different viewpoints on a developing program
simultaneously. Second, Tinker uses an example-oriented
approach to programming which is especially suited to writing
graphics programs. Tinker allows the implementor to preview the
graphic output of a program as the program is being written, by
examining example pictures illustrating the effects «f each
graphics command. As each request for user input is introduced,
the implementor supplies example input. Tinker’s unique approach
to the design of interactive graphical user interfaces is illustrated
by showing how to write a portion of a VisiCalc-like constraint
system. :

Tinker est un systéme expérimental de programmation en language
Lisp utilisant des graphiques de deux nouvelles manieres.
Premiérement, au lieu de taper des directives, un &cran de haute
resolution et une “"souris” permettent au Tinker d’employer la
technique de sélection de menu et employer plusieurs fenétr:
pour afficher a I’écran des differents points de vue simultanément
en cours. Deuxiémement, Tinker utilise en programmation une
approche orienteé vers des exemples specialement approprieés
pour &crire les programmes graphiques. Tinker permet au
programmeur d’observer les affiches graphiqu-. tout en &crivant
des programmes. A chaque demande de 'utilisateur, le
programmeur presente un exemple des donnees en entrfe. Ce
papier presente un exemple de programmation avec Tinker; la
création d'une petite partie d’un systéme orienté vers des
contraintes, semblable 3 VisiCale

1. VisiCalc dynamically enforces constraints between
variables

Currently, one of the most successful programs in the
microcomputer community is Software Arts, Inc's VisiCale [2].
VisiCalc (“visible calculator”) presents the user with a two-
dimensional grid of boxes and each box may contain either a
concrete value like a number or text string, or an expression. The
expression computes the value of the box in terms of the contents of
other boxes and arithmetic or other operations. For example, & box
€1 might be constrained to be the sum of two other boxes Al and B1.
The user may then edit values in the boxes, and when a value is
changed, VisiCalc recomputes the values of all boxes which depend
upon the changed box, to maintain the constraint. This is a
powerful feature, as it allows the user to anticipate the effects of
changes in a complex system of relationships between variables, by
asking the system what would happen if certain values were
changed.

2. Tinker exploits some of the same user interface
principles as VisiCalc

Why has VisiCalc been so successful in the software market? Part of
the reason for the tremendous success of VisiCalc is to be found in
certain characteristics of the user interface that make the system easy
to learn and use. VisiCalc's grid of boxes continuously provides a
display of the user’s current state, so the user can always answer the
question "Where am 17" in the midst of solving a problem.

Since VisiCalc displays the value of a symbolic expression stored in a
box, the user can verify that a symbolic expression had the correct
result in the particular case in which it is being used. VisiCalc thus
allows a kind of programming with examples, which contributes to its
ease of use, since people often find it easier to think about specific
examples than to reason about the properties of abstract expressions.

Furthermore, as soon as any change is made to a box, any boxes
affected by the change are immediately redisplayed to reflect the
change. Thus, the user gets immediate graphical feedback on the
result of an action. The user can verify right away that the action
had the intended result, by checking that the new “current state"
conforms to expectations. If an error is made, it can be corrected
on the spot, before further actions are taken.

These principles of user interface design:

Always display the current state of a process.

Use concrete values to show examples of symbolic expressions.

Provide immediate graphical feedback to the user of the result of
each action.

which make VisiCalc so congenial to use can profitably be applied to
environments for general programming as well.

Tinker is an environment for writing and debugging programs in
Lisp which uses these principles to help make programming easier
and more reliable. Tinker encourages programming using an
example-based strategy. When you want to define a new function
using Tinker, you present an example of the kind of input data you
would like the function to accept, and work out the steps of the

Graphics Interface ‘82

procedure on the example data. Each time a step of the procedure is
performed, Tinker does two things. First, Tinker displays the result
of the step in the example case supplied. Tinker also remembers the
code which was responsible for each step. When the desired result
for the function has been computed, Tinker abstracts a program for
the general case from the examples demonstrated.

Tinker's display always tracks the “current state” of a procedure in
the process of being defined, since it shows the result of each step in
the example situation as that step is introduced into the program.
Showing the intermediate states the program goes through in typical
examples can make it much easier for the programmer to decide
what the next step in the program should be. Every Lisp expression
introduced into the program is accompanied by concrete values
which express the result of evaluating that expression in specific
situations. Looking at concrete examples often reflects the behavior
of the procedure more accurately than trying to infer the general
behavior of the program from looking at the code alone. Every
action taken by the programmer is reflected immediately in updates
to the display, showing both values computed by that action and side
effects such as graphical output caused by that action. Seeing the
effect of an action immediately makes it easier to verify that the
action was behaving properly, and gives the opportunity to change
that action while the matter is still fresh in the programmer's mind.

3. Tinker is especially helpful in designing programs
with interactive graphical interfaces

The remainder of this paper will show an example of programming
with Tinker. Appropriately enough, we will illustrate Tinker's
methodology by demonstrating how to program a small portion of a
VisiCalc-like constraint system. Tinker's example-based
programming style should prove especially important in constructing
interactive systems which adhere to the user interface principles we
discussed above.

What do we mean by an “example” of an interactive system? When
programming an interactive system with Tinker, the programmer is
supplied with a window on the screen which represents the user’s view
of the system. This window will show exactly what a hypothetical
user might see during a typical session with the completed system.
Whenever code is written to display graphic output to the user,
samples of that output will appear. Whenever code is written to
request input from the user, the implementor is requested to supply
sample input to the program. Since the implementor is required to
Play the role of the user while developing the program, the
implementor can more easily verify that the user interface “feels
right”.

4. A simplified problem: enforcing a sum constraint

We will vastly simplify the problem in order to give a crisp
illustration of the basic ideas without getting too bogged down in
details in such a short paper. Instead of implementing an entire
VisiCalc system, we will implement a much less ambitious project.
We will display on the screen a set of three boxes, which the user
can edit to contain numbers. The boxes might represent the fields of
some office form, if the application were an office information

system. Our program will maintain a sum constraint, so that the
value in the third box is always the sum of the other tvo. If the user
changes a number in a box by editing, our system will recompute the
total to keep the constraint satisfied.

Although our example project is simple, it illustrates a number of
important concepts in the design of interactive user interface
programs. Many user interface programs are characterized by a top
level command loop, which interprets commands input by the user.
Several different methods of obtaining input from the user for
arguments to commands may be used, including typing and selection
with a pointing device such as the mouse. Typically, initialization
must be performed before the command loop is started and cleanup
must follow exit from the command loop. Commands which alter
the state of objects being displayed on the screen must redisplay
their state after each iteration of the command loop, so that the user
always sees the “current state” of the environment.

We will define our system to Tinker by working out an example
session with our proposed system. Part of Tinker's display layout is
always one window which shows the user’s-eye view of the program
being written. If we write code to display something on the screen,
an example of what the display should look like will appear in that
window. If we write code requesting input from the user, we will
provide example input in that window, either by typing or mouse
actions. The examples we will use will demonstrate displaying the
initial screen layout, interpreting commands from the user, and
displaying state information on the screen.

Our system will be implemented in a top-down fashion. We will
start with the top level functions, and when an example which
motivates the need for a new subroutine is encountered, we will
introduce lower level subroutines.

S. We display a set of boxes on the screen to
initialize the system

In Tinker, a function is defined by first presenting an example.
Suppose we decide that our top level function is to be called ADDER.
The ADOER function is to take one argument, a list of names for the
boxes to be displayed on the screen. Had we already defined the
ADDER function, we could test it out creating three boxes named
PRICE, TAX, and TOTAL by evaluating Lisp code like this: (ADDER
*(PRICE TAX TOTAL)). Instead, we give this same code to Tinker as a
new example for the function ADDER.

At the upper left corner of the screen, Tinker always displays a
menu of commands. We start off the new example by choosing the
menu operation named Typein, but DON'T EVAL. At the bottom of
the screen, Tinker prompts us to type in some code, and we respond
with the Lisp expression (ADDER '(PRICE TAX TOTAL)). Then, we
select the menu operation NEW EXAMPLE for function to indicate that
this is the first example for the function ADDER. We use the
command Give something a NAME to name the argument to ADDER
BOX-NAMES,

The screen now looks like this:

Graphics Interface ‘82

297

Tinker EDIT ment
TYPEIN and EVAL (DEFUN HISTORY ())
W b * Al
EYWPEE;NAM;:ED'OONPT'UE:‘:J;R (DEFINE-EXANPLES (QUOTE HIST |
] Y
Give something a NAME | %" 'U

Fill in an ARGUMENT
EVALUATE something
Make a CONDITIONAL
Edit TEXT
Edit DEFINITION
Step BACK
UNFOLD something
COPY something
DELETE something
UNDELETE thing deleted
UNDO the last command
LEAVE Tinker
RETURN a value

Defining (ADDER (QUOTE (PRICE TAX TOTAL))):
Result: (PRICE TAX TOTAL), Code: BOX-NAMES

[ZARCS TLISP Fobrev Electric Shift

User’s Vieu

a
Type some code:

(ADDER °(PRICE TAX TOTAL))

Please type a name
BOX-NANMES

In the center of the screen is the snapshot window, whose title line
informs us that the example we're currently defining is (ADDER
'(PRICE TAX TOTAL)). Inside the snapshot window are objects which
represent a piece of Lisp code, and its associated value in the current
example. We see an object representing the argument to ADDER,
whose RESULT part is (PRICE TAX TOTAL), and whose CODE part is a
variable called Box-NAMES,

The first action we'd like the ADDER function ‘o take is to display
some boxes on the screen, using the given names as labels for the
boxes. We assume that there has already been defined a function
named CREATE-BOXES which can create and display boxes on the
screen, given a list of names, and a specification of a rectangle on
the screen. The rectangle is constructed by using the mouse to
indicate two points on the screen, which fix the upper right and
lower left corners of the boxes. We can make a design choice
whether to include the size of the boxes as a constant in the
program, or let the user specify the size of the boxes when the
program is run.

Now, we would like to supply the CREATE-BOXES function with the
example list (PRICE TAX TOTAL) so it can display the boxes on the
screen. But we don't mean that the ADDER program should always
use the specific list (PRICE TAX TOTAL), but rather that this list is Jjust
to be considered a place-holder for whatever fist is given as the
argument to ADDER. So we would like the CREATE-BOXES function to
use the value of the argument variable, the list (PRICE TAX TOTAL),
when displaying the boxes, but the name of the argument variable
BOX-NAMES should appear in the code for the call to CREATE-BOXES.
Tinker's rules for constructing expressions say that you can use the
RESULT part of something displayed in the snapshot window as an
argument to some other function, and the cooe part will appear in
the function being defined.

We select the operations Fi11 1in an ARGUMENT and EVALUATE
something to complete the call to CREATE-BOXES. The boxes appear
on the screen, labelled with their names, and a list of objects
representing the boxes on the screen is returned. The screen shows
us an example of what the completed system might look like to the
user upon startup.

Tinker EDIT menu
TYPEIN and EVAL
TYPEIN, but DON'T EVAL
INEW EXAMPLE for function| 3:5;’5"!-()(""?!.!‘ (QUOTE HIST | U
Give something a NAME
Fill in an ARGUMENT
x [EVALUATE something
Make a CONDITIONAL
Edit TEXT
Edit DEFINITION 1A%
Step BACK L]
UNFOLD something
COPY something
DELETE something
UNDELETE thing deleted
UNDO the last command
LEAVE Tinker

(DEFUN HISTORY ())

PRICE

F0TAL

FACS TLISP Aobrev ETectric Shift i
RETURN a value User’s View
IDnHm'n ADDER (QUOTE (PRICE TAX TOTAL))):
Result: (PRICE TAX TOTAL), Code: BOX-NAMES

Result: #,(A BOXES ("PRICE" "TAX" "TOTAL")), Code: (CREATE-BOXES BOX-NAMES)

Type some code:
(CREATE-BOXES)
L]

HACS (LTSP Abbrev Electric Shift-Tock) History Font: W (HEDFRE) ¢

6. Wé define an initialization function by recursively
presenting a new example

The next step we will take is to define an auxiliary function to
perform initialization. Tinker has the ability to create new
subroutines by recursively presenting new examples. We can construct
a call to a subroutine which has not yet been written, and use this as
8 new example to define the subroutine. We'll call our initialization
function START-ADDER, and pass it the list of boxes as an argument,
which will be named Boxes. We now choose the menu operation NEW
EXAMPLE for function.

We move from working on the definition of ADDER to working on
the definition of START-ADDER. When the definition of START-ADDER
has been complete, Tinker will return us to defining ADDER.

The first action taken by START-ADDER will be to initialize the boxes
with “empty” or "unknown" values. The user will later fill in values
by editing the contents of the boxes. An already-existing procedure
named CREATE-BOXES takes a list of boxes and a list of contents and
writes the contents into the boxes, displaying the contents in the
boxes on the screen. Needing to represent empty boxes in some
way, we adopt the convention that a box containing a question mark
will be considered to have no value.

Graphics Interface '82

The next picture shows the screen at this point, defining the
function START-ADDER, which so far has just written question marks
into the boxes to initialize them.

Tinker EDIT ment
TYPEIN and EVAU (DEFUN HISTORY ())
TYPEIN, but DON'T EVAL
NEW EXAMPLE for function| (:ETINE-EKRHFLES (QUOTE HIST |
Give something a NAME |0%" 'Y
Fill in an ARGUMENT
EVALUATE something
Make a CONDITIONAL

PRICE

Edit TEXT
Edit DEFINITION Tax
Step BACK @

UNFOLD something
COPY something
DELETE something
UNDELETE thing deleted
UNDO the last command

ToTAL
LEAVE Tinker [ZFAC:

RETURN a value User’s view

Definin: STAHT-ADDER (QUOTE # (A BOXES ("PHICE~ "TAX" “TOTAL")))):
Result: # (A BOXES ("TGTAL"™ “PRICE" “TA)(")), Code: BOXES
Result: (7 7 ?7), Code: (WRITE-BOXES BOXES (QUOTE (7 7 7)))

TLISP Abbrev Electric Shift

Type something to evaluate:
(WRITE-BOXES BOXES “(? ? 7))
L

HACS TLTSP Fbbrev ETectric Shilt-Tock) Wistory Font: W (REDFRBY &

7. The implementor plays the role of the user in
editing the boxes

The main body of the our program will consist of a command logp, in
the style common to many interactive programs such as editors [9],
[3} The program will first accept input from the user, then update
the data structures, redisplay the new state, and repeat this loop
continually until the user decides to signal an exit from the program.

Since Tinker defines functions by using examples, we must provide
examples of the user's input to the program. In our case, that means
whenever code which asks the user to edit boxes is introduced into
the program, Tinker asks us to edit the example boxes we have
supplied. The result of that editing operation supplies the example
input. Not only can we see an example of how the system will
appear from the user's viewpoint, but we also get to use the system
by providing example input and working out the steps showing how
the system will respond to the example input. Tinker's ability to let
the implementor preview the user interface as the program is being
written should sharpen the implementor's ability to empathize with
the needs of the user.

We call the function EDIT-BOXES, which asks us to choose one of the
three boxes to edit by pointing to the desired box with the mouse
and pressing a button. The user can use a text editor [11] to change
the text in the box. When the user signals that the editing has been
completed, the new state of the boxes is returned.

The next two pictures show choosing a box to edit with the mouse,
and replacing a value in one of the boxes.

[7] 1608
@

PRICE PRICE

. o

TAX S iTAN

‘a

TOTAL TOTAL

User's View User's View

We have changed the value of the top box labelled PRICE to 100. The
value of the EDIT-BOXES operation is a list of the values of the boxes,
two of which still have unknown values, so the result is (100 ? ?).
We shall refer to this as the STATE of the boxes.

8. The command loop enforces the sum constraint
and updates the boxes

We now construct the function which is going to be the command
loop of the system, named ADDER-LOOP. ADDER-LOOP takes as argument
the list of boxes, along with the current state as returned by EDIT-
BOXES.

The command loop now must take two actions: It must examine the
state and enforce the sum constraint between the values in the
boxes, and it must new state back into the boxes and update the
display.

We invent a new state transition subroutine which we will call
ADDER-CONSTRAIN, whose job it is to compute a new state given the
current state of the boxes. Computing the new state may need to be
done in various ways, depending on the state itself. We will have to
present several examples for the function ADDER-CONSTRAIN, not just
one. Each example will illustrate an important case for the resulting
function, whose code will contain a conditional that will distinguish
between the various cases.

In this example, we have only filled in one value of the three boxes,
so as yet we do not have enough information to compute a sum.
This situation will change in subsequent examples for ADDER-
CONSTRAIN. But for now, the new state after enforcing the constraint
is identical to the old state, so we just return the old state as the
value for ADDER-CONSTRAIN. We point to the state variable, and
indicate that this is the value of the function by using the menu
operation RETURN a vaiue,

This completes a definition of ADDER-CONSTRAIN, and the code for
ADDER-CONSTRAIN appears in the function definition window at the top
center of the screen. Tinker returns us to the midst of the
definition of the function ADDER-LOOP, where we left off.

Graphics Interface '82

Tinker £EDIT menu
TYPEIN and EVAL
TYPEIN, but DON'T EVAL
NEW EXAMPLE for f
Give something a NAME
Fill in an ARGUMENT
EVALUATE something
Make a COMDITIONAL
Edit TEXT

(DEFUN HISTORY ())

(DEFINE-EXANPLES (QUOTE HIST |
RY))

(DEFUN RDDER-CONSTRAIN (STAT |
STATE)

DEFINE-EXANPLES T D
Edit DEFINITION ék—cums‘.lnnmﬂ(-auu:gm(’xgu(;nv]
Step BACK)))) (QUOTE (188 7 7)))
UNFOLD something o
COPY something
DELETE something
UNDELETE thing deleted
UNDO the last command
LEAVE Tinker
[RETURN a vaiud

HACS TCISP Abbrev Electric Bhift

ser’s View
oA,y L1 _lser’s view
Definin: ADDEHR-LOOP (QUOTE **))

Result: ilﬂo 7 7), Code: STATE

Result: #,(A BOXES (“TOTAL" “TAX" “PRICE")), Code: BOXES
Result: (100 7 7), Code: (ADDER-CONSTRAIN STATE)

STATE

Type some code:

(ADDER-CUNSTRAIN STATE)

[FFRCS TCISP Abbrev Electric ShiTi-Tock) Wratery Formir W TFEDFRET 7

So far, the definition of ADDER-CONSTRAIN is quite trivial, but that
situation will soon be rectified as we provide additional examples
for that function. The next action that needs to be taken is to write
the new state returned by ADDER-CONSTRAIN into the boxes to update

the display. This is accomplished by calling the function WRITE-
BOXES.

9. Another iteration of the command loop shows

299

Now, the state returned by EDIT-BOXES is the list (100 5 ?). The
values of the first two boxes are now known, but the value of the
last box is still unknown. Our task it to compute it automatically to
maintain the sum constraint, so our goal should be to have the sum
105 appear in the T0TAL box. We do so by presenting another
example for the function ADDER-CONSTRAIN, this time with the list (100
5 ?). The job of ADBER-CONSTRAIN in this case is to compute the sum
of the first two values, and return a list with the sum as the third
value. We put together the list (100 5 105), which was produced by
the code (LIST (FIRST STATE) (SECOND STATE) (+ (FIRST STATE)
(SECOND STATE))), and return it as the value for ADDER-CONSTRAIN,

Tinker EDIT mend

TYPEIN and EVAL (DEFUNM HISTORY ())

TYPEIN, but DON'T EVAL

NEW EXAMPLE for function|{REFINE-EXANPLES (QUOTE WIST)

Give something a NAME
Fill in an ARGUMENT

(DEFUN ADDER-CONSTRAIN (STAT |
EVALUATE something)

Make a CONDITIONAL sTATE)
Edit TEXT (DEFINE-EXAMPLES (DUOTE (RDD |
Edit DEFINITION ER-CONSTRAIN (QUOTE (188 7 7 |
Step BACK)))) (QUOTE (180 7 7)))

UNFOLD something
COPY something
DELETE something
UNDELETE thing deleted
UNDO the last command
LEAVE Tinker

[RETURN a valud X

Defining (ADDEH -CONSTTAIN (QUOTE {106 5 7110
Result: (100 5 7), Code: STATE

Result: (100 5 105), Code: (LIST (FIRST STATE) (SECOND STATE) ...)

[ZRATS TUTSP Wbbrev Eleciric ShiTi|
User' s iew

(RODER-~CONSTRAIN)

Type something to evaluate:

(LIST (FIRST STATE) (SECOND STATE) (+ (FIRST STATE) (SECOND STRATE)))

computing a sum

After having completed one cycle of the command loop, Tinker
must be told to repeat the loop. Again, we use the function EDIT-
BOXES to change the contents of one of the boxes. In this case, we
choose the middle box, labelled Tax, with the mouse, and change its
contents to be s.

Tinker EDIT mem
VPEIN and EVAL

(DEFUN HISTORY ())

NJVZFEE;(&I:::EDIO:'T':::;ILOH a:s:}NE—EKHHPLEE (QUOTE HIST)

Give something a NAME
Fill in an ARGUMENT
EVALUATE something
Make a CONDITIONAL

(DEFUN HDDER-CONSTRAIN (STAT 1
)
STATE)

Edit TEXT 4
(DEFINE-EXANPLES (QUOTE (ADD 1
Edit DEFINITION ER-CONSTRAIN (QUOTE (188 7 71
Step BACK)))) (QUOTE (188 7 7)))

UNFOLD something
COPY something
DELETE something
UNDELETE thing deleted
UNDO the last command
LEAVE Tinker
RETURN a value
Defining (ADDEFR-LOOP (QUOTE **) \ii L
Result: (100 7 7), Code: STATE
Result: #,(A BOXES (“TOTAL" “TAX" “PRICE")), Code: BOXES
Result: (100 ? 7), Code: (WRITE-BOXES BOXES (ADDER-CONSTRAIN STATE))
Result: (100 S ?7), Code: (EDIT-BOXES BOXES)

HACS (LISP Abbrev Electric ShilTt
User’s View

PRCS TUTSP Rbbrev Electric ShiTt-Tock] Wistory Fonti A TRCDFREY

10. Two examples for the same function introduce
conditional definitions

Now, we have two examples for the function ADDER-CONSTRAIN.
Whenever Tinker has two completed definitions for the same
function, it must have some way of distinguishing between the two
cases. Tinker assumes that since the definitions for the two examples
are different, the intention of the programmer was to create a
conditional definition, with each example representing an
equivalence class of arguments to the function. What Tinker now
needs to know is a predicate that divides the equivalence classes, so
the function can decide to which equivalence class a particular set
of arguments belongs.

In keeping with Tinker's example-oriented style, the predicate for
the conditional is also defined by example. Tinker presents to us two
examples simultaneously, one showing each situation. Tinker
replaces the usual snapshot window in the center with two snapshot
windows, the top one in this case displaying the situation where the

Graphics Interface '82

STATE is (100 ? ?7), the bottom one showing STATE as (100 5 7). Code
constructed using the menu operations and typing will appear in
both windows simultaneously, but might evaluate differently in the
two windows, due to the difference in the variable environments.
Our goal is to produce a predicate that yields true in the top
window, and false in the bottom window. To distinguish between
the two cases, we will say that since the top window has more than
one unknown value, there is not enough information to compute
the sum. We will count the number of question marks indicating
unknown values and see if the count is greater than one.

nker EDIT menu

PEIN and (DEFUN HISTORY ())
u!Tv\J E)I(AN?::E Yor 'm:'c‘::;n L:s;;nt-sxnnnis (QUOTE HIST | TocH
Give something a NAME
Fill in an (DEFUN RAIN (STAT | lPr1CE
EVALUATE somllhlng) m
Make a CONDITIONAL STATE)
Edit TEXT DEF INE-EXANPY TE (RADD 1
Edit DEFINITION éascznglzmn tggn;uu?lz (1" 1AX
Step BACK)))) (QUOTE (188 7 7))) g8
UNFOLD something
COPY something
DELETE something rorAL

UNDELETE thing deleted
UNDO the last command

LEAVE Tinker
RETURN a value
Predicate TRUE for: flesuit: (100 ? ?), Code: STATE
Result: (100 7 7), Code: STATE
Result: T, Code: (> (HOW-MANY (QUOTE 7) STATE) 1)

HACS (LTSP Fbbrev Electric Shift

User’s View
—

Predicate FALSE for: Result: (100 5
Result: (100 5 7), Code: STATE
Result: NIL, Code: (> (HOW-MANY (QUOTE ?) STATE) 1)

), Code: (LIST (FIRST STATE))

Ngo;ndug I distinguish between
nd
(LIST (FIRSY STATE) (SECOND STATE) (+ (FIK3T STATE) (SECOND STATE)))?

Type something to evaluate:
(> (HOW-MANY °? STATE) 1)

HACS (LISP FAbbrev Electric BhifTt-Tock) Wistory Font. A (REDFRBT ¢
Point pushed

User’s View

This completes the definition of ADDER-CONSTRAIN, and Tinker writes
the following code for us.

(DEFUN ADDER-CONSTRAIN (STATE)
(IF (> (HOW-MANY '? STATE) 1)
STATE
(LIST (FIRSY STATE)
(SECOND STATE)
(+ (FIRST STATE) (SECOND STATE)))))

We could augment this definition further by supplying additional
examples, such as computing either the PRICE or TAX from the other
by subtracting from a known ToTAL. In this way Tinker allows a
programmer to incrementally add new expertise to a program by
supplying new examples that illustrate use of the new feature. At
each point, a partial definition is available which captures all the
knowledge put in so far.

i1l. We must show Tinker how to exit the command
loop

We can't forget that there has to be some way of ending the loop.

We can do this by performing another iteration of ADDER-LOOP, but
this time instead of editing a box, we will hit a special key which
says we want to stop editing. This key causes the EDIT-BOXES
function to return the symbol QuiT instead of the usual list of
contents of the boxes.

This constitutes another example for the function ADDER-LOOP, in
which it just returns, rather than computing a new state and iterating
as before. Now the situation resembles the one for ADDER-CONSTRAIN
earlier. We have two examples for the function ADDER-LOOP and
must supply a predicate to distinguish between them. The predicate
sees whether the STATE variable is equal to the symbol quir,
indicating an exit from the loop.

Graphics Interface '82

Tinker EDIT menu DEFUN ADDER-CONGTRAIN (STAT 1
TYPEIN and EVAL E)
TYPEIN, but DON'T EVAL
NEW EXAMPLE for function|® -
Give something a NAME STHTE
Fill in an ARGUMENT (LIBY (FIRSY STATE)
EVALUATE something (SECOND STATE)
Make a CONDITIONAL [, (e (FIRGT STAT 1
Edit TEXT
Edit DEFINITION TE)N)
Step BACK
UNFOLD something L
COPY something
DELETE something
UNDELETE thing deleted
UNDO the last command
LEAVE Tinker

AACS TLISP ETectric ShiTti-Tock
X _[RETURN a valud ser’s View & -
[Predioate TAUE for Aemoi3 T BoTEE =T s Vi~ |
Predicate TRUE for: Hesuit: #.(A BOXES **), Code: BOXES
T d ATE

Result: QUIT, Code: ST
Result: #, (A BOXES ("PRICE" "TAX" “TOTAL")), Code: BOXES
Result: T, Code: (EQUAL STATE (QUOTE QUIT))

(IF (> (HOW-MANY *? STAT |

(BECOND STA |

Predicate FALSE for: Hesult. 7, N
Result: (100 S 7), Code: STATE

Result: #,(A BOXES ("PRICE™ "TAX" “TOTAL")), Code: BOXES
Result: NIL, Code: (EQUAL STATE (QUOTE QUIT))

How do I distinguish betueen

BOXES

an

(THEN (WRITE-BOXES BOXES (ADDER-CONSTRAIN STATE))
(RDDER-LOOP (EDIT-BOXES BOXES) BOXES))?
Type something to evaluate:

(EQUAL STATE “QuUIT)

L

PRACS (LTEr ETeciric ShiTt-Tock) History Forti W TREDFTE) &

1 ckésomethinaut ovre turnvassthewoa i yemo
03703782 Ul:41:¢7 Henry USER:

This yields the definition for ADDER-LOOP below.

(DEFUN ADDER-LOOP (STATE BOYES)
(IF (EQUAL 'QUIT STATE)
BOXES
(PROGN
(WRITE-BOXES BOXES (ADDER-CONSTRAIN STATE))
(ADDER-LOOP (EDIT-BOXES BOXES) BOXES))))

Finally, as a cleanup step, we write code that uses the function
DISAPPEAR to cause the boxes to be removed from the screen. READ-
BOXES is used to return a list containing the final values of the boxes
from the function START-ADDER.

This completes both START-ADDER and ADDER.

(DEFUN ADDER (BOX-NAMES)
(START-ADDER (CREATE-BOXES BOX-NAMES)))

(DEFUN START-ADDER (BOXES)
(WRITE-BOXES BOXES '(? ? ?))
(ADDER-LOOP (EDIT-BOXES BOXES) BOXES)
(DISAPPEAR BOXES)
(READ-BOXES BOXES))

12. Let's try the completed program on another
example

Since Tinker interleaves program testing with program construction,
as soon as we've finished defining the ADDER program, we've also
completed testing it on a representative example scenario. Thus
Tinker should increase the programmer’s confidence in the
reliability and robustness of programs. But just to make sure, we
should test the finished program on another example to verify that it
really does work.

The following pictures show several steps of the completed ADDER
program on a set of boxes labelled PREVIOUS-BALANCE, TRANSACTIONS,
and CURRENT-BALANCE. Notice the order of editing steps isn't exactly
the same as in our first example. After computing the first sum, we
can change the value of an already known box, and the sum is
recomputed to reflect the change.

PRE VI 0US-BAL ANCE
q

4

TRANSACTIONS
a

- {CURRENT -BALANCE

User’s View

PREVIOUS-BALANCE
SOl

TRANSACTIONS

CUPRENT -BALANCE

User’s View

Graphics Interface ‘82

4550

PREVIOUS-BALANCE

Sell

4
TRANSACT IONS
Ch

CURRENT -BALANCE

PREVIOUS-BALANCE
B

TRANSACTIONS
SIS

CURRENT -BALANCE

User’s View

465i

PREVIOUS~BALANCE
1558

TRANSACT IONS
620

CURRENT -BALANCE

dcan’ o U

Acknowledgements

This research has been supported in part by ONR contract N0O0O14-
75-C-0522 and in part by ARPA contract N00O14-80-C-0505.

I would like to thank Carl Hewitt for encouraging this research
William Buxton for a letter with interesting comments on an earlier
paper, the Lisp Machine group of the MIT AI Lab for hardware
and software support, and Seth Steinberg and Robert Frankston of
Software Arts, for discussions about VisiCalc and Tinker,

Bibliography

[1] Giuseppe Attardi and Maria Simi, The Power of Programming by
Example, Workshop on Office Information Systems, Saint-Maximin,
France, October 1981

(2] Robert Franskton, VisiCalc: The Visible Calculator, The Non-
Expert User, in 73rd Infotech State of the Art Conference, Zurich,
1980

[3] Eugene Ciccarelli, Presentation Based User Interfaces, Memo
WP-219, MIT Artificial Intelligence Lab, 1982

.[4] Gael J. Curry, Programming By Abstract Demonstration, PhD

Thesis, U. of Wash. at Seattle, 1978, Report 78-03-02

[5] Daniel Halbert, An Example of Programming by Example, MS
Thesis, U. of Cal,, Berkeley 1981

[6] Henry Lieberman and Carl Hewitt, A Session With Tinker:
Interleaving Program Design With Program Testing, The First Lisp
Conference, Stanford U., Aug. 1980

[7] Henry Lieberman, Example-Based Programming for Artificial
Intelligence, 7th International Joint Conference on Artificial
Inteliigence, Aug. 1981

[8] Henry Lieberman, Seeing What Your Programs Are Doing, Al
Memo 656, MIT Artificial Intelligence Lab, 1982

[9] William Newman and Robert Sproull, Principles of Interactive
Computer Graphics (2nd edition), McGraw-Hill 1979

(10] David Canfield Smith, Pygmalion: A Creative Programming
Environment, Birkhauser-Verlag, 1975

(11] Richard M. Stallman, Emacs: The Extensible, Customizable,
Self-Documenting Display Editor, ACM Conference on Text
Manipulation, 1981

Graphics Interface '82

