
295

Constructing Graphical User Interfaces By Example
La Creation des Interfaces Graphlques Par Exemple

Henry Lleberman

Artificial Intelllgence Laboratory
and Laboratory for Computer Science
Massachusetts Institute of Technology

Tinker is an experimental programming environment for Lisp which
makes use of graphics in two novel ways: First, a high resolution
display and a mouse allows Tinker to replace most typed
commands with menu selection operations, and use multiple
windows to display different viewpoints on a developing program
simultaneously. Second, Tinker uses an example-oriented
approach to programming which is especially suited to writing
graphics programs. Tinker allows the implementor to preview the
graphic output of a program as the program is being written, by
examining example pictures illustrating the effects <.f each
graphics command. As each request for user input is introduced,
the implementor supplies example input. Tinker's unique approach
to the design of interactive graphical user interfaces is illustrated
by showing how to write a portion of a VisiCaI,,"like constraint
system.

1. VlsiCalc dynamically enforces constraints between
nrlables

Currently, one of the most successful programs in the
microcomputer community is Software Arts, Inc.'s VisiCalc [2~
VisiCalc ("visible calculator") presents the user with a two­
dimensional grid of boxes, and each box may contain either a
concrete value like a number or text string, or an expression. The
expression computes the value of the box in terms of the contents of
other boxes and arithmetic or other operations. For example, a box
Cl might be constrained to be the sum of two other boxes Ai and 8l'.

The user may then edit values in the boxes, and when a value is
changed, VisiCalc rtComputes the values of all boxes which depend
upon the changed box, to maintain the constraint This is a
powerful feature, as it allows the user to anticipate the effects of
changes in a complex system of relationships between variables. by
asking the system what would happen if certain values were
changed.

2. Tinker exploits some of the same user interface
principles as VisiCalc

Why has· VisiCalc been so successful in the software market? Part of
the rea.-on for the tremendous success of VisiCalc is to be found in
certain characteristics of the user interface that make the system easy
to learn and use. VisiCa!c's grid of boxes continuously provides a
display of the user's current state, so the user can always answer the
question ·Where am 1': in the midst of solving a problem.

Tinker est un systeme experimental de programmation en language
Lisp utilisant des graphiques de deux nouvelles mani~res.
Premierement, au liel,l de taper des directives, un ecran de haute
resolution et une ·souris· permellent au Tinker d'employer la
technique de selection de menu et employer plusieurs fenetr~
pour afficher a I'ecran des differents points de vue simultanEiment
en cours. Deuxiemement, Tinker utilise en programmation une
approche orientee vers des exemples specialement appropriees
pour ecrire les programmes graphiques. Tinker permet au
programmeur d'observer les affiches graph,ql " .:. tout en hrivant
des programmes. A chaque demande de I'utilisateur, le
programmeur presente un exemple des donnees en entr~e . Ce
papier presente un exemple de programmation avec Tinker; la
creation d'une petite partie d'un systeme orientii vers des
contraintes, semblable a VisiCalc.

Since VisiCalc displays the value of a symbolic expression stored in a
box. the user can verify that a symbolic expression had the correct
result in the particular ca.\E! in which it is being used. VisiCalc thus
allows a kind of programming with examples, which contributes to its
ea.o;e of use, since people often find it easier to think about specific
examples than to rea.'on about the properties of abstract expressions.

Furthermore, as soon as any change is made to a box, any boxes
affected by the change are immediately red is played to reflect the
change. Thus, the user gets immediate graphical feedbad on the
result of an action. The user can verify right away that the action
had the intended result, by checking that the new ·current state·
conforms to expectations. If an error is made, it can be corrected
on the spot, before further actions are taken.

These principles of user interface design:

Always display the current state of a process.
Use concrete values to show examples of symbolic expressions.
Provide immediate graphical feedback to the user of the result of

each action.

which make VisiCa1c so congenial to use can profitably be applied to
environments for general programming as well.

Tinker is an environment for writing and debugging programs in
Lisp which uses these principles to help make programming easier
and more reliable. Tinker encourages programming using an
example-based strategy. When you want to define a new function
using Tinker, you present an example of the kind of input data you
would like the function to accept, and work out the steps of the

Graphics Interface '82

procedure on the example data. Each time a step of the procedure is
performed, Tinker does two things. First, Tinker displays the result
of the step in the example c~e supplied. Tinker also remembers the
code which was responsible for each step. When the desired result
for the function has been computed, Tinker abstracts a program for
the generlll c~e from the examples demonstrated.

Tinker's display always tracks the "current state" of a procedure in
the process of being defined, since it shows the result of each step in
the example situation as that step is introduced into the program.
Showing the intermediate states the program goes through in typical
examples can make it much ea.,ier for the programmer to decide
what the next step in the program should be. Every Lisp expression
introduced into the program is accompanied by concrete values
which express the result of evaluating that expression in specific
situations. Looking at concrete examples often reflects the behavior
of the procedure more accurately than trying to infer the general
behavior of the program from looking at the code alone. Every
action taken by the programmer is reflected immediately in updates
to the display, showing both values computed by that action and side
effects such as graphical output caused by that action. Seeing the
effect of an action immediately makes it easier to verify that the
action w~ behaving properly, and gives the opportunity to change
that action while the matter is still fresh in the programmer', mind.

3. Tinker Is especially helpful in designing programs
with interactive graphical interfaces

The remainder of this paper will show an example of programming
with Tinker. Appropriately enough, we will illustrate Tinker's
methodology by demonstrating how to program a small portion of a
VisiCalc-like constraint system. Tinker's example-based
programming style should prove especially important in constructing
interactive systems which adhl're to the user interface principles we
discussed above.

What do we mean by an "example" of an interactive system? When
programming an interactive system with Tinker, the programmer is
supplied with a window on the screen which represents the user's view
of tire system. This window will show exactly what a hypothetical
user might s~e during a typical session with the completed system.
Whenever code is written to display graphic output to the user,
samples of that output will appear. Whenever code is written to
request input from the user, the implementor is requested to supply
sample input to the program. Since the implementor is required to
ploy tire role of tire user while developing the program, the
implementor can more ea.,ily verify that the user interface "feels
right".

4" A simplified problem: enforcing a sum constraint

We will va.,tly simplify the problem in order to give a crisp
illustration of the basic ideas without getting too bogged down in
details in such a short paper. Instead of implementing an entire
VisiCalc system. we will implement a much less ambitious project.
We will display on the screen a set of three boxes, which the user
can edit to contain numbers. The boxes might represent the fields of
some office form. if the application were an office information

296

system. Our program will maintain a sum constraint so that the
value in the third box is always the sum of the other tv-o. If the user
changes a number in a box by editing, our system will recompute the
total to keep the constraint satisfied.

Although our example project is simple, it illustrates a number of
important concepts in the design of interactive user interface
programs. Many user interface programs are characterized by a top
level command loop, which interprets commands input by the user.
Several different methods of obtaining input from the user for
arguments to commands may be used, including typing and selection
with a pointing device such ~ the mouse. Typically, initialization
must be performed before the command loop is started and cleanup
must follow exit from the command loop. Commands which alter
the state of objects being displayed on the screen must redisplay
their state after each iteration of the command loop, so that the user
always sees the "current state" of the environment.

We will define our system to Tinker by working out an example
session with our proposed system. Part of Tinker's display layout is
always one window which shows the user's-eyl' view of the program
being written. If we write code to display something on the screen,
an example of what the display should look like will appear in that
window. If we write code requesting input from the user, we will
provide example input in that window, either by typing or mouse
actions. The examples we will use will demonstrate displaying the
initial screen layout, interpreting commands from the user, and
displaying state information on the screen.

Our system will be implementl'd in a top-down fashion. We will
start with the top level functions, and when an example which
motivates the need for a new subr<,utine is encountered, we will
introduce lower level subroutines.

5. We display a set of boxes on the screen to
initialize the system

In Tinker, a function is defined by first presenting an example.
Suppose we decide that our top level function is to be called ADDER.

The ADDER function is to take one argument, a list of names for the
boxes to be displayed on the screen. Had we already defined the
ADDER function, we could test it out creating three boxes named
PRICE, TAX, and TOTAL by evaluating Lisp code like this: (ADDER

'(PRICE TAX TOTAL)). Instead, we give this same code to Tinker as a
new example for the function ADDER.

At the upper left corner of the screen, Tinker always displays a
menu of commands. We start off the new example by choosing the
menu operation named Typein, but DON'T EVAL. At the bottom of
the screen, Tinker prompts us to type in some code, and we respond
with the Lisp expression (ADDER '(PRICE TAX TOTAL)). Then, we
select the menu operation NEW EXAMPLE for funct ion to indicate that
this is the first example for the function ADDER. We use the
command Give something a NME to name the argument to ADDER

BOX - NAMES.

The screen now looks like this:

Graphics Interface '82

297

Ti,,"e~.;ft.'l~ ;:;'EVAL (OnUH M1510ll' 0)

TVPEIN b ut DON'T EVAI. (OH"lHE-E" AHPl£5 (QUOlE MI5' ,
EW E)(AM PLE for funct io n O"YI U
Give l o m« t h,ng • NAME

All In an AR GUMENT
EVALUATE l om e t hlng
Mak e .. CONDITIONAL

Edit TEXT
Edi t DEFINITION

Step BACK
UNFOLD l om «thing

COP V lom«t hin !il
DELETE lome thing

UNDELETE tning dele ted
UNDO the lut c ommand

LEAVE Tink e,.
RETURN .. v alu t

Vefi"ing (ADDER (0 OTt" Pllle E TAX TOTAL
Re s u I t : (PR ICE TA)(TOTAL 0 c: 60X-NA"fS

(ADDER - (PR ICE TA X TOTAlIl

BO X- NnMES

In the center of the ~creen is the s"apshot wi"dow, whose title line
informs u~ that the example we're currently defining is (ADDER

'(PR ICE TAX TOTAL» . Imide the ~napshot window are objects which
repre~ent a piece of Li~p code, and its associated value i" tlrecurre"t
example. We see an object representing the argument to AD~ER,
whose RESUl T part is (PR ICE fAX TOTAL), and whose CODE part IS a
variable called BOX·NAMES.

The first act ion we'd like the ADDER function '0 take is to d isplay
some boxe~ on the screen, using the given names as labels for the
boxes. We as~ume that there has already been defined a function
named CREATE-BOXES which can create and di~play boxes on the
screen, given a Ii~t of names, and a specification of a rectangle on
the screen. The rectangle is constructed by using the mouse to
indicate two points on the screen, which fix the upper right and
lower left corners of the boxes. We can make a design choice
whether to include the ~ize of the boxes as a constant in the
program, or let the user specify the size of the boxes when the
program is run.

Now, we would like to supply the CREATE - BOXES function with the
example list (PR ICE TAX TOTAL) so it can display the boxes on the
screen. But we don't mean that the ADDER program should always
use the ~pecific li~t (PR ICE TAX TOTAL), but rather that this list is just
to be considered a place-holder for wlratever list is give" as tire
argument to ADDER. So we would like the CREATE - BOXES function to
use the value of the argument variable, the list (PRICE TAX TOTAL),

when di~playing the boxes, but the flame of the argument variable
BOX-NAMES ~hould appear in the code for the call to CREATE-BOXES.

Tinker's rules for constructing expre~sions say that you can use the
RESUl T part of something displayed in the snapshot window as an
argument to some other function, and the CODE part will appear in
the function being defined.

We select the operations Fill in an ARGUMENT and EVALUATE

10000ething to complete the call to CREATE-80XES. The boxes appear
on the screen, labelled with their names, and a list of objects
representinr; the boxes on the screen is returned. The screen shows
us an example of what the completed system might look like to the
user upon startup.

Type s oae c o de l

(CREATE- BOXES)

•

6. We define an initialization function by recurshely
presenting a new example

The next step we will take is to define an auxi liary func tion to
perform initialization. Tinker has the ability to create new
$ubroutine~ by rteursively prese"ti"g new examples. We can construct
a call to a subroutine which has not yet been written, and use this as
a new example to define the ~ubroutine. We'll call our initialization
function STAR T-ADDER, and pass it the list of boxes as an argument,
which will be named BOXES. We now choose the menu operation IIEII

EXAMPLE ror runct i on.

We move from working on the definition of ADDER to working on
the definitio n of START-ADDER. When the definition of START-ADDER

has been complete, Tinker will return us to defining ADDER.

The first action taken by START-ADDER will be to initialize the boxes
with ·empty· or ·unknown· values. The u~er will later fill in values
by editing the contents of the boxes. An already-existing procedure
named CREATE - BOXES takes a list of boxes and a list of contents and
writes the contents into the boxe~, di~playing the contents in the
boxes on the ~creen. Needing to represent empty boxes in some
way, we adopt the convention that a box containing a question mark
will be considered to have no value.

Graphics Interface '82

The next picture ~hows the screen at this point, defining the
function START-ADDER, which so far has just written question marks
into the boxes to initialize them.

Tin lt.e" EOI r ,",.nu
{T VPE IN . i1 d EVAU COEF UN HI ST ORY (»)

NET~P:~~r!~~EDf~:c~~n ~~~~~NE -EJ(R"PLE6 (QUOT E MIST,

Give something" NAME
Fm in itn ARGUMENT

EVALUATE something
Make .a CONDITIONAL

Ed it TEXT
Edi t DEFINITION

Step BACK
UNFOLD something

COP Y something
OELETE something

UNOELETE thing deleted

UNDOL~~~~il~tin~Oe~milnd 1,;,"""",""" -"" .,-",.-.",, ", "'.;:;-.. ."...., ,""'" "", ,J.

I~

PRICE

TOT RL

RET URN .. value U5~r ' 5 V. r u

Result: (A BOXE S ("lQ IAl " " PRI CE" "TAX"»), Cod~: BOJe[S
Result : (1 ? 1), Cod~ : (\/RITE-BOXES BO)([S (OUOTE (7 7 7»))

("'RITE-BOXES BOX ES -(7 ? ?)l

•

ttnk C5 (LI ~I' b re- " ," C \,.,c: St" I -I oc",) • st ory 01'1 1 , tI..tntfl •

.

7. The implementor plays the role of the user in
editing the boxes

The main body of the our program will comist of a comma"d loap, in
the style common to many interact ive programs such as editors [91
[3]. The program will first accept input from the user, then .update
the data structures, red isplay the new state, and repeat this loop
continually until the user decides to signal an exit from the program.

Since Tinker defines functiom by using examples, we must provide
examples of the user's input to the program. In our c~e, that means
whenever code which ~h the user to edit boxes is introduced into
the program, Tinker a<b us to edit the example boxes we have
supplied. The result of that editing operation supplies the examP.le
input. Not only can we see an example of how the system Will
appear from the user's viewpoint, but we also get to use the system
by providing example input and working out the steps showing how
the system will respond to the example input. Tinker's ability to let
the implementor preview the user interface a< the program is being
written should sharpen the implementor's ability to empathize with
the needs of the user.
We call the function EDIT-BOXES, which ash us to choose one of the
three boxes to edit by pointing to the desired box with the mouse
and pressing a button. The user can use a text editor [11] to change
the text in the box. When the user signals that the editing has been
completed, the new state of the boxes is returned.

The next t~o pictures show choosing a box to edit with the mouse,
and replacing a value in one of the boxes.

298

We have changed the value of the top box labelled PRICE to 100. The
value of the EDIT-BOXES operation is a list of the values of the boxes,
two of which still have unknown values, so the result is (100 ? ?).

We shall refer to this a< the STATE of the boxes.

8. The command loop enforces the sum constraint
and updates the boxes

We now construct the function which is going to be the command
loop of the system, named ADDER-LOOP. ADDER - lOOP takes as argument
the list of boxes, along with the current state 8.' returned by EDIT­

BOXES.

The command loop now must take two actions: It must examine the
state and enforce the sum constraint between the values in the
boxes, and it must new state back into the boxes and update the
display.

We invent a new stare transltlo" subroutine which we will call
ADDER-CONSTRAIN, whose job it is to compute a new state given the
current state of the boxes. Computing the new state may need to be
done in var iollS ways, depe nding on the state itself. We will have to
present several exam ples fo r the function ADDER·CONSTRAIN, not just
one. Each example will illustrate an important ca.<e for the resulting
function, whose code will contain a conditional that will distinguish
between the various cases.

In this e xam ple, we have only filled in one value of the three boxes,
so as yet we do not have enough information to compute a sum.
This situation will change in subsequent examples for ADDER­

CONSTRA I N. But for now, the new state after enforcing the constraint
is iden tical to the o ld state, so we just return the old state as the
value for AD DER- CONSTRA i N. We point to the state variable, and
indicate that this is the value of the function by using the menu
operation RETURN a 'Ial ue.

This co mpletes a defin ition of ADDER-CONSTRAIN, and the code for
ADDER- CONSTRAIN appears in the fu"ctio" defi"itio" window at the top
c e nter o f the screen. Tin ker returns us to the midst of the
defi n ition of the function ADDER - lOOP, where we left off.

Graphics Interface '82

299

Tlnl4e, VP~/,~ :;:UeVAL (DEFun HIGTOay 0) _,:~T ?~~:/ ','
NET~P:~~';~~E~~:;Tt~nVc~~n ~:~~~nE-E)(A"PLES (OUOTE HlSt I ",-.... --"------,

Give someU'lIn; a NAME

['.J~~"u:~:~!~~~~n~ ~~EFun ADDER-COnSTRAIn (STAT '1 .,;0; F. .. I""''''-------{
Make a COt-IDITIOrI AL Ii tATE) ~ .

Edi t TE)(T
Edi t DEFINITION

Step 8ACK
UNFOLD something
COPY soma.hln;

OELETf: something
UNDELETE thing deleted
UNDO the lut command

LEAVE Tinke"
~Tu~!i.v~lu!

(OEfInE- EHAnPlES (OUOTE (ADD I
ER - COnS IAAln (QUOTE 1188 1 ., I
)))) (QUOtE (118 1 f,))
a

~:~;:jfi~~R;Lrr~ ~%~~~EsfnE):
,,,,.', 11' ''101

Result : '.(A 80)«S (" TOTAL" " TAX" "PRICE"». Code: 10K[S
Result : (100 " 1). Code: (ADDUt·CONSTRAIN STAH)

STRTE

IRDDO! - CONSTRlltrl STRTE)

..

So far, the definition of ADDER-CONSTRAIN i~ quite trivial, but that
situation will 500n be rectified 85 we provide additional examples
for that function. The next action that needs to be taken is to write
the new 5tate returned by ADDER-CONSTRAIN into the boxes to update
the di5play. Thi~ i~ accomplished by calling the function WRITE­

BOXES.

9. Another iteration of the command loop shows
computing a sum

After having completed one cycle of the command loop, Tinker
must be told to repeat the loop. Again, we use the function EDIT­

BOXES to change the content5 of one of the boxes. In this C85e, we
choose the middle box, labelled TAX, with the mouse, and change its
content~ to be 5:

TjnA·T:~I~ ';;~ (DEFUn HI5TOlty ()}

TVPEIN, but DON'T £V~l
N[:v:)(S~r::;~I:;ra f~~~~on ~:~~~nE -EKfWLE& (OUOTE HIST I

~11 In an ARGUMENT (01 fun ItDDU - COtlSUnttl (6T1U I
EVALUATE something l')
Make a CONDITIONAL SlAlE)

Edll TEXT
Edit DEFINITION

Step BACK
UNFOLD .omething

COPY something
DELETE .omethlng

UNDELETE thing deleted
UNDO the I •• t command

LfAVE Tlnke,.
RETURN a value

IDHlnE - EMAnpUS (QUOTE (ADI I

Ell - COnSTRAin (OUOH: (181 ., 1 I
))1) caUOIE (118 ., "'))
a

Now, the 5tate returned by EDIT-BO)(ES is the list (100 5 7). The
value5 of the fir5t two boxe5 are now known, hut the value of the
last box i5 5ti1l unknown. Our ta~k it to compute it automatically to
maintain the sum constraint, so our goal should be to have the sum
105 appear in the TOTAL box. We do so by presenting another
example for the function ADDER-CONSTRAIN, this time with the list (100

5 1)_ The job of ADDER-CONSTRAIN in this C85e is to compute the sum
of the first two value5, and return a list with the sum 85 the third
value. We put together the list (100 5 105), which W85 piOduced by
the code (LIST (FIRST STATE) (SECOND STATE) (+ (FIRST STATE)

(SECOND STATE»), and return it 85 the value for ADDER - CONSTRAIN.

' (114., EDI T mtlnu
TVPElfiAnii" EVAl-- COEFUn HIlitORY 01

TVPEIN, but DON'T EVAL NEcirv:X::m:;;i:;r. f~~~~on ~:~~~"E -ElCAnpI.U (OUOT E HI6T I
Fill in an ARGUMENT COrFU" ADDER -COnS TRAIN <'tAl I

EVALUATE something El
Make a CONDITIONAL STfHE)

Edit TE)(T
Edit DEFINITION

Shp SACK
UNFOLD lomething
COPV lom.thln;

DELETE something
UNOELETE thing deleted
UNDO the lut comm"nd

L .-llnklt r

(DEFItI[-EKfttlPLEG (/JUO t E (ADD'
ER-COnSt RAin (aUOTE (1811 't 1 I
)))) (QUD IE (l1li81 1))l
a

- 'ON~r!J--'J!!:1....19l'orE (100 5 ? III:
S ? • Cod e: S TA T[

, ...
IIICE

I'"

lA"

I'·

IOTA\.

~Sf "', ",

(1005 IDS) . Cod~ : (LIST (FIRST STATE) (SECOND SlATE) . ..)

(AOOER - CONSTRAI H)

Type 5 0" l.! thin9 to e va lu ate:

(LIST (FIRST STR TE) (SECOND STATE) (+ IFlRST ST RT f.) (S(COND STnT[)))

10. Two examples for the same function Introduce
conditional definitions

Now, we have two example5 for the function ADDER-CONSTRAIN.

Whenever Tinker has two completed definitions for the same
function, it mU5t have 50me way of distinguishing between the two
C85e5. Tinker 855ume5 that since the definitions for the two examples
are different, the intention of the programmer wa\ to create a
conditional definition, with each example repre5enting an
equivalence c1a~s of argument5 to the function. What Tinker now
need5 to know is a predicate that divides the equivalence classes, so
the function can decide to which equivalence c185s a particular set
of argument5 belongs.

In keeping with Tinker's example-oriented style, the predicate for
the conditional i5 also defined by example. Tinker presents to us two
example~ 5imultaneou5ly, one 5howing each situation. Tinker
replace~ the u5ual 5nap5hot window in the center with two snap5hot
windows, the top one in thi5 C85e displaying the situation where the

Graphics Interface '82

STATE is (loo 1 1). the bottom one showing STATE as (lOO 5 7). Code
constructed using the menu operations and typing will appear in
both windows simultaneously, but might evaluate differently in the
twO windows, due to the difference in the variable environments.
Our goal is to produce a predicate that yields true in the top
window, and false in the bottom window. To distinguish between
the two cases, we will say that since the top window has more than
one unknown value, there is not enough information to compute
the sum. We will count the number of question marks indicating
unknown values and see if the count is greater than one.

"" r EDIT tntlnu .
an d (DUUI'! HUT OR., 0)

Nf.T.z"':~NA':~~ED~:~t!~c~~on ~:~~~"E- EMR"PLE& (DuotE HI" I 16t ..
Give .om.thing a NAME

fill In an ARGUME NT (DEFUI'I RDDER-conlii'RRl" "HIl I "'''i'''''''''-------i
:,~~~u:1~~~~~~~~~ El STRTE) rs.

Edit TE)(T
Edlt DEFINITION

Step BACK
UNFOL.D lomett\lng

COpy lomethln;
DELETE lomettlln;

UNOlLfTE: tt'l l"; de leted
UNDO the 'ut command

(DEFtttE - (MRnPLES (OUDI E (R DD I
ER-COnSHtRln (OUOTE (IU ? 1 I
)))) (OUOTE (1111 1 1»)) •

LEAVE Tinker :. \u':> "gor"" 11..,,(1,.,(,\

I"

RfTURN • v.lut! ut"', V,,,,,
Pr (oate Tnu lor: nft~lt ; 100 .,., : TAT

Prt!Jdioa 11 fAtS r ev : n au/t : 100 5 tI : I r FIRS T TAT

How do Id, st , n9u, sh bel wee"
srATE imd
(lIST tFHlST STRTE) (SECOND STRTE) (. (Flk.iT STRTE) (SECOND STRTE)))?

(> (HO Y-MRNY • ., STRTE) 1)

•

300

This completes the definition of ADDER - CONSTRAIN, and 1 inker writes
the following code for us.

(OEFUN ADDER-CONSTRAIN (STATE)

(IF (> (HO\I -MANY '1 S TA TE) 1)

STATE

(LIST (FIRST STATE)

(SECOND STATE)

(+ (FIRST STATE) (SECOND STATE»»)

We could augment this definition further by supplying additional
eumples, such as computing either the PRICE or TA)(from the other
by subtracting from a known TOTAL. In this way Tinker allows a
programmer to incrementally add new expertise to a program by
supplying new examples that illustrate use of the new feature. At
each point, a partial definiti0n is available which captures all the
knowledge put in so far.

11. We must show Tinker how to exit the command
loop

We can't forget that there has to be some way of ending the loop.

We can do this by performing another iteration of ADDER·LooP, but
this time instead of editing a bo)(, we will hit a sp-ecial key which
says we want to stop editing. This key causes the EDIT-BO)(ES

function to return the symbol QUIT instead of the usual list of
contents of the boxes.

This constitutes another example for the function ADDER-LOOP, in
which it just returns. rather than computing a new state and iterating
a.~ before. Now the situation resembles the one for ADDER-CONSTRAIN

earlier. We have two examples for the function ADDER-LOOP and
must supply a predicate to dbtinguish between them. The predicate
sees whether the STATE variable is equal to the symbol QUIT,

indicating an exit from the loop.

Graphics Interface '82

301

Inlu,r EDlr mel>(J P[fU" ADDER- Con'UAI" (S IA' I

Predicate f or : R" If : # A OOXE •• Cod.: X S

=r-----..:-, '.
"""

A::~I~~ ~~(A'I~:: : (! P:!~[" " TAX " "TOTAL" ». Code: 10)((S
Result: T, Code : (EQUAL STATE (QUOTE QUIT»)

Prfldloate FALS f o r : H'-flIt : I A BOX : THEN WRI T ·BOX

How do I d i st i ngui s h be tween
BOXES
o nd
(THEn o.IRtTE-BOX[S BOXES (ROOER- COt1STRRIH STRTE)) (ROoER - lOOP ([Olf-BOXES BOXES) 90X[S))1

Type s o.eth i n9 to e valuate I

(EDUAL STAT["DUll) •

This yield~ the definition for ADDER-LOOP below.

(DEFUN ADDER-LOOP (STATE BOYES)
(IF (EQUAL 'QUIT STATE)

BOXES
(PROGN

(WRITE-BOXES BOXES (ADDER·CONSTRAIN STATE»
(ADDER-LOOP (EDIT-BOXES BOXES) BOXES»»

Finally, as a cleanup ~tep, we write code that uses the function
DISAPPEAR to cau~e the boxes to be removed from the screen. READ­
BOXES is u~ed to return a list containing the final values of the boxes
from the function S TART -ADDER.

This completes both START -ADDER and ADDER.

(DEFUN ADDER (BOX -NAMES)
(START-ADDER (CREATE-BOXES BOX -NAMES»)

(DEFUN START-ADDER (BOXES)
(WRITE-BOXES BOXES '(1 1 1»
(ADDER-LOOP (EDIT-BOXES BOXES) BOXES)
(DISAPPEAR BOXES)
(READ -BOXES BOXES»

12. Let's try the completed progrnm on another example

Since Tinker interleaves program testing with program construction,
as soon as we've finished defining the ADDER program, we've also
completed testing it on a representative example scenario. Thus
Tinker should increa.'e the programmer's confidence in the
reliability and robustnes~ of programs. But just to make sure, we
should test the finished program on another example to verify that it
really does work.

The following pictures show several steps of the completed ADDER
program on a set of boxes labelled PREVIOUS-BALANCE, TRANSACTIONS,
and CURRENT -BALANCE. Notice the order of editing steps isn't exactly
the same as in our first example. After computing the first sum, we
can change the value of an already known box, and the sum is
recomputed to reflect the change.

Graphics Interface '82

302

L ... ,.".,
1'< 4651

ft
I.:;: PREVIOUS-BALANCE

SDI

1/ TRAtlSACTlONS

5'511

: ' CURRENT -BALANCE

. "'./ . "":', .. ',.":i.,'.",, •. <."" ':: ,,:::.:'-:.,,::" Ill;,,;'. v; .w '

PRE VIOUS-BALANCE

'551

TRANSACTIONS
62D

Acknowledgements

This research has been supported in part by ONR contract NOOO14-
7S-C-OS22 and in part by ARPA contract NOOO14-80-C-G50S.

I would like to thank Carl Hewitt for encouraging this research
WilIiam Buxton for a letter with interesting comments on an earlier
paper. the lisp Machine group of the MIT AI lab for hardware
and software support. and Seth Steinberg and Robert Franhton of
Software Arts. for discussiom about VisiCa1c and Tinker.

Bibliography

[1) Giuseppe Attardi and Maria Simi, The Power of Programming ~
Example, Workshop on Office Information Systems, Saint-Maximin,
France, October 1981

[2] Robert Franskton, VisiCalc: The Visible Calculator, The Non­
Expert User, in 73rd Infotech State of the Art Conference, Zurich,
1980

[3] Eugene Ciccarelli, Present alion Based User Inter! aces, Memo
WP-219, MIT Artificial Intelligence Lab, 1982

. (4) Gael J. Curry, Programming By Abstract Demonstration, PhD
Thesis, U. of Wash. at Seattle, 1978, Report 78-03-02

[5] Daniel Halbert, An Example of Programming by Example, MS
Thesis, U. of CaL, Berkeley 1981

(6) Henry Lieberman and Carl Hewitt, A Session With Tinker :
Interleaving Program Design With Program Test ing, The First Lisp
Conference, Stanford U., Aug. 1980

[7] Henry Lieberman, Example -Based Programming for Artificial
Intelligence, 7th International Joint Conference on Artificial
Intelligence, Aug. 1981

(8) Henry Lieberman, Seeing What Your Programs Are Doing, AI
Memo 656, MIT Artificial Intelligence Lab, 1982

(9) William Newman and Robert Sproull, Principles of Interactive
Computer Graphics (2nd edi tion), McGraw-Hill 1979

(10) David Canfield Smith, Pygmal ion: A Creative Programming
Environment, Birkhauser -Verlag, 1975

[11] Richard M Stall man, Emacs: The Extensible, Customizable,
Self-Documenting Display Editor, ACM Conference on Text
Manipulation, 1981

Graphics Interface '82

