323

AN INFORMAL STUDY OF SELECTION POSITIONING TASKS

William Buxton

Computer Syslems Research Group
University of Tororito
Toronto, Ontario

Canada
M5S 1A1

ABSTRACT

Several techniques for performing selectioning-positioning tasks are compared. The
comparison takes the form of a case study where the task is to select from among

three geometric shapes and position thern in

two-space. The study emphasizes how

much syntactic, lexical and pragmatic variables can influence the relative ease with

which a particular task can be performed.
has properties which make

study is to dernonstrate the importance of actu
ideas and lo point out Lhe shortcomings of pencil

1. INTRODUCTION

We are interested in achieving a better understanding
of input structures. When confronted with a design
decision we would like to have a good methodology for

answering the following three questions:
What are the alternatives?

What are the relevant characteristics of each
alternative?

- How can the best match be found between our
needs and the means available?

In addition, we would also like to know:

What would constitute a set of tools sufficient to
render any viable alternative equally accessible?
That is, how can we eliminate the bias of the path
of least resistance.

Demanding an answer to these questions is a tall
order. Fven finding where to start is a problem. This
largely explains why we have characterized user
interface design an art rather than a science
(Baecker, Buxton & Reeves, 1979).

The study reported herein considers these guestions.
It is an attempt to crystallize certain ideas that have
formed over the past years in the course of our work
al designing user interfaces. We have sought to iso-
late some of the key concepts that have developed
and capture them in a case study which would permit
their investigation. The study is informal in that no
controlled tests were run. It is a preliminary probe
rather than an experiment.

The work is rooted in the observation that systems
which we have built or observed were constructed out
of a set of reoccurring classes of transactions,
regardless of application. For example, whereas a

it optimal in some contexts.

In addition, it is shown how each approach

The overall impact of the
ally implementing toy systems to test
and paper exercises.

musician might select a note and place it in a partic-
ular position in pitch and time, so might a circuit
designer place a particular gate in its proper place in
a circuit. While what is accomplished in each case is
quite different, both constitute the same generic
transaction: a selection-positioning task.

If we accept the premise that the number of such
generic transactions is finite, then attempting to
enumerate the constituents of the canonical set:

constitutes a first step in answering the first ques-
tion posed above, "What are the alternatives?’, and

serves as the basis for designing the tools to sup-
port the implied interactions.

Such an approach is not new and forms the basis for
the "logical devices" of the Core standard (GSPcC,
1979; ACMCS, 1978). The problem is that the taxon-
omy that results is not of a fine enough grain to serve
our purposes. The reason is that such generic
categorization does not penetrate much below the
syntactic level. The logical devices of the Core stan-
dard let us describe our musician's and circuit,
designer's actions in terms of "picking devices' and
"locators”, but does not contribute much in the way
of characterizing the properties, for example, of the
differing picking devices used.

Thus, in order to approach the questions posed at the
start of this paper, we must penetrate a bit deeper
into the structure of human-computer dialogues.
Foley and Van Dam {1982) describe the user interface
as consisting of four layers:

« conceptual
- semantic

syntactic

lexical

Graphics Interface '82



To this list we would add:

- pragmatic

Our point is that designing with logical devices is use-
ful, but incomplete. This is due to an inability to ade-
quately deal with the lexical and pragmatic levels. To
illustrate what we mean by this is one of the main
reasons that the current study was undertaken.

2. CASE STUDY OVERVIEW

If one step of systems analysis is to categorize a par-
ticular transaction as belonging to a particular type,
then the next step is to understand the alternatives
within that type. Alternatives at this level are dis-
tinguished by syntactic, lexical and pragmatic pro-
perties. It is these properties which we wanted to
investigate. To do so, we implemented an environ-
ment which supported several different ways of per-
forming one simple task: selecting a shape from
among a square, circle and triangle, and positioning
it in two-space. To provide a common basis for com-
parison, the techniques implemented were all con-
strained to function using the same hardware: a
graphics tablet, a vector-drawing display and an ASCII
keyboard. Within these constraints, the questions
which we wanted to investigate were:

» What different techniques could we implement?
- What issues did each bring to light?

» To what extent could we characterize the proper-
ties of each?

- To what extent did our input support tools suffice
in handling each of these techniques?

We will deal all but this last question in the reinainder
of this report.}

Five basic techniques for performing the designated
task were implemented:

« Dragging

- Moving-Menu/Stationary-Pointer
« Character Recognition

- Typing

« Function Keys

Before discussing the techniques individually, there
are a few general comments worth making. First,
none of the techniques {except perhaps the second)
is original. Hence, the value of the exercise does not
lay in enumerating the possibilities. Rather, it rests
in actually implementing the various techniques in a
common environment so that they can be compared
side-by-side through actual use. Second, our choice

1. Details on the menu system which supported the
implementation described can be found in Buxton, Reeves,
Patel and O'Dell (1978). A study of the consequences of this
investigation on the input tools can be found in Ray and Kroll
(1981).

of a compound task, selection and positioning, was
not accidental. The task is simple but non-trivial.
Furthermore, it introduces the issue of syntax into
the problem, as shall be seen.

3. DRAGGING
3.1 Simple Case

The first technique, "dragging”, is illustrated in Fig-
ure 1. The user selects the desired shape by position-
ing the tracking cross over the appropriate menu
item (on the right side of the display), and depressing
the tablet cursor's selector ("Z') button.

>

Lg%

Figure 1. Dragging

A copy of the shape is thereby "picked-up”, and fol-
lows the cursor's motion (for as long as the Z-button
remains depressed). The shape can be positioned,
therefore, by cursor movement and "anchored" by
releasing the Z-button when in place.

The technique is simple and well known. Neverthe-
less, it brings to light a few interesting questions. For
example, how does the location of the menu region
affect the interaction? When, if ever, is it an advan-
tage to have menus positioned along the top or bot-
tom of the screen?

A less obvious issue is seen in the inlerplay between
Lhe syntactic and lexical components of the example.
Two separate tasks are being performed: one selec-
tion and one positioning. For such multi-step dialo-
gues not to be prone to error, it is desirable to design
the interaction in such a way that it channels the
user’s actions along the "right path"”. Such a series of
low-level operations is often (usually?) viewed as a
single conceptual "chunk” by the user. Therefore, it
could be that it is most appropriate for the gesture to

Graphics Interface ‘82




perform that task also to form a single "chunk". The
Z-down,/move/Z-up gesture, for example, binds the
constituent, operations into a single  "compound
word"”. This is in marked contrast with the common
alternative of a Z-down/Z-up move 7-down/Z-up com-
mand sequence. In this latter case, the first Z-up is
an act of closure. which disrupts the binding of the
sub-lasks, and therefore the coherence of the overall
task performance. The point to make here is that
syntactic tokens can be bound together to the advan-
tage of the user interface and that this is often made
possibie by recognizing the differing degrees of clo-
sure inherent in various lexical elements. Just as
hyphens can bind words Llogether, so can appropriatc
speliings of the tokens in the user dialogue. The
question that begs to be asked, therefore, is how can
we develop an understanding of these features and
Irarn Lo use them to best advantage?

3.2 Redundant Case

In the previous version of the dragging technique, the
user had Lo go back to the menu to select an item
before each placement.  If not, depressing the Z7-
bullon resulted in Lhe tracking symbol becoming a
question mark icon. This is clearly inefficienl. in
lerrns of hand movernenl in cases where several
instances of the same shape are to be laid down. A
variation on the technique, therefore, is to use a
"paint-pot” analogy and have the last itern selected
‘remain on the brush”. Once the first instance of a
shape has been selected and positioned, subsequent
instances of that shape can be input by a simple Z-
down/Z-up gesture at the appropriate position.

While this modification will often result. in a more
efficient system (as measured by the keystroke
model of Card, Moran & Newell, 1980), there is one
observation worth making. The potential savings will
not always be taken advantage of by the user. For
example, a designer will not. generally lay out all the
AND gates and then all the OR gates of a circuit.
Rather, the cirenit will be built, up in logical order.
The semantics of the task will dictate the order
rather than syntactic/lexical efficiency. Recognition
of such facts will help the interface designer to priori-
tize where effort should be invested in attempting to
improve the quality of the user dialogue.

4. MOVING-MENU /STATIONARY-CURSOR
1.1 Simple Case

With the dragging technique, much hand motion was
expended in moving Eetween the menu and the work
areas. This is illustrated in Figure 2, where we have
drawn vectors to connect all points on the screen
where an interaction occurred during the course of
performing a simple layout task.? One way to save

2. Diagrams such as this can be made from the "dribble file” in
which & time-stamped record of all interactions can be placed.
The data that results can be used in the evaluation of the user
interface through the technique of protocol analysis. Such a file
can be generated on request from any program which uses our

E=IT] A
RN
~ A
/\\\ /L?/ - ’/ //1
N 7
—F = N
/<\; .o —
o —— =
n = e M
~\r'
7 P \§}‘~
e B O AT
LT T A AT
i Vi | —
i | ] i =T
; L W
E—‘_ L 1_ i
| l i

Figure 2. Hand Motion in Dragging

much of this hand motion (and the time that it con-
sumes) is to have the menu come to us rather than
us going Lo it. We do this by placing the tracking
cross over the position where we want a shape
located and depressing the Z-button. This causecs two
things to happen (for as long as the Z-button remains
depressed):

- the Llracking cross
current localion.

becomes anchored at its

+ the menu seen in Figure 3, becomes the tracking
symbol i.e. it follows the molion of the tablet's
cursor.

Conceptually, what we now have is a moving menu
and a stationary pointer. The shape desired is
selected by placing it nver the {stationary) tracking
cross and reieasing the Z-bution.

The technique is effective i1n many contexts. How-
ever, it has some interesting properties and begs
some important questions. When compared to drag-
ging, for example, it breaks down as the number of
items on the menu increases.

Also, the technique is not self-cbvious. That is, there
are no explicit cues to prompt the user as to the
nature of the interaction. Dragging, on the other
hand, is self documenting for anyone who has previ-
ously seen it. On the other hand, the technigue does
not. permanentlly consume display real-estate to hold
the selection menu, thereby providing a larger

menu-support tools. The example hints at the potential value of
such tools, but also forces us to realize the inadequacy of our
current. knowledge concerning techniques of protocol analysis,
viz., how to interpret the data,

Graphics Interface '82



|
>
(I

Figure 3. Moving Menu / Stationary Pointer

effective work area.

Having the menu come to us is not new. This is the
approach taken by many systems developed at Xerox
PARC, for example (Tesler, 1981). The differences are
due to the properties of the display technologies
used. The Xerox technique is implemented on a
raster-scan display which ailows the menu to be
displayed in the current work region by overwriting a
raster or peing cxeclusive OR'd with it. In either case,
the menu remains stationary, as in dragging. It just
appeary closer, and the tracking symbol performs its
regular function.

The properties of a vector-drawing display, however,
prevent us from clipping a temporary window into
which we can place our menu, or performing the
equivalent of the exclusive OR function. Conse-
quently, laying the temporary menu down in a sta-
tionary position will often result in menu items not
being distinguishable from those already entered in
the same region. Anchoring the tracking cross
means that ambiguities can be easily resolved using
cues resulting from manually moving the menu.

A final point has to do with the syntax of specifying
the two sub-tasks. Notice that Lhe syntax of the tran-
saction has been reversed when compared to drag-
ging, where items were first selected, then posi-
tioned. There is some question as to whether it is
more "natural" to perform the selection task first.
The question is important in its own right, but there
is also a more global issue. Barnard, Hammond, Mor-
ton, Long and Clark (1981) give evidence as to the
importance of self-consistency of syntax within a sys-
tem. If, for example, there are several compound
tasks that involve selection, the evidence suggests

that the selection task should appear in the same
syntactic position in each case. The literature is not
conclusive and a great deal of work remains to be
done. In the meantime, however, these considera-
tions should be kept in mind by designers.

4.2 Redundant Case

The moving-menu/stationary pointer technique can
also be implemented to facilitate entering several
instances of the same shape. This is accomplished
by, on the Z-down, always having the menu appear
positioned such that the last selected shape appears
centred over the anchored pointer. Thus, for the
second instance on, the input gesture is exactly the
same as Lhat for the second instance on in the redun-
dant mode of dragging: a simple Z-down/Z-up. )

5. CHARACTER RECOGNITION

Much of the preceding discussion has centred on syn-
tactic issues resulting from the compound nature of
seleclion-positioning tasks. It could be argued that if
these two tasks were integrated into a single gesture.
the simplified syntax would result in a system which
is easier to learn and less prone to error. Reisner
(1981) gives some experimental evidence in support
of this notion.

The character recognition strategy has this
integrated property. To input a shape one simply
sketches a short-hand symbol at the desired location
in the work area. The shape specified is input cen-
tred over the slarting point of the sketch. The (arbi-
trary) shorthand symbols us=d in our example are
shown in Figure 4

A

1V

Figure 4. Shorthand Symbols

Like the moving-menu/stationary-pointer technique,
this approach requires no display real-estate for con-
trol functions. However, it also shares the property
of not being self-prompting.

One of the main issues of character recognition
approaches has to do with the cognitive burden of

Graphics Interface '82




remembering the symbaols.® One approach is to use a
trainable character recognizer bascd on the premise
that it is easier for users to remember symbols which
they have designed themselves. Whether this is true
or not depends on several factors, including the
number of characters and what they have to
represent. The training process limposes a cognitive
(and temporal) burden of its own, and such charactler
recognizers usually respond more slowly that ones
which operate on a predefined set of symbols.

One way which the short-hand symbols can be made
easier to remember is to make them representa-
tional. Thus symbols would look like transistors, AND
gates, or squares, for example. There are problems
with this, however. As the symbols become more
complex, they take longer to draw, are more prone to
error angd take longer to recognize. That is, the main
benefits of adopling the technique in the first place --
fluency and speed -- are defeated. Consequently, it is
often best to adopt a set of pre-defined symbols, each
of ‘which can be specified by a continuous line
(thereby providing for maximum lexical compact-
ness). One main area for future research concerns
how to obtain optimal performance within these con-
straints.

6. TYPING

Typing a cornmand to select and position shapes was
one of the techniques implemented. The syntax used
was:

<command> <X val> <Y val>

where the command was one of 's', '¢' or 't' for
Square, circle, and triangle, respectively. The X and
Y values specified the coordinated over which the
shape was to be positioned.

One of the reasons that typing is interesting is that it
points out that three tokens are required to fully
specify the task. In the previous technigues we have
been implicitly lreating the position as a single
token. The importance of this observation is to point
out how effectively the appropriate interaction can
bind elements into a single unit. What we described
with the character recognizer with respect to selec-
tioning and positioning, we had been doing all along
with the specification of the X and Y values of the
position.

While we would sometimes like to believe that graph-
ice solves all problems, the current exercise points
oul one important thing: sometimes it is better to
type. If a user was given a picture made up cof
squares circles and triangles to reproduce using each
of the techniques described, it is most likely that typ-
ing would lead to the slowest task performance. How-
ever, if the task was reformulated and the picture
was presented as a list of numerical coordinates (as
is often Llhe case in the real world), the Lyping

3. This is of speciel concern in systems designed for casual users.

327

technique would clearly be the fastest (given a skilled
operator). The reason is Lhat the means of perform-
ing the lask has a good cognitive "fit" with the task
[ormulation.  Similar results would result in cases
where a high degree of accuracy was required.

The previous points lead us to a more general com-
ment. Fach of the Lechniques described has different.
strengths and weaknesses, and there most likely
exists a task for which each is optimal and each is
abysmal. Which technique is appropriate is always a
function of the task to be performed and how it is
SJarmuinted.

7. FUNCTION KEYS

The final technique to be presented involves pointing
to the position where the shape is to be located and
pressing one of three function keys. In our study, the
function keys (one for each of the square, circle and
triangle) were mounted on the back of the tablet cur-
sor. The result was that, for free-hand layouts, this
was Lhe fastest of all of Lhe techniques tested.

From this part of Lhe study, several important ques-
tions remain unanswered. Apart from leaving one
hand free for other tasks, is there a speed advantage
to using the same hand for pointing and selecting?
When and under what constraints? Also, when does
the speed advantage of function keys break down?
Can this be improved by using chording keys, and if
so, at what price (for learning and remembering)?

One approach which we have bolh seen and Lried is to
use a cursor with only Lhree or four bultons, but
change their meaning in different contexts. Our
experience is, however, that this is confusing to
novice users and leads to a high number of errors.
The reason is that "different contexts” means
different modes, and as Tesler (1981) has argued, we
should be eliminating rather than emphasizing
modes. Our conclusion is to fix the function for each
key. To get maximum benefit, therefore, we choose
the funclions Lo be ones which are both global and
frequently used.

One final point, the example provides a good oppor-
tunity to point out one difference between a tablet
cursor vs a stylus: the cursor has functlion keys and
can therefore be used as a seclector simultaneously
with being used as a pointer. As with the character-
recognizer, we see how the pragmatic component can
lead to a binding of associated functions so as to sup-
port a more articulate and fluent means of task per-
formance.

8. CONCLUSIONS

A number of different techniques for performing
selection-positioning tasks have been presented.
Ilach was shown to have differirig properties in terms
of costs and benefits. One conclusion has been Lhal,
which of these techniques is most appropriate in a
given context depends on the task to be perforined
and how thal task is formulated. If it is important to

Graphics Interface '82



understand the differences among the various tech-
niques, then it is perhaps even more important to
acknowiedge the value of the technique used to bring
these properties to light. We believe that creating a
test bed where these techniques can be refined and
compared in a common, manageable environment
has resulted in an acceleration of our understanding
of the various issues and their respective importance.
Some of the questions which have arisen will now be
pursued in more detail. Finally, we intend to use the
same test bed to investigate other tasks, and to
develop betler tools for prototyping such toy systems
and evaluating their performance.

9. ACKNOWLEDGEMENTS

The work reported owes a great deal to the work of
Sanand Patel, Howie Ray and Anthony Kroll. Patel
implemented the menu system which was used, while
Ray and Kroll did the implementation of the tech-
niques described. In addition, I am indebted to Alain
Fournier for his helpful comments during the
preparation of this manuscript. Finally, 1 would like
to acknowledge the financial support of the Social
Sciences and Humanities Research Council of Canada
and the National Sciences and Engineering Research
Council of Canada.

10. REFERENCES

ACMCS (1978). ACM Computing Surveys. Special
Issue: Graphics Standards, 10(4)

Baecker, R., Buxton, W. & Reeves, W. (1979). Towards
Facilitating Graphical Interaction: Some Exam-
ples from Computer-Aided Musical Composi-
tion.  Proceedings of the 6th Canadian Man-
Computer Communications Society Confer-
ence, Ottawa, May 1979: 197-207.

Barnard, P., Hammond, N., Morton, J., Long, J. &
Clark, 1. (1981). Consistency and Compatibility
i Human-Computer Dialogue. International
Journal of Man-Machine Studies 15(1): 87 -
134,

Buxton, W., Reeves, W., Patel, S. & O’Dell, T. (1979).
SSSP Programmer's Manual. Toronto: unpub-
lished manuscript, Computer Systems
Research Group.

Foley, J. D. & Van Dam, A. (1982). PPundamentals of
Interactive Computer Graphics. Reading, Mas-
sachusetts: Addison-Wesley.

GSPC (1979). Status Report of the Graphics Standards
Committee. Computer Graphics, 13(3), August,
1979.

Card, S., Moran, T. & Newell, A. (1980). The
Keystroke-Level Model for User Performance
Time with Interactive Systems.

Commumnications of the ACH, 23(7): 396 - 410.

Ray, H. & Kroll, A. (1981). 4 Study of Inferaction
Using Menu-Driven Systems. Toronto: unpub-
lished manuscript, Computer Systems
Research Group.

Reisner, P. (1981). Formal Grammar and Human Fac-
tors Design of an Interactive Graphics System.
a /IEEE Transactions on Software Fngineering
(7)2: 229 - 240,

Tesler, L. (1981). The Smalltalk Environment. Byte
6(1): 90 - 147.

Graphics Interface '82



