
I. INTRODUCTION

23

SOFTWARE FOR DEVICE - INDEPENDENT GRAPHICAL INPUT

by

Griffith Hamlin
Los AIamos National Laboratory

ABSTRACT

This paper discusses a three-level model and a graphics
software structure based on the model that were developed
with the goa l of making graphical appli cations independent
of the input devices. The software structure makes
graphical applications independent of the input devices in a
manner similar to the way the SIGGRAPH CORE proposal makes
them independent of the output devices. A second goal was
to provide a convenient means for application programmers to
specify the user - input language for their applications .

The software consists of an input handler and a table-driven
pars e r. The input handler manages a CORE - like event queue,
changing input events into terminal symbols and making their
terminal symbols available to the parser in a uniform
manner . It also removes most device dependencies. The
parser is table driven from a Backus-Naur form (RNF) grammcr
that specifies the user-input language. The lower level
grammar rules remove the remaining device dependencies from
the input, and the higher level grammar rules specify legal
sentences in the user-input language.

Our implementation of this software is on a table - top
mini computer. Our experience with retrofitting ex isting
applications indicates that we can find a grammar that
removes essentially all the device dependencies from the
application proper.

Key words: device - independence; graphical input; user
interface.

The proposed SIGGRAPH CORE standard provides a
large measure of device- independent graphical

unit) fit into the logical - device classification
scheme. Van den Bos has described an
alternative to the logical device model [2].
This paper presents a model that can incorporate
the Graphics Standards Planning Committee (GSPC)
logical-device model, but adds another layer
between the logical devices and the applicati on.

ou tput [1]. I t represents a synthes is of many
years experience in producing graphics output on
various devices . The same measure of device
independent graphical input, however, does not
exist . The CORE proposal does eliminate
appli ca tion program dependence upon specific
physical input devices, provided the physical
devices can be cast into one of several
logical-device classes (pick, button, valuator,
keyboard, locator). However, logical-device
dependence of the application program is not
addressed . Also, it is hard to see where some
input devices (for example, a voice recognition

11. MODEL OF USER INPUT

The literature identifies three different types
of processing of the user's input : lexical,
syntactic, and semantic (see Fig. 1). In
looking at several existing programs at the Los
Alamos National Laboratory, we observed that
device dependence is usually introduced into the

Graphics Interface '82

app l [cation at the middle level. At the firs t
(lowe~t) lev e l of the model in Fig. 1 , users
spJ~c t and us e physical-input devices. Software
provides t hem with low- level (l exical) feedba ck .
Examples of this are tracki ng a table or li ght
pen and echoing of text. This proces s i ng is
device dependent bu t appl i ca t ion i ndependent,
although t he device may be able, t h rough
subroutine calls, to specify one of several
alte r native types of l exical- level f eedbac k.
This l evel of software als o changes physical
device input into logica l - device i nput, and
corre~po flds fairly well t o a CORE - li ke i nput
subsystem.

Application
Semantic
Processing

Synt ac ti c
Level
Process i ng

Log ical
Device
Inputs

Lexical
Level
Processing

Physical
Input
Devices

1

Dev ice
Independent

Application
Dependent

Logical
Dev ice
Dependent

Applicat ion
Dependent

Phys ica l
Dev ice
Dependent

App li cation
Independent

User
Feedback

~

Fig . 1

At the second l eve l of the model, t he processing
bec ome s appl ica tion dependent. In most
applications we studied, the processing was also
device depe ndent beca use th e ap pl ica tion
req uired certain (logical) devices to be used .
Here the application - dependent syntax is checked

24

to see if the series of user inp"t forms a I f')!,al
ph ra se in the user - input language of the
application . Syntactic-level feedback is given
at this l evel. This feedback may involve
r ea sonable amounts of applicaLion-dependent
processing, but this processing is not the
primary processi ng of t he applicat io n . If the
input specification corresponds to a legal
phrase i n the user's input language, this
proces s ing often changes t he input ph ras e (often
a si ngle parameter of a command) into a standard
form for use by the re s t of the application.

At the third (highest) level of our input mode l,
the processing is application depelldent and is
usually logi ca l - device independent. Changing
user input phrases into some sta ndard form in
the middle level typically removes the device
dependencies i n the applications we studied.
This third - l evel pro cessi ng may gathe r up
several such !J h t·"ses (par a me t e l' ~) until a
complete sentence (command) is available, and
then perform the processing reque s ted by t he
command. Con~and proces s ing is the primary
proces sing of thp applicHtion.

Ill. SOFTWARE STRUCTURE

According to our model, software for graphica l
input should be able to isolate the dev ice
dependencies in an application to, a t most, tll e
middle l evel, and perhaps elimi nate mos t dpvi ce
depe ndell c jps f·vpn fr om that It 'v ,'l. Fig . 2 shows
t he h <J~ j .. s llfLw,nc' ~ tructllre we lI ~ e Lo try t o
accomplish th i s . At Lhe bottom of Fig . 2 , we
have indi ca t ed a standard CORE - l i ke input
suhsystem tha t accepts physical-d ev ice input and
conve rL s it into l ogical-devi ce input. This
s ubsystem corresponds t o the l ower level of the
model and is application indep endent but device
dependent. In the CORE proposa l, the main
application program would access this logical
device input directly through the event queue .
However, we have added two modul es at t his
point: the input handler and a parser . The
input handler is part of the lower level
(applica tion independent) processing and the
parser is at the middle leve l of the model . We
feel that with p ro per gramma r design the i nput
handler a nd the lower: l evel grammar r ules in the
parser can be used to remove t he logi cal -dev i ce
dependencies from the input .

The fun ction of our input handler module is to
continual ly sca n the input-device event queue,
changing i nput events into termina l symbols f or
the parser and making them available t o t he
parser in a uniform manner. Our input handler
module recognizes some special user -input
actions tha t allow users t o e nable/disable the
various input devices, thu s giving them some

Graphic. Interface '82

"Standardized"
Input

Sentences

Logical
Device
Independent

Appll cation
Dependent

Grammer
Table

"Standardized"
Input

Phrases

Logical
Oev i ce •••••••••
Inputs

Core-like
Input

Subsystem

Physical
Input

Devices

I

User
Feedback

Fig. 2

Logical
Device
Dependent

Appll cation
Independent

Physical
Device
Dependent

App IIcati on
Independent

measure of dynamiC control over the choice of
input device. It also removes most device
dependencies by passing to the parser the type
of input rather than the device from which the
input came. For example, it makes selecting a
menu item with a locator device
indistinguishable from typing the name of the
menu item on a keyboard or pushing a button
associated with the menu item. It also makes a
position indicated on a locator device
indistinguishable from that position entered by
typing the coordinates on a keyboard. Foley and
Wallace have discussed simulating one class of
inpu~ device by another class [3). Generally,
our 1nput handler makes such simulation
invisible to higher levels of software. Only
the type of input is returned, not the device
from which it came. The input handler may, by
default, enable and arm a device that is
normally used for the expected type of input,
but this is not required.

25

Sometimes, however, the application programmer
may wish to generate different syntactic-level
feedback for input from different devices. Our
software discourages this, but allows for it in
order to handle special circumstances . For this
reason an application can, by a request to the
input handler, find out the logical device that
produced each input terminal symbol. Use of
this information, of course, introduces device
dependencies at the next higher level. To
isolate these dependencies as much as possible,
our next level software is a table-driven parser
whose lower level grammar rules are designed
specifically for each application to remove the
remaining logical-device dependencies. These
lower level rules have the effect of
transforming the input phrase into a standard
form. The parser's semantic interface at this
level provides the syntactic user feedback by
calling application-dependent routines. These
grammar rules can, with some effort, distinguish
between different input devices . However, it is
just as easy not to do so . We hope this wil l
encourage device independence. With experience
it might be possible to discover a set of
often-used, lower level input grammar rules and
build them into the input handler.

The higher level grammar rules used by the
parser determine if user input forms legal
statements in the user input language, and
provide a semantic level interface to the
application program, passing it user input
commands that have been transformed into a
standard form. This corresponds to the third
(highest) level of our model .

IV . IMPLEMENTATION

This software structure has been implemented in
Fortran on a DEC LSI-ll microcomputer . This
places the first two levels of input process ing
on the microcomputer, isolating all device
dependencies to the microcomputer so that the
main application program running on a host
computer is input- and output-device
independent. The physical input devices include
a keyboard, a data tablet, a joystick, a voice
recognition unit, several knobs and switches,
and a thumbwheel cursor, which is part of the
Tektronix 4014 storage tube output device .
Output devices include the storage tube and a
high-resolution (768 x 1024) black-and-white
video display.

An implementation of the proposed CORE input
subsystem was not available, so our input
handler scans the physical devices directly,
funneling all input i nto a stream of terminal
symbols to the parser. An application program
can pass to the input handler the physical

Graphic. Interface '82

];IYOul. ann entries in a menu on either of the
Lw .. I"e atur devices . The inpuL handler will
then make indistinguishable to the parser
keyboard entries of the menu items and locator
hits on the menu items. Special keyboard keys
are recognized by the input handler and allow
the user to enable/disable the thumbwheel cursor
and display of the menu on the storage tube
screen. Although the application program can
specify that it wants one device or the other
enabled for the next input, the user is not
required to use it. The only way the
application programmer can absolutely require
use of a certain device is to request the input
handler to provide device information in the
form of specific device-dependent terminal
symbols and to specify these device-dependent
symbols in the grammar used by the parser.
Then, if the user uses anything but the required
devic e , it will not parse and the application
program's error routines will be invoked.
Although this type of use of the system is
pos sible, the system discourages this use by
ma king iL harder to require a spe cific device
than it is to allow use of any device . This
behavior is opposite to the way many existing
systems work.

The parser used in this implementation is LANG
PflK [41, a Lable-driven parser -ill fairly wide
use. [t allows the application progranuner to
enter a grammar, along with semantic operations
to be invoked upon mat.ching the various grammar
rules. Sample input sequences ca n then be
interactively entered and checked by the parser,
so that the application programmers can check
their grammar. The semantic interface between
LANG-PAK and the application program was changed
in this implementation so that any Fortran
statement or statements can be placed as
semantic speci fications anywhere in the grammar.
These statements will be executed when the
associated grammar rule, or partial rule, is
lIIaL c hed in the user input string. These
statements are typically CALL statements to the
va ri ous application program subroutines that
perform the actions associated with various user
i.npul.

V. USES

For interfa cing to existing Laboratory
applications, we have built on top of the
graphical input software a small LSI-l1 resident
program that communicates with the main lime
sharing network at the Laboratory. This system
provides a user-tailorable front-end to other
('xisl"i llg applications lhal rllll UII the Lime
sharing system . User input from the various
graphical and lexl i.nput devi ces is mapped by
the parser and associated semantic routines onto

26

Ut(' input form"t rI'qlliT-PO by (')(isl ing I.ailnr'lt " ,-v
applic<lt lOllS. iJi [J.('renl gramma," ;llld st'mallLie
routines are IIs ed for different exis ting
appli cations. The first application, ~1i\PI'ER, is
an existing Laboratory application for producing
presentation sli des [5]. MAPPER reads a file of
commands that specify the slide, including x,y
coordinates of graphics entities such as boxe s ,
circles, and lines. The common mode ot using
HAPPER is to IIse a text edi tor to construct a
command file and then execute HAPPER with this
file as input. We observed that the most time
consuming aspect of this use of ~LAPPER is
correctly entering the x,y coordinates of the
various graphical entilies. Iteration is
necessary because we are forced t o use a
nongraphical keyboard to specify graphical
objects. A grammar was written for t he LSI -l!
resident front-end program that accep t ed input
from all devices and converted it to the MAPPER
format. A menu was laid out providing an item
for each HAPPER command. With this menu, us e rs
can trace existing sketches of slides or create
new sketches on a data tablet. No modificalion
to any program running on the time-sharing
system was required. Using this front - end on
several test slides, we found that the time
required to generate a slide was reduced
considerably because of the reduced number of
trips n('eded to position the graphics ('''jects
correctly.

One problem with thi s usage is providing
convenient syntactic-input language phrases and
feedback on al I devices without modifying the
application on the host computer. We prefer to
be able to specify graphical obj ec ts differently
on different devices. For example, MAPPER
requires a center and a radius to specify a
circle. If we use the tablet f o r the center
point, we musl change to a valuator device or
simulate a valuator with the tablet to give the
radi_us. It would have been straightforward t o
use the tablet Lo enter a center point an~ a
point on the circle , but the existing
application wa s not written thaL way. Our
so lution was to perform syntactic processing in
our micro compuler on two tablet points, a center
and a point on the circle, to calculate a radius
that was then passed to HAPPER . This
modification of the user-input language worked
successfully, but it introduced some device
dependencies into the lower levels of the
input -language granunar and int roduced some
device-dependenl processing of the tablet input.

The second application to use thi s sys tem wa s a
small tw<, -dimen s ion al interactiVe' dra wi ng
program c~ lled OHi\WJT . ORAWIT Jllows Lh e
definition of sub - objec ts and i nstances of these
sub-objects t o be placed at vari ous posiLioll s 011

the picture. It allows modification or deletion

Graphics Interface '82

of these sub-objects as entities and also allows
drawing and deletion of individual lines and
t ext in the picture. The user-input language
was purposely kept quite simple to facilitate
use on different logical-input devices. Each
command cons i st s of a logical button (to specify
the command), optionally followed by a location.,
For example, the location following move or draw
commands specifies where to move or draw to .
The only exception is the command to place text
in the picture, which is followed by a text
string. This syntax was we ll suited to our
Te ktronix thllmbwh eel cursor, whi ch allows us to
couple a single keyboard character with the
cursor l oca t i on . Also, we could easily simulate
this syntax using only the keyboard, using only
the cursor , or using only the tablet by
de signating part of the tablet as a menu of
comma nds . Our input handler alone was able to
remove al l dev ice dependen cies from higher
levels of software in this ca se, wh ich allowed
the user to choose among all po s sible ways of
using our three physical devices to specify two
input items . Our parser in th is case
essent ia lly performed the identity function.

With use of DRAWIT, we observed a us er
preference for the tablet device. We also
observed that it was annoying to be forced to
alte rnate l y move the tablet stylus between the
locator area a nd menu area of the tablet,
especially on the draw command, which was often
repeated many times in suc ces sion . Therefore,
we modified DRAWlT slightly to i mprove its use
with the tab l et by allowing the command to be
omitted if it was the same as the previous
command . Even though the impetus for this
modification came from a particular device,
DRAWIT is still i nput-devi ce independent in the
sense tha t it processes input from all devices
in the same manner . Indeed, it does not know
which device produced its input.

VI. CONCLUSIONS

Thi s so ftware struc tu re has been used to
successfully retrofit ex i sLi ng applications and
remove device dependencies. This structure
allows ex ist ing applications to make use of
newly available input devi ces. The hardest
problem has been prov i ding good syntactic level
phrases and feedback on all devices wi thout
modifying the existing appl ica tions .

Wi th this system, we tend to continue using the
current input device (to preserve tactile
continuiLy) until we r ea lly need to swi t ch to
another one. This use is made possible by the
user being able to select/deselect input devices
without the application program's i ntervention .
However, an application may r equire first an

27

input from one device class and then an input
from another device class. We can simulate one
class of device with another. We took this
approach in both appli ca tions described above.
This system was successfully able to hide the
simulation from the application, but it was not
able to do so and still make optimal use of all
the devices from a human engineering viewpoint .
These difficulties were remedied in the two test
applications, either by changing the
application's user-input language or by
introducing some device-dependent processing of
some user inpuL.

The table-driven parser has isolated the input
language specifi ca tions and has made
experimenting with user input languages much
easier .

We conclude from our limited use of this
software tha t it ca n s uccessfull y eliminate
application dependence upon specific l ogical
input devices. However, the software can not
guarantee successful human engineering f or all
devices .

REFERENCES

1. "Status Report of the Graphics Standards
Planning Committee," Computer Graphi cs
(13,3), August 1979.

2. Jan Van den Bos, "Definition and Use of
Higher Level Graphics Input Tool s ," Computer
Graphics (12,3), August 1978 , pp. 38-42.

3. J. D. Foley, and V. L. Wallace, "The Art of
Natu ra l Graphic Man-Hachi ne Conversation,"
Proceedings of the IEEE (62,4), April 1974 ,
pp . 462-471.

4 . L. E. Heindel , and Jerry Roberto, LANG-PAK -
An Interactive Language Design System, --
American Elsevier, New York, 1975 .

5. D. H. Dahl, "NAPPER User Manual," Los Al amos
Program Library Write-up J5AJ (1979).

Graphics Interface '82

