A HIGH-PERFORMANCE RASTER DISPLAY SYSTEM

Roger Bates
Jay Beck!
Terry Laskodi
Ed Reuss
Marc Wells

Computer Research Laboratory
Applied Research Group
Tektronix Laboratories

Beaverton, Oregon, USA 97077

(503)-644-0161

John Beatty
Kellogg Booth
Larry Matthies®

Computer Graphics Laboratory /
Department of Computer Science

University of Waterloo

Waterloo, Ontaric, Canada N2L3G 1

(519)-886-1351

ABSTRACT

The Geometry Processor is a high speed, programmable, floating point peripheral processor designed to
rapidly perform the computations commonly needed for graphics applications. Its firmware is written in

a high-level, machine oriented assembly language.
GSPC CORE Standard, has also been completed.

A prototypical host software package, based on the

KEYWORDS: geometric transform processor, machine oriented Janguage, microprocessor, raster

graphics.

Introduction

The economics of integrated circuit fabrication argue forcibly
that future computer graphics workstations will make use of low-
and medium-cost special purpose hardware to achieve high-
performance graphical interaction with raster displays. To gain
experience with such hardware, Tektronix Laboratories has
designed, built and tested a microprogrammable geometric
transform processor to perform the geometric manipulations
commonly needed for graphical output. The architecture of this
“Geometry Processor” (GP) is flexible enough to support its use
either as a solitary graphics peripheral processor (the present
configuration) or as part of a multiple-processor pipeline
[8,9,18,19]. The Geometry Processor is presently attached to a
PDP 11/44 running the Unix operating system.

The GP is programmed in a “high-level microassembly
language™ which provides both high-level control structures like
an IF-THEN-ELSE or DO-loop and a natural syntax for machine
instructions. The language provides full and direct access to the
bare machine whenever necessary, but automates much of the
book-keeping and error checking involved in writing correct
horizontal microcode.

The assembler has been used to write a resident firmware
package of approximately 1700 microinstructions. This firmware
executes macroinstructions stored in host memory.
Mucroinstructions have been implemented which multiply
matrices, apply matrices to homogeneous coordinate vectors,
push/pop matrix stacks, line/polygon clip coordinate vectors,
viewport transformed/clipped data, and transfer data into and out
of the GP.

A host software library modeled on the GSPC CORE [1] has
been implemented which allows application programs to pass data
to the GP for processing, or to invoke a simulator for the GP. A
display package has also been implemented which partially scan
converts transformed/clipped polygons from the GP and passes
them on to a separate z-buffer display.

The preparation of this paper was supported by the Natural Sciences and Engineer-
ing Research Council of Canada under grant A3022.

Geometry Processor Architecture

The Geometry Processor is constructed of about 465 MSI and
LSI TTL integrated circuit chips, organized on three boards [2].
It was designed to maximize the speed with which floating point
matrix operations can be performed. Microinstructions are 48
bits wide and operate on 32-bit integer and floating point
operands. Control of microprogram flow is provided by an
Advanced Micro Devices 2910 microprogram sequencer. Floating
point hardware is built around a special 24x24 bit LSI multiply
chip provided by TRW (not commercially available). Integer and
logical operations are implemented by utilizing circuitry in the
floating point adder. Two 32-bit parallel i/o ports are provided
for GP-controlled i/o, and a separate host-controlled 8-bit control
or pilot port is provided for downloading microcode and for
microprogram debugging. The principal processor components
and data paths (figure 1) are described below in somewhat more
detail.

Data is stored in a 2,048 word by 32 bit register memory
(RM) built of 55 ns high speed HMOS ram chips. RM is
accessed through the A, B and C pointer registers. The A and B
registers contain left and right operand source addresses for
arithmetic and logical operations; the C register may be used to
specify the RM address at which a result is to be stored. The A
and B registers may be autoincremented by a variety of values
(discussed below), and the C register may be autoincremented by
1. All three registers may be loaded from the data bus, by means
of which the principal hardware components communicate.

Operand values may also be stored temporarily in the T regis-
ter. 32-bit values may be transferred between the T register and
the bus, and any byte in the T register may be loaded from any
byte of the bus. This enables arbitrary 32-bit values to be
constructed from 8-bit values placed on the bus by the pilot port.

] Present address: Evans & Sutherlund Computer Corporation, S80 Arapeen Drive.
Salt Lake City. Utah 84108, (801)-582-5847.

2 :
“ Present address: Department of Computer Science, Carnegie-Mellon Universi .
Pittsburgh. PA 15213 (412)-578-2592.

Graphics Interface ’'82

356

Dovoyggs Figure 1. A block diagram of the Geometry Processor.
4
ilot port
:
AMD 2910 instruction
instruction memory :
control (2k words) data Eegister i/0 port
. . auto inc. | address 16
(48 bits wide) size register
sequencing
op code
instruction .
register dato register i70 port
next address l constants auto inc. | address 16
size register
m register
H (2k words) 1
k bits wi
(32K bits wide floating point
*
floating point
‘ +
byte S register
swapping]
T register
Figure 2. The layout of a Geometry Processor instruction.
Y
S Ng & &
o) (] o A o
P Sl & c°b & &
S & o & & © S
I v R & R CAN:
L1 11 [[|
47 32
o
O &
< 2 <
& o> S 0"\\(\0 \6\ DQ
SUSIPNES T SN ' o°
OO .9 Qe L @
v ? o S o
s =C i70
coe T *FF cee
|] L1 [1 L1 1
31 16
N
<
3
o & S
R & S
o O)
22 S
1 1 1 ! O | 1 | | | E_ .t L
15 (o]

Graphics Interface ‘82

To discuss the floating point subsystem intelligibly we need to
make some preliminary remarks about instruction execution and
system timing. Execution of a new instruction begins every
machine cycle (300 ns). Most instructions complete in a single
machine cycle, but the results of floating point additions and
multiplications are available only at the end of the following and
second following instructions, respectively. More precisely: each
machine cycle is sub-divided into three phases of 100 ns each. If
a microinstruction enables an arithmetic or logical operation, the
right and left operands are acquired from the bus during the first
and second phases of the instruction, respectively. Results are
stored during phase three. However, most arithmetic and logical
operations require three additional phases to complete once the
operands are available, and their results are therefore stored dur-
ing phase three of the following instruction.

Multiplications and divisions are an exception to this scheme,
as they require six additional phases to complete. The multiplica-
tion itselfl is performed during the first three of these; during the
second three the result is optionally added to the contents of the S
register and normalized. Hence the result of a multiplication is
available for storage during phase three of the secand instruction
following the instruction in which the multiplication was begun,
s0 that a total of nine phases (three complete machine cycles) are
required for operand fetch, computation, and storage of the
result.

Thus the location at which the result of an arithmetic or logi-
cal operation will be stored is specified in the instruction during
which the operation completes, nat in the instruction which
invoked the operation. This is a major source of programming
complexity.

Although these operations require two or three machine cycles
to complete, they are pipelined so that successive operations may
begin on successive machine cycles. Thus a 4x4 matrix multipli-
cation may be performed in approximately 23 microseconds, and
a matrix may be applied to a vector in approximately 7
microseconds.

The GP transfers data between itself and the outside world
through two 32-bit parallel i/o ports. Each has a 32-bit data
register, a 12-bit address register, and a 4-bit autoincrement regis-
ter. The hardware attached to an i/o port is expected to have a
relocation register which is added to the port address. (In the
case of the 11/44, to which the GP is currently attached, the
resulting address is run through the Unibus map.) Reading or
writing the data register for the selected i/o port triggers the
corresponding operation on whatever is attached to the port, and
the port address is autoincremented.

Microinstructions are stored in a 2,048 word by 48 bit instruc-
tion memory (IM) built of 150 ns ram chips. The layout of a
microinstruction is indicated in figure 2. The following comments
are intended to indicate the range of functionality available.
Much unnecessary detail is omitted, for which the reader should
be thankful...

If we schematically represent an alu operation by
C:=AopB

then the integer and logical operations available are

357

0
B-A-1][+1]
A-B-1[+1]
A+ B [+1]
A xor B
AorB

A and B

all 1I's

TR

oloNokoXo oo Ke)
1

([+1] indicates that the result may optionally be incremented by
1) and the floating point operations available are

= A+B

A*¥B+0
A*B+ S
A*B-S
A-B

A/B+0
A/B+S
A/B-S

C
C
C

C :

nonn
[

(S is the floating point accumulator). Floating point values are
represented according to the proposed IEEE standard. and thus
possess an 8 bit exponent and (implicitly) a 24 bit mantissa. (The
DMA interface connecting the GP i/o ports and the PDP 11/45
is able to convert between DEC and GP floating point formats.)
Hardware division results in 8 significant bits since a division by B
is replaced with a multiplication by 1/B (an 8-bit value obtained
from PROM); true division (required for perspective projection) is
accomplished by a 3.5 microsecond firmware algorithm.

The floating point hardware sets status flags to record the
occurrence of underflow or overflow, and a value is produced
which can be consistently used in a subsequent arithmetic compu-
tation. Thus the firmware may check for the occurrence of a
floating point error at the end of a sequence of operations and the
value produced always makes sense.

The AMD 2910 microprogram sequencer provides a program
counter (PC), subroutine call and return using a five word address
stack, a loop counter (COUNT), and conditional or unconditional
branching. The sequencer op code field selects one of the sixteen
standard AMD 2910 instructions; these are listed in the next sec-
tion. For appropriate 2910 instructions, the branch condition
field sclects one of the tests BUS=0, BUS>0, BUS>=0, i/o
busy, interrupt pending, floating point overflow. and floating point
error; the complement of each test may also be selected. The
complement of overflow is underflow.

The B source and A source fields of the instruction may
specify that the corresponding phase 1 and phase 2 operands are
to be the:

(1) T register:

(2) constant defined by the FF field:

(3) RM word pointed to by the B or A register:

(4) RM word whose address is contained in the FF field.

The selected operand is placed on the bus during the appropriate
phase.

The C source field selects the value which will be stored by
phase 3 of an instruction. The values which may bhe selected
include the:

Graphics Interface '82

(1) constant defined by the FF field;

(2) RM word pointed to by the C register;

(3) RM word whose address is contained in the FF field;
(4) alu output from phase 2;

(5) data register for the current i/o port (a read).

The C destination field selects the location at which this value will
be stored. Any or all of the following destinations may be
selected, in most cases simultaneously:

(1) output from the alu may be written to the S register;
(2) T register;

(3) RM word pointed to by the C register;

(4) RM word whose address is contained in the FF field;
(5) data register for the current i/o port (a write);

Routing alu output to the S register does not tie up the bus dur-
ing phase three, so that another value may simultaneously be
routed to any of destinations (2) through (5).

The *‘load/modify A, B, C pointers” field may be used to load
any combination of these pointers, including all or none of them,
from the bus during phase 3, or to cause the A and B pointers to
be autoincremented during phase 2 and phase 1. respectively. In
the latter case one of eight autoincrement pairs is specified. The
corresponding values are defined by a PROM. Six such pairs are
currently being used, including [1.0] (increment A by 1 and B by
0) and [1.4] (increment A by | and B by 4). The latter pair
provides exactly the address modification needed when computing
an entry in a matrix product; other pairs are selected for similar
reasons. Autoincrement control of the C register is provided by
the bonus bit.

Ordinarily the FF field serves as an immediate constant, an
address, or is used to load the locp counter (COUNT) in the
sequencer chip. (Of particular utility are the flags which allow the
real values 1.0 and 0.5 to be generated as immediate constants.)
When the FFtag instruction bit is set to 1, however, the FF field
may instead serve a number of special purposes. (Exuctly which
is indicated by its leftmost two bits.) Briefly, these are:

(1) read or write IM from the bus during phase 3;
(2) select an i/o port;

(3) set or clear an i/o interrupt;

(4) load the selected i/o address register;

(5) load the selected i/o autoincrement register;
(6) shift alu output left or right by I;

(7) reset the floating point error flags;

(8) select bus byte and T byte for a T register load;

The pilot port is not involved in the normal execution of the
GP. It serves two purposes: it provides the means by which
microcode is downloaded into instruction memory from the host,
and it provides a mechanism for debugging firmware.

Data may be transferred in either direction through the pilot
port, one byte at a time, between the host and any of the four
bytes of the T register. The pilot port may also cause the
contents of the T register to be loaded into the instruction register
(IR). This enables a host program to manipulate the GP by load-
ing an instruction into the T register, transferring it to the IR,
and executing it. Microcode is thus downloaded by assembling a
word in the T register and executing an instruction which writes
the contents of the T register into either the high 32 or the low 16
bits of a word in IM.

358

D

To facilitate this process the pilot port may start, stop, single
step and reset the GP. Inteructive debugging is performed from
the host by halting the GP, saving the contents of the T register
and the address from which the IR was loaded (latched in a spe-
cial register just for this purpose). and inserting an instruction
into the IR which causes the contents of an arbitrary register to
be moved to the T register, from which it can be read via the
pilot port. Microprogram execution can then be resumed after
restoring all modified registers. Breakpoints may be inserted in
such programs by setting the leftmost bit of an instruction to I;
the result is to halt the processor before the instruction is
executed so that the pilot port may examine or modify the state
of the GP.

Microassembler

As can be uappreciated from the preceding section, direct
microcoding of the Geometry Processor is a tedious and error-
prone occupation, made especially so by the number of fields in
each instruction and the pipelining of arithmetic and logical
operations. This is, of course, the usual argument for the use of
high-level languages. On the other hand. the GP exists for the
sole purpose of executing a small number of algorithms at the
highest possible speed, motivating the careful preparation of
optimal code. This can be done, in general, only by assembly-
level programming. Hence the primary goal in designing a
microassembler for the Geometry Processor was to provide high-
level language constructs wherever possible while retaining the
capability for setting specific fields within a microinstruction [6].

Statements within a GP program or procedure consist of
declarations, procedure definitions, assignment statements, control
statements, branch statements, and assembler directives. Each of
these will be discussed below. A general design principle, how-
ever, was that each executable statement correspond to the notion
of an instruction in a traditional assembler, modulo the effects of
pipelining.

The overall intention was, then, to maintain the run-time
cfficiency and flexibility of machine code while gaining the

advantages of a high-level language. This is a philosophy
borrowed from Niklaus Wirth’s **machine oriented language™
PL360 [21]. The GP microassembly lunguage was also much

influenced by the work of Don Faul on a language for the
ISI/Child programmable frame buffer designed in the mid-1970's
at Lawrence Livermore National Laboratory [7].

The language accepted by the GP microassembler is a mixture
of B, C, Pascal, and various traditional assemblers. In many
cases this amounts to little more than ‘“‘syntactic sugar” which
renders the source code more readable. However, the
microassembler will report any attempt to assign conflicting
values to a microinstruction field; this feature is particularly use-
ful in the case of arithmetic or logical instructions, which
necessarily result in the setting of fields in subsequent
microinstructions. To preserve the correspondence between
source and object code, the assembler does not attempt to
automatically merge consecutive instructions which use disjoint or
compatible fields. [t is expected that the small amounts of speed
critical code involved will be hand optimized by the programmer.

We introduce the GP microassembly language by way of the
following example program, which reads 100 homogencous
vectors from the input port, multiplies them by a matrix, and
writes the result vectors to the output port. For simplicity the
matrix is assumed to have been initialized elsewhere.

Graphics Interface '82

program Transform;
const N = 100:
var rm row[1:4], matrix[1:4,1:4];

port input = 0, output = 1;
set port to input, set port increment to 4;
set port to output, set port increment to 4:

B := address(matrix);

do N times;
set port to input;
A := C := address(row);
[C+1] := [1O+1];
[C+1] := [IO+1];
[C+1] := [1O0+1];
[C+I] := [IO+1];

S = [A+1] ** [B+4], set port to output;
S = [A+1]** [B+4] ++ S:

S = [A+1]** [B+4] ++ S
(10+1] := [A-3] ** [B-11] ++ S;

S = [A+1]** [B+4);

S = [A+1]** [B+4] ++ S

S :=[A+1]** [B+4] ++ S;
(10+1]:= [A-3] ** [B-11] ++ S;
S := [A+1] ** [B+4];

s = [A+1]** [B+4] ++ S;
S = [A+1]** [B+4] ++ S;
(10+1] := [A-3] ** [B-11] ++ S:
S = [A+1]** [B+4];

S = [A+1]** [B+4] ++ S;
S = [A+1]** [B+4] ++ S;

[T0O+1]:= [A+1] ** [B-15] ++ S;
nop; /* Wait for the result */
end do; /* The final store occurs here */

t /* Dump the symbol table */

end program Transform.

Since the assignment, control and branching statements
described below often make use of distinct microinstruction fields,
the programmer may make them part of the same statement
(instruction) by separating them with a comma: a semicolon
marks the end of such a list, and indicates that the assembly of a
new instruction should begin. Thus

S := [A+1] ** [B+4], set port to output;

results in an instruction whose fields specify the initiation of a
multiplication and the selection of an i/o port. It will be con-
venient to refer to the pieces of such a composite statement as
*‘actions”. If the actions in a statement require that any field of
the corresponding instruction have two or more distinct values
then an error message is generated.

We shall now sketch, in turn, the various kinds of statements
accepted by the GP microassembler.

Declarations such as

359

const N = 100;

port input = 0, output = I[:

field 1 = BITS{15:8}: /* Third byte in a data word *,
ficld f2 = FF{11:0}; /* branch address in FF */

provide for the creation of symbolic names for constants, i/o
ports, and bit fields. Notice that the register names discussed in
the previous section (such as FF, A, B, C, S, T and 10) are
known to the assembler and may be used wherever appropriate.
The name itself (such as A) represents the contents of the register.
while enclosing the name in square brackets (for example: [A]D
refers to the value pointed to by the address in the register. Vari-
able declarations such as

var rm row[1:4], matrix[1:4,1:4];

may be used to associate a symbolic name with a block of storage
in register memory (rm - the default) or instruction memory (im).
Storage is allocated statically, so that a unique portion of the
appropriate memory is permanently associated with every
declared variable. The scope of an identifier is the entire program
or procedure in which it is declared. Procedures may be nested.
However, aside from defining the scope of identifiers declared
within it, a procedure definition is equivalent to the definition of a
label at the same location; there is no saving of registers, return
addresses, or anything else at procedure entry and when a pro-
cedure exits the next instruction is simply executed. Label and
procedure names must be declared before they are defined and the
scope of the names is the scope of the declarations. Since the
assembler operates in a single pass, every identifier must be
declared before it is used.

Variables are not typed. Instead the floating point version of
an arithmetic operation is distinguished from the integral version
by repeating the operator. Thus + denotes integer addition and
++ denotes real addition. In order to preserve the correspon-
dence between assembler statements and machine instructions, the
assembler accepts as the right hand side of an assignment state-
ment only those expressions whose computation can be initiated
in a single microinstruction, such as

S:= [A+1]** [B+4] ++ S:

Only the small number of autoincrement/autodecrement values
implemented directly by the hardware are allowed. Multiple
assignments such as

A := C := address(row);

are allowed in so far as they comprise compatible phase 3
destinations.

Control statements such as

SET PORT INTERRUPT

RESET PORT INTERRUPT
ENABLE PORT BASE LOAD
ENABLE PORT ADDRESS 1.OAD
SET PORT TO <0 or 1>

SET PORT INCREMENT TO <expr>
RESET FP ERROR

modify the state of flags in the GP in the obvious way.

A variety of branch statements allow the microprogrammer to

specify the microinstruction fields which control program flow.

Graphics Interface '82

Most of these statements make use of conditional branch features
ot the AMD 2910 sequencer chip. The conditions available are

UNLESS BUS =0
UNLESS BUS !=0
UNLESS BUS > 0
UNLESS BUS <0
UNLESS BUS >=0
UNLESS BUS <=0
UNLESS INTERRUPT
UNLESS BUSY
UNLESS FP ERROR

WHEN BUS = 0

WHEN BUS != 0

WHEN BUS > 0

WHEN BUS < 0

WHEN BUS >= 0
WHEN BUS <=0
WHEN INTERRUPT
WHEN BUSY

WHEN FP ERROR
WHEN FP OVERFLOW
WHEN FP UNDERFLOW
ALWAYS NEVER

BUS conditions test flags indicating the value of the bus during
phase 3 of the previous microinstruction. BUS may be replaced
by any valid phase 3 source. If a pipelined operation is specified
in the same instruction then the test is delayed until the operation
is complete.

The various branch statements available make use of the
COUNT register and address stack in the AMD 2910. The
COUNT register may be used as the control variable of a loop,
or may be loaded with an address through which a jump may
subsequently be executed. The address stack may be used for
nesting subroutine calls, although the hardware does not provide
any mechanism for trapping stack overflow and the assembler
does not attempt to predict such an eventuality. The primitive
branching instructions, which correspond exactly to the
capabilities of the hardware, are as follows:

GOTO <target>

GOTO <target> <condition>

GOTO <target> <condition> ELSE GOTO [COUNT]
GOTO [COUNT]

CALL <target>

CALL <target> <condition>

CALL <target> <condition> ELSE CALL [COUNT]
CALL [COUNT]

A <target> is either a label or a procedure. A condition
is @ WHEN or UNLESS clause. The COUNT register is
assumed to have been loaded previously with the address of
interest. A CALL pushes the current contents of the pro-
gram counter on the address stack and transfers control to
the <target> address.

PUSH

PUSH THEN COUNT <expr> TIMES

PUSH THEN COUNT <expr> TIMES <condition>
PUSH THEN LOAD <target> INTO COUNT

PUSH THEN LOAD <target> INTO COUNT <condition>
ITERATE ELSE POP

ITERATE ELSE POP TO <target>

COUNT <expr> TIMES

LOAD <target> INTO COUNT

PUSH simply causes the program counter to be pushed on
the address stack. COUNT <expr> is used to initialize
the COUNT register to <expr>-1 at the top of a loop;
presumably a subsequent ITERATE statement will cause a

I

360

branch back to the top-of-stack-address after decrementing
COUNT if COUNT s non-zero, so that the toop will be
executed exactly <expr> times. When COUNT goes to
zero the address stack is popped and control either
proceeds sequentially or is passed to the specified <tar-
get>. LOAD <target> initializes COUNT with <tar-
get>, which will presumably be used later as a jump
address.

RETURN

RETURN <condition>

LOOP

POP

POP <condition> ELSE LOOP

POP TO <target>

POP TO <target> <condition>

POP <condition> ELSE ITERATE ELSE POP TO <target>

RETURN causes the stack to be popped after transferring
to the top-of-stack address, LOOP simply causes control to
return to the top-of-stack address, and POP simply pops
the stack.

At a somewhat higher level, o construct much like the
traditional “‘if-then-clse™ is accepted by the assembler. It is best
described by an example.

T:= [A] & [B]. WHEN BUS = 0 THEN:
ELSE square := T ** T
ENDIF [C] := T:

The “THEN-part™ consists of the statements up to and including
the statement which begins with ELSE, while the “‘ELSE-part”
consists of the statements following the statement containing
ELSE, up to and including the statement beginning with ENDIF.
The <conditional> appearing in the first statement may be either
a WHEN or an UNLESS, and selects which clause is to be
executed. In this example the THEN-clause has as its last action
a floating point multiply, which will require two machine cvcles to
complete. The assembler would normally arrange that the second
following instruction cause the result to be stored into the variable
square. Unfortunately this instruction lies in the ELSE-clause,
and would not be executed. To avoid such anomalies the pipeline
is always allowed to empty at the start of the conditional. and at
the end of the THEN- and ELSE-clauses, by inserting NOP
instructions as needed.

The GP assembler also accepts do-loops such as
T:=T** T. DO 10 TIMES;
ENDDOT:=T ++ 1.0;

The optional action (here T := T ** T) is performed, COUNT is
loaded with the number of iterations minus one, and the top-of-
loop address is pushed onto the address stack. The bodyv of the
loop, including the final action on the ENDDO, is executed the
specified number of times. Once again, the pipeline is allowed to
empty at the top and bottom of the loop by inserting NOPs.

The assembler simplifies the programming of arithmetic and
logical operations by automatically inserting the destination
specified in a subsequent instruction. and verifving that this does
not result in a conflict with other actions in that instruction. The

Graphics Interface ’82

programmer must, of course, be aware that this will happen.
When a branch occurs, however, the textually following
instructions need not be the next instructions executed. As we
have seen, the microassembler minimizes errors by *‘flushing” the
pipeline whenever a branch is specified by inserting one or two
NOP instructions prior to the branch so that the result may be
stored before the branch is taken. For the sake of efficiency it is
occasionally desirable to suppress this padding. Appending the
keyword IMMEDIATELY to an action accomplishes this; notice,
however, that the first or second textually following instruction
will still contain the phase 3 source and destination fields needed
to store the result. For example, the following loop will move N
words using 3+2*N instruction cycles.

C := ADDRESS(<source>);

A := ADDRESS(<destination>);
DO N TIMES: /* N is a constant */
ENDDO [C+1] := [A+1] ++ 0;

while

C := ADDRESS(<source>);
A := ADDRESS(<destination>);

LOAD N-2 INTO COUNT: /* N-2 is computed by the assembler */

[C+1]:= [A+1] ++ 0, PUSH IMMEDIATELY;
[C+1]):
NOP;

will require only 4+ N instruction cycles.

When all else fails, the bits in a specific field of an instruction
may be set directly by means of an action such as
“BITS{5:4}=2".

A more detailed description of the GP assembly language may
be found in [6]. The description supplied here should be sufficient
to give the reader a feeling for the way in which the somewhat
conflicting desires both for full, efficient access to the machine
and for the simplicity and expressiveness of high-level language
constructs have been resolved.

Programs are run through the C preprocessor [11] before
undergoing assembly proper so that macros (with parameters), file
inclusion, and conditional assembly are all supported. The assem-
bler recognizes the line number and file markers embedded in
preprocessor output so that error messages may specify correct
line numbers and file names.

The assembler contains a lexical analyzer generated by LEX
[14] and an LALR(1) parser generated by YACC [10]. Use of
these tools greatly eased both implementation and maintenance of
the microassembler.

Firmware

The motivation for designing the Geometry Processor and a
microassembler with which it can be programmed was to con-
struct a special purpose peripheral processor which could be used
to rapidly perform the geometrical transformations and clipping
operations necessary in 3-dimensional computer graphics
applications.

Because the GP is progammable it can readily be adapted to a
variety of system organizations. In the present configuration the
GP is connected to a PDP 11/44, from which it reads instructions
and data, and to which it returns results, although transformed
and clipped output could equally well have been passed directly

361

[A+1] ++ 0, ITERATE ELSE POP IMMEDIATELY:;

on o a second special purpose processor for scan conversion and
display.

The present GP firmware, then. is periodically given the
address of a macroinstruction list in host memory, which it
executes. These macroinstructions are each 8 bits in length, and
are either control, matrix, or operand instructions. The firmware
maintains a number of variables in register memory, which vari-
ous macroinstructions depend upon or modify, including an i/o
address, two matrix stacks, a viewport transformation, and an
operand/result data array. Within the GP vertices are always
represented in homogeneous coordinates.

There are four control instructions. NOOP has no effect.
STOP halts the GP after notifying the host of completion.
RESET empties either or both of the matrix stacks.
SETADDRESS may be followed by up to 3 bytes, and specifies
an address in host memory (1) at which the next macroinstruction
will be found, or (2) which a subsequent instruction will use for
reading or writing matrices or data.

There are five matrix instructions. Each may modify either or
both of the matrix stacks. MOVEM causes the matrix stored at
the current i/o address in host memory to be pushed onto the
selected stack(s). or returns one or both of the top-of-stack
matrices to the host. DUPM causes the matrix at the top of the
selected stack(s) to be duplicated, increasing the stack depth(s) by
one. POPM causes the matrix at the top of the selected stack(s)
to be released, decreasing the stack depth(s) by one. MULM
causes the two matrices topmost on the selected stack(s) to be
replaced by their product, again decreasing the stack depth(s) by
one. APPLYM has exactly the same effect on the selected
stack(s) as would a DUPM, followed by a MOVEM, followed by
a MULM.

Matrices are transferred from the host in a *“parameterized”
form which contains only the non-zero entries. Thus the host
representation of the matrix for a translation in x and y has a
header containing a code for translation and bit flags indicating
that dx and dy values are present; this 16 bit header is followed
by the two 32-bit floating point values of dx and dy. (The
MOVEM instruction expands the parameterized form into a full
4x4 matrix before pushing it onto the stack(s).) The parameterized
representations of scaling and rotation matrices are analogous.
There is also a full 4x4 format for matrices which do not fit this
scheme.

The operand instructions are considerably more heterogene-
ous. The MOVEO instruction is used to transfer data between
host memory and the GP operand/result array. There are four
bit flags in addition to the four-bit op code. The first specifies the
direction of data movement. A second indicates whether conver-
sion is desired between homogeneous and non-homogeneous form.
There is also a bit flag for each of the stacks. If the flag for stack
i is set then the topmost matrix on stack i is applied to each 4-
tuple transferred. If both flags are set then the topmost matrices
on each stack are applied to alternate 4-tuples. (Thus if data
being read from the host consists of 8-tuples comprised of a posi-
tion and a normal. and if stack one is u transformation stack and
stack two records only the rotations which have been
accumulated, then we are able to apply the current transformation
to positions and compute the effect of rotations on normals.)

The LINECLIP and POLYCLIP instructions cause a stan-
dard line or polygon clipping algorithm to be applied to the data
in the operand/result array. Clipping against the near, far and
side clipping planes may be individually enabled or disabled.
Clipping automatically results in the conversion of vertices from

Graphics Interface '82

homogeneous to non-homogeneous form; the fourth coordinate is
replaced by a ‘‘move/draw” flag. The POLYCLIP instruction
has an additional flag which can be set to indicate that each
incoming homogeneous coordinate carries with it a normal which
should be interpolated, not clipped.

Finally, the VIEWPORT instruction is used to apply the
current viewport transformation to the data in the operand/result
array, or to extract a lightsource dot-product from the data in the
operand/result array, or both (in which case the two kinds of data
alternate). The lightsource computation amounts to no more than
replacing a 4-tuple by its third coordinate, on the assumption that
the 4-tuples to which it is applied are normals which have been
transformed into a coordinate system in which the z-axis is paral-
lel to the light source vector.

Thus the macroinstructions presently implemented allow the
Geometry Processor to stack or concatenate the modeling and
viewing matrices commonly used in graphics applications, to
apply these matrices to vertex or normal data, and to apply a
viewporting transformation. Scan conversion is the responsibility
of a subsequent processor.

A detailed description of the way in which the Geometry Pro-
cessor is interfaced with the PDP 11/44 to which it is presently
attached may be found in [5,12,13,20]. Briefly, to use the GP the
requesting process is locked in core. The pilot port is then used
to download the firmware, initialize the i/o port base addresses,
and patch into an agreed-upon location in instruction memory an
address in the host program at which an instruction list pointer,
error return code field, run/halt flag and completion flag can be
found by the GP. The pilot port is then used to start the GP
executing. A control loop in the GP firmware samples the
run/halt flag to determine when a new instruction list has been
presented for execution. Execution of the STOP instruction
terminating the instruction list is iudicated by setting the com-
pletion flag and generating an interrupt, which is propagated to
the host program as a signal.

world coords
graphics transformations | Geometry
module virtual coords Friagessor
€ |
2
o
o
[oN
— :
g service
= module X filter X device
Q
a
(o
o plot format
. - i Depth
::ZZI:I); device coords BSfpfer
(scan line data)

Figure 3.

362

Host Software

A schematic of the host software with which an application
program may currently use the Geometry Processor appears in
figure 3.

The graphics module, which is the actual interface between a
program and the GP, contains the following kinds of routines.

1) Control Routines. These are used to initialize and terminate
the graphics module, and provide a means of switching
between a data mode in which lines. polygons and
transformations are passed to the GP for processing, and a
viewing mode in which the viewing transformation is specified.

2) 3D Viewing Routines. For the most part these conform to the
GSPC CORE Standard [1]. For convenience, however, a
camera mode is available in which the view plane normal is
automatically determined to be the vector from the eye point
to the view reference point (suggested by Tim Stevenson).
Also, following [17], a foreshortening ratio and receding angle
are used to specify parallel projections.

3

-

Modeling Transformations. These routines cause an appropri-
ate matrix to be passed to the GP. where it is concatentated to
the current transformation and lighting matrices (in the case
of a rotation). These matrices may first be saved on stacks in
the GP. The lighting matrix is initialized so as to transform
normals to which it is applied into a coordinate system in
which the light source vector is aligned with the z-axis. The
projection of a unit normal onto the light source vector is then
simply the z coordinate of the vector which results from apply-
ing the lighting matrix to the normal.

4) Data Routines. Vertices are passed to the GP in arrays. The
vertices defining a polygon may optionally carry a normal
which the GP will interpolate while clipping. Information
about the direction and nature of the lightsource may also be
specified, since the GP can be asked to apply the usual cosine
law to compute the intensity at a vertex from an associated
normal and a light source vector.

The display module is a separately compiled set of routines
which can be used to display data transformed by the graphics
module and GP. The primary output device used while debugging
the GP was a 512x512 z-buffer having 24 bits of colour informa-
tion and 16 bits of depth at each pixel [15,16]. The display
module breaks polygons into scan line segments, which a Z80
contained in the display (slowly) processes. Constant, facet and
Gouraud shading (with and without depth modulation) are
supported (figure 4). Alternatively, the display module can also
generate images on a variety of line drawing displays via the stan-
dard Unix plot utility.

The general scheme, then is as follows. An application pro-
gram will build and manipulate data structures containing coordi-
nate information, modeling transformations, colour information,
and additional application dependent object attributes. When a
picture is desired, appropriate viewing parameters arc passed to
the graphics module, and the Geometry Processor is initialized
with a transformation effecting the desired viewing projection.
The application data structures, which typically contain a mixture
of modeling transformations and polygon data, are then traversed.

As each transformation or polygon is encountered during
traversal,

Graphics Interface '82

=

f 7
-

Figure 4.

+ for each rotation, translation, or scaling desired, a graphics
module routine is called to request that the GP update the
current transformation and lighting matrices, possibly altering
the stack as well, or

+ the coordinates defining a polygon (or line trace) are placed in
an array and an appropriate graphics module routine is called
to transmit the array to the GP, where it is transformed,
clipped and viewported.

The resulting polygons, now described in virtual coordinates,
are then retrieved from the GP and passed to a display routine,
where shading computations are performed, and scan segments
are passed on to the z-buffer for depth-comparison with the
current image and possible display.

The application program may call routines in the graphics
module and in the display module directly, but for convenience a
standard set of ‘“‘service’’ routines have been provided which send
polygons off to the GP to be processed and automatically pass
returned virtual data on for display.

Debugging

An important part of the Geometry Processor’s design was the
provision of convenient mechanisms for debugging. At the lowest
level, bit 15 of the instruction is not used by the GP itself. When
the hardware is thought to be malfunctioning, a small loop which
includes the offending instruction is repeatedly executed. Bit 15
of this instruction only is set to 1 and used as a "scope trigger”
while pertinent signals are probed and compared with their
nominal values. Thus faulty signals can be easily located.

At a slightly higher level, the HALT bit can be used in con-
junction with the pilot port to implement a fully interactive, host-
resident microprocessor debugger. Indeed, firmware debugging
from the PDP 11/44 via the pilot port is no more difficult than
the interactive debugging of host programs. One can hardly exag-
gerate how greatly this facilitates firmware debugging and mainte-
nance.

363

Development of the resident firmware and host software were
also facilitated by writing a simulator for the GP which ran on
the host [4]. By loading with the appropriate interface routines
host application programs were able to run either the GP
hardware or simulator. Comparing the results for a given test
program made it easy to determine whether anomalous results
were due to GP firmware/hardware problems or to bugs in the
test driver and host software library. Because the simulator was
written before the firmware, the GP instruction set had evolved to
a stable state before microcoding began. Existence of the simula-
tor also made it possible for host software development to
proceed normally when the GP was unavailable.

Conclusions

The Geometry Processor hardware, firmware and host
software are fully operational, and the first phase of the project
has been brought to a close; work has now shifted to the develop-
ment of a 1000 line, Motorola 68000 based personal workstation
to which the GP will be optionally attached. Hence this is a con-
venient point at which to take stock of what we have learned.

The scope trigger and breakpoint bits are invaluable. So to is
the provision of a mechanism like the pilot port for monitoring
and debugging the microprocessor interactively from the host.

On the minus side, the A, B, and C pointer registers cannot be
read owing to a lack of board space and because of timing
considerations, nor can the 2910 address stack. These restrictions
are a substantial inconvenience; it should be possible to read any-
thing which can be written.

It is now clear that it would have been simpler to use separate
circuitry for integer and logical operations, rather than arranging
for the floating point hardware to handle these as well. Indeed,
most of the arithmetic (including address computations)
performed by the GP is integral. Also, a relatively simple and
useful modification to the GP would allow the transfer of a value
between RM locations in one machine cycle instead of two by
making it possible to load the T register during any phase, instead
of only phase 3. Finally, the primary source of difficulty in fully
utilizing the parallelism available in a GP microinstruction arises
from the multiplicity of uses for the FF field. The most common
conflict results from an attempt to use FF both as an address and
for an immediate constant.

A more important observation has to do with what the GP
spends its time doing. As is apparent from the design of the alu
pipeline, the major emphasis was placed on rapidly computing
matrix products, and rapidly applying matrices to vectors. Since
the GP is programmable, it seemed a natural place at which to
clip and viewport as well. Roughly speaking, nearly 2800 instruc-
tion cycles are required to read a four vertex polygon from the
host, apply the current transformation matrix, clip the result
(assuming the polygon leaves and re-enters the clipping frustrum
once), apply the viewporting transformation, and return the
processed polygon to the host. Of these only about 75 instruction
cycles are actually involved in applying the current transforma-
tion. The most expensive step is polygon clipping (about 2275
cycles), followed by viewporting (about 285 cycles). Also, to use
the GP most effectively a separate high speed scan conversion
processor is needed; further work on such processors is
anticipated.

Graphics Interface 82

The effort of designing and implementing a structured assem-
bler was clearly worthwhile. Indeed the GP assembly language
has already been used as a model for the design of a language for
another microprocessor. It is not clear, however, that it was wise
to stay so close to the hardware in designing the language
accepted by the GP assembler. Even at the level of the Geometry
Processor, programs consist of a few inner loops which should be
executed rapidly and a lot of setup code whose execution time is
relatively unimportant. The latter is shot full of special cases,
decision making, and control logic of the kind found in ordinary
programs, whose syntax is clearly easier to understand than is the
syntax accepted by the GP assembler (which closely reflects the
hardware).

Indeed a better approach may be to strip unnecessary features
out of an existing language like C and compile relatively
inefficient code for the microprocessor, dropping into a primitive
assembly language within procedures to implement the small
inner loops on which total execution time mostly depends. We
are pursuing this alternative in designing a high level language for
a comparable microprocessor which is attached to an Ikonas
frame buffer system at Waterloo, with the intention of comparing
the two approaches.

Note

The hardware described in this paper is experimental, and
should not be construed as a product commitment by Tektronix,
Inc.

References

[1] “Status Report of the Graphics Standards Planning Com-
mittee,”” ACM Siggraph Quarterly, 13,3 (August 1979).

[2] Bates, Roger D., Special Purpose Geometry Processor
Architectural Description, Technical Report CR-79-12,
Computer Research Laboratory, Tektronix Laboratories,
Beaverton, Oregon 97077.

[3] Bates, Roger D., Special Purpose Geometry Processor Pilot
Port to DEC 11/xx Architectural Description, Technical
Report CR-80-11 (April 1980), Computer Research Labora-
tory, Tektronix Laboratories, Beaverton, Oregon 97077.

[4] Beatty, John C., A4 User Interface for the CRL Geometry
Processor, Technical Report CR-81-8, Computer Research
Laboratory, Tektronix Laboratories, Beaverton, Oregon
97077.

[S] Beck, Jay W. and John C. Beatty, Special Purpose
Geometry Processor Functional Specification, Technical
Report CR-80-14, Computer Research Laboratory, Tek-
tronix Laboratories, Beaverton, Oregon 97077.

[6] Booth, Kellogg S. and Marc Wells, Special Purpose
Geometry Processor Microcode Assembler, Technical
Report CR-81-11 (July 1981), Computer Research Labora-
tory, Tektronix Laboratories, Beaverton, Oregon 97077.

364

(7

(8]

191

(10]

(1

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

Faul, Donald R., The Design and Implementation of a
High-Level Language for a Programmable Frame Buffer,
Technical Report UCID-17745 (October 1977), Lawrence
Livermore National Laboratory, Livermore, California
94550.

Fuchs, Henry, “Distributing a Visible Surface Algorithm
Over Multiple Processors,” Proceedings of the ACM
National Conference 1977, October 1977.

Fuchs, Henry and B. Johnson, ‘““An Expanded Architecture
for Video Graphics,” Proceedings of the Sixth Symposium
on Computer Architecture,” April 1979.

Johnson, Steven C.. YACC - Yet Another Compiler
Compiler, CSTR 32 (1974), Bell Telephone Laboratories,
Murray Hill, New Jersey.

Kernighan, Brian W. and Dennis M. Ritchie,
Programming Language, Prentice-Hall (1978).

The C

Laskodi, Terry, Special Purpose Geometry Processor - User
Software Interface, Technical Report CR-80-2, Computer
Research Laboratory, Tektronix Laboratories, Beaverton,
Oregon 97077.

Laskodi, Terry, Special Purpose Geometry Processor -
Software Generation and Maintenance Technical Report
CR-80-3, Computer Research Laboratory, Tektronix
Laboratories, Beaverton, Oregon 97077.

Lesk, M., LEX - A Lexical Analyzer Generator, CSTR 39
(1975), Bell Telephone Laboratories, Murray Hill, New Jer-
sey.

Matthies, Larry H., FBLIB - The Frame Buffer Support
Library, CRL PDP-11/70 online documentation FBLIB(7),
Computer Research Laboratory, Tektronix Laboratories,
Beaverton, Oregon 97077.

McCann, Ben and Larry H. Matthies, The CRG Frame
Buffer, Technical Report CR-80-16, Computer Research
Laboratory, Tektronix Laboratories, Beaverton, Oregon
97077.

Michener, James C. and Ingrid B. Carlbom, “Natural and
Efficient Viewing Parameters,” Computer Graphics. 143
(July 1980) pp 238-245.

Parke, Fred 1., A Parallel Architecture for Shaded
Graphics, Technical Report, Computer Engineering Depart-
ment, Case Western Reserve University, January 1979.

Parke, Fred 1., ‘“Simulation and Expected Performance
Analysis of Multiple Processor Z-Buffer Systems,” Com-
puter Graphics 14,3 (July 1980) 48-56.

Reuss, Ed, Transform Processor to PDP-11 DM A Interface
User Description, Technical Report CR-80-19 (September
1980), Computer Research Laboratory, Tektronix
Laboratories, Beaverton, Oregon 97077.

Wirth. Niklaus, “PL360 - A Programming Language for the
360 Computers,” Journal of the ACM, 15,1 (1968) 37-74.

Graphics Interface ‘82

