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ABSTRACT 

The Geometry Processor is a high speed. programmable. floa ting point peripheral processor design~d to 
rapidly perform the computations commonly needed for graph ics applicati ons . Its firmware is written in 
a high-level, machine oriented assembly langu age. A prototypica l host softwa re package. ba sed on the 
GSPC CORE Standard. has also been completed . 
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Introduction 

The economics of integrated circuit fabrica tion argue forcibly 
that future computer graphics workstations will make use of low­
and medium-cost special purpose hardware to achieve high­
performance graphical interaction with raster displays. To gain 
experience with such hardware, Tektronix Laboratories has 
designed , built and tested a microprogrammable geometric 
transform processor to perform the geometric manipUlations 
commonly needed for graphical output. The architecture of this 
"Geometry Processor" (GP) is flexible enough to support its use 
either as a solita ry graphics periphera l processor (the present 
configuration) or as part of a multiple-processor pipeline 
[8,9. 18.19] . The Geometry Processor is presently attached to a 
PDP 11 / 44 running the Unix opera ting system. 

The GP is progra mmed in a "high-level microassembly 
language" which provides both high-level control structures like 
a n IF-THEN-ELSE or DO-loop and a natural syntax for machine 
instructions . The language provides full and direct access to the 
bare machine whenever necessa ry, but automates much of the 
book-keeping a nd error checking involved in writing correct 
horizonta l microcode . 

The assembler has been used to write a resident firmware 
package of approximately 1700 microinstructions . This firmware 
executes macroinstructions stored in host memory. 
Macroins tructions have been implemented which multiply 
matrices, a ppl y matrices to homogene ous coordinate vectors, 
push/ pop ma tri x stacks, line/polygon cl ip coo rdinate vectors, 
viewport tran sformed / clipped da ta, a nd transfer data into and out 
of the GP . 

A host software library modeled on the GSPC CORE [I] has 
been implemented which allows a pplication programs to pass data 
to the GP for processing, or to invoke a simulator for the GP . A 
display pack age has also been implemented which partia lly scan 
converts transformed / clipped pol ygo ns from the GP and passes 
them on to a sepa ra te z-buffer di splay . 

The prepar:Hion I )f th is paper was su pported by the Natu ra l Scienct!S and Engineer. 
ing Rosea rch Counc il of Cmada under gra nt A3022 . 

Geometry Proce!lSOr Architecture 

The Geometry Processor is conslructed of about 465 MSI and 
LSI TTL integrated circuit chips, organized on three boards [2) . 
It was designed to max imize the speed with which tloating point 
mat rix operations ca n be performed. Microinstructions are 48 
bits wide and operate on 32-bit integer and floatin g point 
o perand s. Control of microprogra m fl ow is provided by an 
Advanced Micro Devices 2910 microprogram se quencer . Floa ting 
point hardware is built around a special 24x24 bit LSI multiply 
chip provided by TRW (not commercially avai la ble) . I nteger a nd 
logica l operations are implemented by ut ilizing circuitry in the 
tloating point adder. Two 32-bi t para llel i/ o ports a re provided 
fo r GP-controlled i/ o, a nd a separate host-contro lled 8-bit control 
or pilot port is provided for downl oading microcode and for 
microprogram debugging. The principal processor components 
a nd da ta path s (figure I) are described below in somewhat more 
detail. 

Data is stored in a 2,048 word by 32 bit register memory 
(R M) built of 55 ns high speed H MOS ram chips . RM is 
accessed through the A, B and C poin te r registers . The A and B 
registers contain left and right operand source addresses for 
arithmetic and logica l o perations: the C register may be used to 
specify the RM address at which a resu lt is to be stored . The A 
and B reg isters may be autoincremented by a variety of va lues 
(discussed below), and the C register may be autoinc remented by 
I . All three registers may be loaded from the da ta bus, by means 
of which the principa l hardware components commu ni ca te. 

Operand va lues may a lso be stored temporarily in the T regis­
ter . 32-bit va lues may be t ransferred between the T register a nd 
the bus, and any byte in the T register m ay be loaded fro m any 
byte of the bus . This enables arbitra ry 32-bit values to be 
constructed from 8-bit va lues pl aced on the bus by the pilot port. 

I Present addrc~,, : E\' : l n~ & Sutherland Computer Coq')(}ratio n. 580 Arapee" Dri ve. 
S.,1t Lake City. Utah 84 108. (80 1)-582-5847 . 

2 Prt:scnt ~tddr("ss : DCr;In lllcnt of C Oll1puter Scicnl:c. Ca rnt:gie- M c= lIon lJ ni vc rsil\. 
Pitls hur~h . PA 1521.1 (4Ic l-578-c592. . 
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DOlo Bus Figure I. A block diagram of the Geo metry PrOl;esso r . 
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Figure 2. The layout of a Geometry Processor instruction . 
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To discuss the floating point subsystem intelligibly we need to 
mak e some preliminary remarks ahout instruction execution and 
sys tem timing. Execution of a new instruction begins every 
machine cycl e (300 ns) . Most in st ructi ons complete in a single 
machine cycle. but the results of float ing point additions and 
multiplications a re available only at the end of the following and 
second following instructions. respectively. More precisely: each 
machine cycle is sub-divided into three phases of lOOns each . If 
a microinstructio n enables an arithmet ic or logical operation. the 
right and left operands are acquired from the bus during the first 
and second phases of the instruction, respectively. Results are 
stored during phase three . However, most arithmetic and logica l 
operations require three additional phases to complete once the 
operands are ava ilable. and their results are therefore stored dur­
ing phase three of the following instruction . 

Multiplica ti ons and divisions are an exception to th is scheme. 
as they require six additional phases to complete. The multiplica­
ti on it sdf is performed during the first three of these: during the 
second three th e result is optionally added to the contents of the S 
register and normalized . Hence the result of a multiplication is 
avai lable fo r storage during phase three of the sec.o.n.d. instruction 
following the instruction in which the mult iplicatio n W<lS hegun . 
so that a total of nine ph<lses (three complete machine cycles) are 
required for operand fetch, computation. and storage of the 
resu It . 

Thus the location at which the result of an arithmetic or logi­
cal operati on will be stored is specified in the instruction during 
which the operation completes, lllll in the instruction which 
invoked the operation . Thi s is a major source of programming 
complexi ty. 

Although these operations require two or three machine cycles 
to complete, they are pipelined so that successive operations may 
begin on successive machine cycles. Thus a 4x4 matrix multipli­
ca tion may be performed in <I pprox im ately 23 microseconds, and 
a m<ltrix may he applied to a vector in approximately 7 
microseconds . 

The GP transfers data hetween itself and the outside world 
through two 32-bit parallel i/ o ports. Each has a 32-bit data 
register, a 12-bit address register, and a 4-bit autoincrement regis­
ter. The hardware attached to an i/ o port is expected to have a 
rdocation register which is added to the port address . (In the 
case of the 11 / 44. to which the GP is currently attached . the 
res ulting address is run through the Unibus map.) Readin g or 
wr itin g the data register for the selected i/o port triggers the 
co rresponding operation on whatever is attached to the port. and 
the port address is au toin cremented. 

Microinstructio ns are stored in a 2,048 word by 48 bit ins truc­
tion m emor y (I M) built of 150 ns ram chips . The layout of a 
micro in str u~tion is indicated in figure 2. The follow ing co mments 
a rc intended to indicate the range of functionality ava ilable. 
Much unnecessary detai l is omitted, for which the reader should 
be thankful. .. 

If we schematically represent an alu operation by 

C := A op B 

then the integer and logical operations available a re 
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C 0 
(' -- B - " - I 1+11 
c - A- B-1 1+ 11 
C - A + B 1+1] 
C - A xor B 
C A or B 
C A and B 
C - all I' s 

([ + I) ind ica tes that the result may optionall y be incremented hy 
I) and the fl oa tin g point operations avai lab le are 

C - A + B 
C A*B+O 
C A* B+ S 
C - A * B - S 
C A-R 
C - A / B+O 
C - A / B+S 
C - A / B - S 

(S is the fl l)ating poi nt accumul ato r). Floatinl! point va l\l ':s ar.: 
rcprcscllh:d aCl:ording to the proposed I EEE standard. and thus 
possess an 8 bit exponent and (implicitly) a 24 bit mantissa. (The 
OMA interface connectin g the GP i/ o ports and the POP 11 / 45 
is ab le to convert between OEC and GP fl oating point formats .) 
Hardware division results in 8 significant bi ts since a division by B 
is replaced with a multiplication by I/ B (an 8-bit value obtained 
from PROM ): true division (requ ired fo r perspective projection) is 
accomplished by a 3.5 microsecond firmware algorithm. 

The fl oating point hardwa re sets status flags to record the 
occurrence of underflow or overfl ow. and a val ue is produced 
which ca n be consistently used in a subseq uent arithmet ic compu­
tation . Thus the firmwa re may check fo r the occurren ce of a 
fl oa ting point error at the end of a seq uence of operati ons and the 
va lue produced always makes sense. 

The AMO 2910 microprogram sequencer provides a program 
counter (PC), suhroutine ca ll and retu rn using a five word address 
stack. a loop counter (COUNT). and conditional or uncondit ional 
branching . The sequencer op code field selects one of the sixteen 
standard AMO 2910 instructions: these arc listed in the next sec­
tion. Fo r appropriate 2910 instructions . the branch condition 
field sdects one of the tests BUS = O. BUS>O. BUS> =0, i/ o 
husy, int crrupt pending, floating point overflow. and fl oati ng point 
error; the co mplement of each test may a lso be select ed. The 
comple ment of overfl ow is underfl ow. 

The B source and A source fie lds of the instruction ma y 
specify that the corresponding phase I and phase 2 operands are 
to be the: 

( I) T register: 
(2) constant defined by the FF field: 
(3) RM word pointed to by the B or A register: 
(4) RM word whose address is co nta ined in the FF field . 

The selected operand is placed on the bus during the appropriate 
phase. 

The C source field selects the value which will be stored by 
phase :1 of an instruction . The va lues which ma y h.: selected 
include the: 
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(I) constant defined by the FF field: 
(2) R M word pointed to by the C regi ster: 
(3) R M word whose address is contained in the FF field: 
(4) alu output from phase 2; 
(5) data register for the current i/ o port (a read). 

The C destination field selects the location at which this value will 
be stored . Any or all of the following destinations may be 
selected. in most cases simultaneously: 

(I) output from the alu may be written to the S register: 
(2) T register: 
(3) RM word pointed to hy the C register: 
(4) R M word whose address is contained in the FF field: 
(5) data register for the current i/o port (a write): 

Routing alu output to the S register does not tie up the bus dur­
ing ph<lse three, so that another value may simultaneously be 
routed to any of destinations (2) through (5). 

The "load / modify A, B, C pointers" field may be used to load 
any combination of these pointers, including all or none of them, 
from the hus during phase 3, or to c<luse the A and B pointers to 
be autoincrcmented during phase 2 and phase I. respectively. In 
the latter case one of eight autoincrcment pairs is specified. The 
corresponding values are defined by a PROM . Six such pairs are 
currently being used , including (\,0] (increment A hy I and B hy 
0) and [1.41 (increment A by I and B by 4) . The latter pair 
provides exactly the address modification needed when computing 
an entry in a matrix product: other pairs are selected for similar 
reasons. Autoincrement control of the C register is provided by 
the bonus bit. 

Ordinaril y the FF field serves as an immediate constant, an 
address, or is used to load the lo<'p counter (COUNT) in the 
sequencer chip. (Of particular utility are the flags which allow the 
rea l values 1.0 and 0.5 to be generated as immediate constants.) 
When the FFtag instruction bit is set to I , however, the FF field 
ma y instead serve a numher of special purposes. (Exactly which 
is indicated hy its It:ftmost two bits.) Briefly, these are: 

(I) read Ill' write I M from the hus during phase 3: 
(2) sclt:ct ,In i/ o port: 
(3) set or dear <In i/ o interrupt: 
(4) load the selected i/ o address register : 
(5) load the selected i/o autoincrement register: 
(6) shift alu output left or right by I: 
(7) reset the floating point error flags : 
(8) select bus byte and T byte for a T register load; 

The pilot port is not involved in the normal execution of the 
GP. It serves two purposes: it provides the means by whieh 
microcode is downloaded into instruction memory from the host. 
and it provides a mech anism for debugging firmware. 

Data may be transferred in either direction through the pil ot 
port, one byte at a time, between the host and any of the four 
bytes of the T register. The pilot port may also eause the 
co ntents of the T register to be loaded into the instruction register 
(IR) . This enables a host program to manipulate the GP hy load­
ing a n instruction into the T register, transferring it to the I R, 
and executing it. Microcode is thus downloaded hy assembling a 
word in the T register and executing an instruction which writes 
the contents of the T register into either the high 32 or the low 16 
hit s of a word in IM . 
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To facilitate thi s process the pilot port ma y start. stop. single 
step and reset the GP. I nteractive debuggi ng is performed from 
the host by halting the GP, saving the contents of the T register 
and the address from which the IR was loaded (la tched in a spe­
cial register just for this purpose). and inserting an instruction 
into the IR which causes the contents of an arbitrary register to 
be moved to the l' register , from which it can be read via the 
pilot port. Microprogra m execution can then he resumed after 
restoring all mod ilied n:g is ters . Breakpoints ma y be inserted in 
such programs by setting the left most bit of a n instruction to I: 
the result is to haIt tht: processor before the instruction is 
executed so that the pilot port ma y examine or modify the state 
of the GP. . 

Microassembler 

As ca n be appreciated from the preceding section . direct 
microcoding of the Geometry Processor is a tedious and error­
prone occupation, made especi ally so by the number of fields in 
each instruction and the pipelining of arithmetic and logical 
operations. This is, of course, the usual argument for the use of 
high -level languages . On the other hand. the GP exists ror the 
sole purpose of executing a sma ll number of algorithms at the 
highest possihle speed, motivating the careful preparation or 
optimal code. This can be done. in general , only by as~emhly­
level programming. Hence the primary goal in designing a 
microassembler for the Geometry Processor was to provide high­
level language constructs wherever possible while retaining the 
capability for setting specific fields within a microinstruction [6J. 

Statements within a GP program or procedure consist of 
declarati ons, procedure definiti ons, assignment statements. control 
statements, branch statements, and assembler directives. Each of 
these will be discu ssed below. A general design pri nciple. how­
ever, was that each executable statement correspond to the notion 
of an instruction in a traditional assemhler. modulo the effects of 
pipelin ing. 

The ol'crall intention was, then. to maintain the run-timl' 
efl'ic iency and fl exihility of machine code while gaining the 
adv;lntagl's or :1 hig h-kvel languagt· . This is :1 philos(' ph v 
horrowed I'ro111 Niklaus Wirth's "machine oriented language" 
PL360 [21/ . Th<.: CiP micr()ass~ mhly language was also much 
influenced by the work of Don Faul on a language I'or the 
ISI / Child programmable frame buffer designed in the mid-19 70's 
at Lawrence Liverrnore National Laboratory [7]. 

The language accepted by the GP microassembler is a mi xture 
of S, C, Pasca l. and various traditional assemblers. I n man y 
cases this amounts to little more th an " syntact ic sugar" which 
renders the source code more readable. However. the 
microassembler will report any attempt to assign conflicting 
val ues to a microinstruction field: this feature is particularly use­
ful in the case of arithmetic or logical instructions. which 
necessa ril y result in the setting of fields in subsequent 
microinstructions. To preserve the correspondence between 
source and object code, the assemhler does not attempt to 
automaticall y mt:rge consecutive instructions which use disjoint or 
compatihle fields. [t is expected th at the small amounts of speed 
critica l code involved will be hand optimized by the programmer. 

Wc int roduce the GP microassemhl y language hy wa\' of the 
fo ll owin g example program, which read s 100 homogl'ncous 
vectors from the input port. multiplies th em by a matr ix. and 
writes the resu lt vectors to the output port. For simplicity the 
matrix is assumed to have been initi ali zed elsewhere. 
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program Transform; 

con~t N = 100; 

va r rm row[l :4]. matrix[I:4,1 :4] ; 

port input = 0, output = I; 
set port to input, set port increment to 4; 
set port to output, set port increment to 4; 

B : = address(matrix); 
do N times: 

set port to input; 
A : = C : = address(row); 
[C+ I] := [10+1]; 
[C+I ) [10+1); 
[C+I] : = [1 0+1); 
[C +I) := [10+1] ; 
S [A + \) .. [B+4), set port to output; 
S := [A+I]·· [B+4) ++ S; 
S := [A+I)·· [B+4) ++ S: 
[10+ \) := [A-3) •• [B-II) ++ S; 
S :=[A+I)··[B+4); 
S := [A+I)·· [B+4] ++ S: 
S := [A+I)·· [B+4] ++ S; 
[10+\) := [A-3]·· [B-II) ++ S; 
S [A+I) •• [B+4] ; 
S := [A+I) ·· [B+4] ++ S; 
S := [A+I) •• [B+4] ++ S; 
[10+\) := [A-3)·· [B- 1\) ++ S: 
S [A+I]** [B+4); 
S : = [A+\)·· [B+4) ++ S; 
S : = [A+I)·· [B+4] ++ S; 
[10+1) : = [A+I)·· [B-15) ++ S; 
nop; /* Wait for the result • / 

end do; r The final store occurs here • / 

$t$ r Dump the symbol table • / 

end program Transform . 

Since the assignment, control and branching statements 
described below often make use of distinct microinstruction fields, 
the programmer may make them part of the same statement 
(instruction) by separat ing them with a comma; a semicolon 
marks the end of such a li st, and indica tes that the assembly of a 
new instructi on should hegin . Thus 

S : = [A + I) •• [B+4]. set port to output; 

results in an instruction whose fields specify the initiation of a 
multiplica tion and the se lection of an ijo port. It will be con­
venient to refer to the pieces of such a composite statement as 
" actions". If the actions in a statement require that any field of 
the corresponding instruction have two or more distinct values 
then an error message is generated . 

We shall now sketch, in turn. the va rious kinds of statements 
accepted by the GP microassembler. 

Decla ra tions such as 
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const N = 100: 
port input = O. ou tput = I; 
field rI = RITS[ 15:81: r Th ird hyte in a data word • / 
field 1'2 = FFIII :01 ; 1* branch address in FF • / 

provide for the crea tion of symbolic names for constants. i/o 
ports, a nd bit fields. Notice that the register na mes discussed in 
the previ ous section (such as FF. A. B, C, S , T and 10) are 
known to the assembler and may be used wherever appropriate . 
The name itself (such as A) represents the contents of the register. 
while enclosing the name in squa re brackets (for example: [A]) 
refers to the val ue poi nted to by the address in the regi ster. Va ri­
able decl arations such as 

va r rm row[I :4]. matrix[I :4, 1:4); 

may be used to associ:Jtc a symbolic name wi th a block of storage 
in regislt:r memory (rm - the default ) or instruction mcnlllry (i m). 
Sto rage is allocated statica lly. so tha t a unique porti on of thl:: 
a ppro priate mem ory is permanentl y assoc ia ted with every 
declared va riable . The scope of an ide ntifier is the entire progra m 
or procedure in which it is declared . Procedures may he nested. 
However. aside from defining the scope of identifi ers declared 
wi thin it. a procedure definition is equivalent to the definition of a 
label at the sa me location; there is no savi ng of registers. return 
addresses, or anything else a t procedure entry and when a pro­
cedure ex its the next instruction is sim ply executed. Labe l a nd 
procedure names must be declared before they are defined and the 
scope of the na mes is the scope of the declarations . Since the 
assembler operates in a si ngle pass. every ident ifier must be 
declared before it is used . 

Variables a re not typed . Instead the floating point ve rsi on of 
a n a rithmetic operation is di stingui shed from tht: integral version 
by repea ting the opera tor . Thus + den otes integer addition and 
++ denotes real addition . In order to preserve the correspon­
dence between assembler statements and machine inst ructi ons. the 
assembler accepts as the r ight ha nd side o f an ass ignment state­
ment o nly those ex press ions whose co mputation can be ini tia ted 
in a si ngle micro instruction. such as 

S := [A+I]·· [B+4 ] ++ S; 

Only the sma ll number of autoincrement/a utodecrement values 
implemented directly by the hardware are a llowed . Multiple 
ass ignments such as 

A := C := address( row); 

a re a ll owed in so fa r as they comprise compatible phase 3 
destinations. 

Co ntrol st atements such as 

SET PORT INTERRUPT 
RESET PORT INTERRUPT 
ENABLE PORT BASE LOAD 
ENA BL E PORT ADDRESS l OAD 
SET PORT TO < 0 or I> 
SET PORT INC R EMENT TO < cxpr> 
R ESET FP ERROR 

modify the state of fl ags in the G P in the obv ious way. 
A va riety of hra nch sta tements a ll ow the microprogrammcr to 

speci fy the microi nst ructio n fields whi ch control program flow . 
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Most of these statements make use of conditio na l bra nch fea tures 
of th..: AM [) 29 10 sequencer chi p. The conditions avai lable a rc 

WH EN BUS = 0 
WHEN BUS != 0 
WHEN BUS > 0 
WHEN BUS < 0 
WHEN BUS >= 0 
WHEN BUS <= 0 
WHEN INTE RR U PT 
WHEN BUS Y 
WHEN FP E RROR 
WHEN F P OVERFLOW 
WH EN FP UN DERFLOW 

UNLESS BUS = 0 
UNLESS BUS != 0 
UNLESS BUS> 0 
UN LESS BUS < 0 
U NLESS BUS> = 0 
UNLESS BUS <= 0 
UNLESS INTERRUPT 
UNLESS BUSY 
UNLESS FP ERROR 

ALWAYS N EVE R 

BUS co nditi ons tes t fl ags indicating the va lue of the bus during 
phase 3 of the p.reri.au.s. microinstructi o n. BUS may be replaced 
by a ny va lid phase 3 source . If a pipelined opera tio n is s pec ified 
in the same instruction then the test is delayed until the o peration 
is complete. 

The va ri o us branch s tatements ava ilable make use of the 
COU NT regis ter a nd add ress stack in the AMD 2910. The 
eou NT reg is t..:r may be used as the ..:o ntro l va riable of a loop. 
or may be loaded with an address through which a jum p may 
subsequently be executed . The address stack may be used for 
nesting subroutine ca lls. a ltho ugh the ha rdwa re does not provide 
any mechanis m fo r t rapp ing stack overfl ow and the assembler 
does not attempt to predict such an eventuality. The primitive 
branching instructions. which correspond exactly to the 
capabi lit ies of the hardwa re. a re as follows : 

GOTO <t arget > 
GOTO < target> < condi t ion > 
GOTO <target> < condition> ELSE GOTO [COUNT] 
GOTO [COUNT] 

C ALL <target> 
CALl. <target> < co ndition> 
C ALL < target> < condition> ELSE CA LL [COUNT] 
CALL [COUNT] 

PUSH 

A <ta rget> is either a label or a procedure . A conditi on 
is a WHEN or UNLESS cla use . The COUNT regis ter is 
assu med to have been loaded previously with the address of 
interest. A CALL pushes the current content s of the pro­
g ram counter o n the addn.:ss stack and tra nsfers control to 
the < target> address . 

P US H T H EN COUNT < expr> TIMES 
P US H THEN COUNT < expr> TIMES < condition > 
PUSH THEN LOAD <target> INTO COUNT 
PUSH THEN LOAD <target> INTO COUNT < condition> 
ITERATE ELSE POP 
IT E R A T E ELSE POP TO <target > 
COUNT <expr> TIMES 
LOA D <target> INTO COUNT 

PUSH simply causes the program counter to be pushed on 
the address stack . COUNT <expr> is used to initialize 
the COUNT regis te r to < expr>-I at the top of a loop; 
presumably a subseq uent IT E RATE statement will cause a 
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branch b:1Ck to the top-of-stack-a ddress afte r decremen ting 
COUNT if COUNT is nOn -fenl . so that the loop will he 
..:xecutco nactl y <npr> lill1l·s . When COLJNl glle~ to 

I.ero the address stal' k is popped ami ..:o ntl"ol either 
proceeds sequentia ll y or is passed to the specified <tar­
get>. LOAD <target> initializes COUNT wit h <t a r­
get> . wh ich will presumabl y be used later as a jump 
address. 

R ETU RN 
RETU RN <condition> 
LOOP 
POP 
POP < condition> ELSE LOOP 
POP TO <target> 
POP TO <target> < condit ion > 
POP <conditi on> ELSE ITERATE ELSE POP TO <target> 

RETURN causes the stack to he po pped after transferring 
to the top-of-stack add ress , LOOP simply causes control to 
ret urn to the top-of-stack address. a nd POP simply pops 
t he stack. 

AI a somew hat higher kvd . :l construcl mllch lik..: the 
Iraditional "if-then-else" is accepted hy the assemhle r . 11 is hest 
described by an example. 

T := [A] & [B] . WH EN BUS = 0 TH EN: 

ELSE square : = T .. T ; 

END IF [C] := T: 

The " THEN-part" co nsists of the statements up to and including 
the sta tement which begins with ELSE. while the "ELSE-part" 
consists of the statements following the statement containing 
ELSE, up to and including the statement beginning wit h EN DI F. 
The < conditional> appearing in the first statement may be either 
a WHEN or an UN LESS. and selects which clause is to be 
executed. In this example the THEN-.:lause has as its last a.:tion 
a floatin g point multiply, which will require two machine cycles to 
complete. The assembler would normally a rrange that the second 
fo llowing inst ruction ca use the result to be stored into the ,·a riable 
sq uare. Unfortunatel y this instru('tion lies in the ELSE-clausl'. 
and wou ld not be executed . To avoid such anomalies the pipeline 
is always a llowed to empty at th e start of the condi t ional. and at 
the end o f the THEN- a nd ELSE-clauses. by inst:rting NOP 
instructions as needed . 

The GP assembler also accepts d o-loops such as 

T : = T·· T. DO 10 TIMES; 

ENDDO T := T ++ 1.0; 

The o ptional action (here T : = T .. T) is performed , COUNT is 
loaded with the number of ite rat ions minus one, and the top-of­
loop address is pushed ont o the address stack . The bod\ of th e 
loop, including the final ac ti on on the ENDDO. is executed the 
spec ifi ed number of times. On ce again. the pipdine is allowed to 
empty at the top and bottom o f the loop hy inserting NOPs . 

The assembler simplifies the programmin!! of arithmeli c and 
Il'gi.:a l opcr:ltions by aUlomaticall y inserting. the deslination 
specified in a subsequent instruction . and vcr ifving that this does 
no t result in a con fli ct with o ther actions in that instruction . The 
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programmer must. of course, be aware: that thi s will happen . 
When a branch occurs, however, the textua lly following 
instructions need not be the next inst ructions executed. As we 
have seen. the m icroassembl er mi nim izes errors by "flushing" the 
pipeline whenever a branch is specified by inserting one or two 
NOP instructions prior to the branch so that the result may be 
stored before the branch is taken . For the sake of efficiency it is 
occasionally desirable to suppress this padding . Appending the 
keyword I MMEDIATEL Y to a n action accomplishes this; notice, 
however , that the fir st or second textually following instruction 
will still contain the phase 3 source and destination fields needed 
to store the result. For example, the following loop will move N 
words using 3+2*N instruction cycles. 

wh ile 

C: = ADDRESS( < source» ; 
A := ADDRESS( <destina tion> ); 
DO N TI M ES: /* N is a const ant * / 
ENDDO [C +I]:= [A+I] ++ 0; 
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Oil t,l a second spcc' ial pu rpose pnll:essnr f'H SGI Il cO llversion and 
display. 

Th.: present GP firlllware. thcll. is periodically given the 
add ress of a macroinstruction li st in host memory, which it 
executes. These macroinstructions are each 8 bits in length, and 
are either control. matrix , or operand instructions . The firmware 
maintai ns a number of va riables in register memory, which vari ­
ous macroinstructions depend upon or modify. including an i/o 
address, two mat rix stacks, a viewport transformation, and an 
operand / result data a rray . Within the GP vertices a re always 
represented in homogene ous coordinates. 

There a re four contro l instructions . NOOP has no effect. 
STO P halts the G P aft er no tifying the host of co mpletion . 
R ESET empties either or both of the matrix stacks . 
SET A DDR ESS ma y be followed by up to 3 bytes, and specifies 
a n address in hos t memory ( I) at which the next macroinstruction 
wi ll be found, or (2) which a suhsequent instructi on will lIse for 
reading or wri ting mat ri ces or da ta . 

There are fi ve matrix instructions. Each may modify either or 
both of the mat ri x stacks . MOVEM causes the ma tri x stored at 

C := ADDRESS( < source> ); the current i/ o address in host memory to b~ pushed onto the 
A := ADDRESS( <destination> ); selected stack(s). or returns one or both of the top-of-stack 
lOAD N-2 I NTO COUNT; /* N-2 is computed by the assembler * / matrices to the host. D U PM cause~ the matrix at the top of the 
[C+ I] : = [A + I] + + 0, PUSH IMMEDIATELY; selected stack(s) to be duplicated , increasing th e stack depth(s) by 
[C+I] := [A+I] ++ 0, ITERAT E ELSE POP IMMEDIATELY: one. POPM causes the matrix a t the top of the selected stack(s) 
NOP; to be released, decn:a sing the stack depth(s) by one. MUlM 

will require only 4+ N instruction cycles. 

When all else fails. the bits in a specific fie ld of an 
may be set direct ly by means of an action 
"BITSI5:41 = 2". 

instructi on 
such as 

A more detai led description of the GP assembly language may 
be found in (6). The descri pti J n supplied here should be sufficient 
to give the reader a feeling for the way in which the so mewhat 
co nflicting desi res both for full , efficient access to the machine 
and for the simplic ity a nd expressiveness of high-level language 
constructs have heen resolved. 

Progra ms a re run through the C preprocessor [11) before 
undergoi ng assembl y proper so that macros (with parameters), fil e 
inclusion, a nd conditi ona l assembly a re all supported . The assem­
bler recognizes the line number and file markers embedded in 
preprocessor output so that error messages may speci fy correct 
line numbers and file names. 

The assembler conta ins a lexical analyzer generated by l EX 
[14) and an lAlR(I) parser generated by YACC [10) . Use of 
these tools grea tly eased both implementat ion and maintena nce of 
the microassembler. 

Firmware 

The motivation for designing the Geometry Processor and a 
microasse mbler with which it ca n be programmed was to co n­
struct a special purpose peripheral processor which could be used 
to rapidl y perform the geometrical transformations and clipping 
operations necessary in 3-d imensi onal computer graphics 
applications. 

Because the GP is progammable it ca n readily be adapted to a 
va riet y of system organizations. I n the present configuration the 
GP is connected to a PDP 11 / 44, from which it reads instructions 
and data, a nd to which it returns result s. although transformed 
and clipped output could equally well have been passed directly 

causes the two matrices top most on the se lected stack(s) to be 
replaced by their prod uct, again decreas ing the stack depth(s) by 
one. APPL YM has exactly the same effect on the sele<.:ted 
stack(s) as would a DUPM , foll owed by a MOV EM. followed by 
a MUL.M. 

Matrices are transferred from the host in a "para meterized" 
form which contai ns only the non-zero entries. Thus the host 
rep resentatio n of the matrix for a transla tion in x and y ha s a 
header containi ng a code for translation and bit fl ags indicating 
that dx a nd dy va lues are present: this 16 bit header is followed 
by the two 32-bit floating point va lues of dx and dy . (The 
MOVEM instruction expa nds the parameterized form into a full 
4x4 matrix before pushing it onto the stack(s).) T he parameterized 
representations of scaling and rotation matrices a re analogous . 
T here is also a full 4x4 format for matrices which do not fit this 
scheme. 

The operand instructions are cons iderahly more heterogene­
ous. The MOVEO inst ruct ion is used to transfer d ata between 
host memory and the GP operand/ result array. There are four 
bit fl ags in addi tion to the four-bit op code. The first specifies the 
direction of data movement. A second indicates whethe r conver­
sion is desired between homogeneou s and non-homogeneous form . 
There is a lso a bit fl ag for each of the stacks. If the flag for stack 
i is set then the topmost matrix on stack i is applied to each 4-
tuple transferred . If both flags are set then the topmost mat rices 
on each stack a re applied to alternate 4-tuples. (Thus if data 
heing read from the host consists of R-tuples comprised of a posi­
tion and a normal. and if stack one is a tra nsform ation stack and 
stack two records only the rotations which have hee n 
acc umulated, then we are able to apply the current transformat ion 
to positions and compute the effect of rot ations on normals .) 

The LI NECLI P and POl YCLI P instructions ca use a stan­
dard line or polygon clipping algorithm to be applied to the dat a 
in the opera nd / result a rray. Clipping agai nst the near, far and 
side clippi ng planes may be indi vidua lly enabled or disabled . 
Clipping automatica lly results in the conversion of vertices from 
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h<lll1ogeneo us to non-homogeneous form; the fourth coordinate is 
replaced by a "move/ draw" flag . The POL YCLlP instruction 
has an additiona l flag which can be set to indicate that each 
incoming homogeneous coordi nate carries with it a normal which 
should be interpolated, not clipped . 

Finally, the VIEWPORT instruction is used to apply the 
current viewport transformation to the data in the operand/result 
array, or to extract a lightsource dot-product from the data in the 
operand/ result array, or both (in which case the two kinds of data 
alternate). The lightsource computation amounts to no more than 
replacing a 4-tuple by its third coordinate, on the assumption that 
the 4-tuples to which it is applied are normals which have been 
transformed into a coordin ate system in which the z-axis is paral­
lel to the light source vector. 

Thus the macroinstructions presently implemented allow the 
Geometry Processor to stack or concatenate the modeling and 
viewing matrices commonly used in graphics applications. to 
apply these matrices to vertex or normal data. and to appl y a 
viewporting transformation. Scan conversion is the responsibili ty 
of a subsequent processor. 

A detaikd description of the way in which the Geometry Pro­
cessor is interfaced with the POP 11 / 44 to which it is presently 
attached may be found in [5,12,13,20) . Briefly, to use the GP the 
requesting process is locked in core. The pilot port is then used 
to download the firmwa re, initialize the i/o port base addresses, 
and patch into an agreed-upon location in instruction memory an 
address in the host program at which an instruction list pointer. 
error return code field, run / halt flag and completion flag can be 
found by the GP. The pilot port is then used to start the GP 
executing. A control loop in the GP firmware samples the 
ru n/ halt flag to determine when a new instruction list has been 
presented for execution. Execution of the STOP instruction 
terminating the instruction list is illdicated by setting the com­
pletion fl ag and generating an interrupt. which is propagated to 
the host program as a signal. 
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Figure 3. 

Host Software 

A schematic of the host softwan: with which an aPl'lil';lIion 
program may current ly use the Geometry Processor appears in 
figure 3. 

The graphics module, which is the actual interface between a 
program and the GP, contains the following kinds of routines . 

I) Control Routines. These are used to initialize and terminate 
the graphics module, and provide a means of switching 
between a data mode in which lines. polygons and 
transformations are passed to the GP for processing, and a 
viewing mode in which the viewing transformation is specified. 

2) 3D Viewi ng Routines . For the most part these conform to the 
GSPC CORE Standard [I). For convenience, however, a 
camera mode is available in which the view plane norma l is 
automaticall v determined to be the vector from the eye point 
to the view reference poi nt (suggested hy Tim Stevensnn). 
Also. following [17). a foreshortening ratio and receding angle 
are used to specify parallel projt:ctions . 

3) Modcling Transformatio ns. These routines cause an al'propri ­
ate matrix to he passed to the GP. where it is conl'atentated tll 
the current transformation and li ght ing matrices (in the c:ase 
of a rotation). These matrices may first be saved on stacks in 
the GP. The lighting matrix is initialized so as to transform 
normals to which it is applied into a coordinate system in 
which the light sou rce vector is aligned with the z-axis . The 
projection of a unit norm al onto the light source vector is then 
simply the z coordinate of the vector which results from apply­
ing the lighting matrix to the normal. 

4) Data Routines . Vertices are passed to the GP in arrays. The 
vertices defining a polygon may optionally carry a normal 
which the GP will interpolate while clipping. Informat ion 
about the direction and nature of the lightsource may also be 
specified . since the GP can be asked to appl y the usual cosint' 
law 10 compute the intensity al a vertex from an associated 
normal and a light source vector . 

The display module is a separately compikd set of routines 
which can be used to display data transformed by the graphics 
module and GP. The primary output device used while debugging 
the GP was a 512x512 z-buffer having 24 bits of colour informa­
tion and 16 bits of depth at each pixe1 [15.16). The display 
module breaks polygons into sca n line segments. which a Z80 
contained in the display (slowly) processes. Constant. facet and 
Gouraud shading (with and without depth modul ation) are 
supported (figure 4). Alternatively . the display module can also 
generate images on a variety of line draw ing displays via the stan­
dard Unix plot utility . 

The general scheme. then is as follows . An application pro­
gram will build and manipulate data structures containing coordi­
nate information. modeling transformations. colou r information. 
and additional application dependent object att ributes . When a 
picture is ciesired . appropriate viewing parameters arc passed to 
the graphics module. and the Geometry Processor is initi.dized 
with a transforllliltion effecting the desired viewi ng projection 
The applicalion dat,1 structures. which typically contain a mixture 
of modeling transformati ons and polygon data. are then I ra vt:rscci . 

As each transformati on or pol ygon is en co untered during 
traversal. 
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Figure 4. 

+ for each rotation, translation , or scaling desi red , a graphics 
module routine is ca lled to request that the GP update the 
cu rrent transformation a nd lighting matrices, possibly altering 
the stack as well , or 

+ the coordinates defining a polygon (or line trace) are placed in 
an array and an appropriate graphics module routine is called 
to transmit the array to the G P, where it is transformed, 
clipped and viewported. 

The resu lting polygons, now described in virtual coordinates, 
are then retrieved from the GP and passed to a display routine, 
where shading co mputations are performed, and scan segments 
are passed on to the z-buffer for depth-comparison with the 
current image and possi ble display. 

The app licatio n program may call routines in the graphics 
module and in the display module directly, but for convenience a 
standard set of "service" routines have been provided which send 
polygons off to the GP to be processed and automatically pass 
returned virtual data on for display. 

Debugging 

An important pa rt of the Geometry Processor's design was the 
provision of convenient mechanisms for debugging. At the lowest 
level, bit 15 of the instruct ion is not used by the GP itself. When 
the hardware is thought to be malfunctioning, a small loop which 
includes the offending instruction is repeatedly executed. Bit 15 
of this instruction only is set to I and used as a "scope trigger" 
while pertinent signals are probed and compared with their 

nominal va lues. Thus faulty signals can be easily located . 

At a slightly higher level , the HALT bit can be used in con­
junction with the pilot port to implement a fully interactive, host­
resident microprocessor debugger . Indeed, firmware debugging 
from the PDP 11 / 44 via the pilot port is no more difficult than 
the interactive deb ugging of host programs. One can hardly exag­
gerate how greatly thi s fac ilitates firmware debugging and mai nte­
nance. 
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Development of the resident firmware and host software were 
also facilitated by writing a simulator for the GP which ran on 
the host [4) . By loading with the appropriate interface routines 
host application programs were able to run either the GP 
hardware or simulator. Comparing the results for a given test 
program made it easy to determine whether anomalous results 
were due to GP firmware / hardware problems or to bugs in the 
test driver and host software library. Because the simulator was 
written before the firmware, the GP instruction set had evolved to 
a stable state before microcoding began . Existence of the simula­
tor also made it possible for host software development to 
proceed normally when the GP was unavailable. 

Conclusions 

The Geometry Processor hardware, firmware and host 
software are fully operational, and the first phase of the project 
has been brought to a close; work has now shifted to the develop­
ment of a 1000 line, Motorola 68000 based personal workstation 
to which the GP will be optionally attached. Hence this is a con­
venient point at which to take stock of what we have learned. 

The scope trigger and breakpoint bits are invaluable. So to is 
the provision of a mechanism like the pilot port for monitoring 
and debugging the microprocessor interactively from the host. 

On the minus side, the A, B, and C pointer registers cannot be 
read owing to a lack of board space and because of timing 
considerations, nor can the 2910 address stack. These restrictions 
are a substa ntial inconvenience; it should be possible to read any­
thing which can be written. 

It is now clear that it would have been simpler to use separate 
circuitry for integer and logical operations, rather than arranging 
for the floating point hardware to handle these as well. Indeed, 
most of the arithmetic (including address computations) 
performed by the GP is integral. Also, a relatively simple and 
useful modification to the GP would allow the transfer of a value 
between RM locations in one machine cycle instead of two by 
making it possible to load the T register during any phase, instead 
of only phase 3. Finally, the primary source of difficulty in fully 
utilizing the parallelism available in a GP microinstruction arises 
from the multiplicity of uses for the FF field. The most common 
conflict results from an attempt to use FF both as an address and 
for an immediate constant. 

A more important observation has to do with what the GP 
spends its time doing. As is apparent from the design of the alu 
pipeline, the major emphasis was placed on rapidly computing 
matrix products, and rapidly applying matrices to vectors. Since 
the GP is programmable, it seemed a natural place at which to 
clip and viewport as well. Roughly speaking, nearly 2800 instruc­
tion cycles are required to read a four vertex polygon from the 
host, apply the current transformation matrix, clip the result 
(assuming the polygon leaves and re-enters the clipping frustrum 
once), apply the viewporting transformation , and return the 
processed polygon to the host. Of these only about 75 instruction 
cycles are actually involved in applying the current transforma­
tion. The most expensive step is polygon clipping (about 2275 
cycles), followed by viewporting (about 285 cycles). Also, to use 
the GP most effectively a separate high speed scan conversion 
processor is needed; further work on such processors is 
anticipated. 
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The effort of designing and implementing a structured assem­
bler was clearly worthwhile. Indeed the GP assembly language 
has already been used as a model for the design of a language for 
another microprocessor. It is not clear, however , that it was wise 
to stay so close to the hardware in designing the la nguage 
accepted by the GP assembler. Even at the level of the Geometry 
Processor, progra ms consist of a few inner loops which should be 
executed rapidly and a lot of setup code whose execution time is 
rela tively unimportant. The latter is shot full of special cases, 
decision making, and control logic of the kind found in ordinary 
progra ms. whose syntax is clearly easier to understand than is the 
syntax accepted by the GP assembler (which closely reflects the 
hardware). 

Indeed a better approach may be to strip unnecessary features 
out of an existing language like C and compile relatively 
inefficient code for the microprocessor, dropping into a primitive 
assembly language within procedures to implement the small 
inner loops on which total execution time mostly depends. We 
a re pursuing this a lternative in designing a high level language for 
a comparable microprocessor which is attached to an Ikonas 
frame buffer system at Waterloo, with the intention of comparing 
the two approaches. 

Note 

The hardware described in this paper is experimental, and 
should not be co nstrued as a product commitment by Tektronix, 
Inc . 
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