
35 5

A HIGH-PERFORMANCE RASTER DISPLAY SYSTEM

Roger Bates
Jay Beck I

Terry Laskodi
Ed Reuss

Marc Wells

Computer Research Laboratory
Applied Research Group
Tektronix La boratories

Beaverton , Oregon, USA 97077
(503)-644-0161

John Beally
Kellogg Booth

Lorry Matthies2

Computer Graphics Laboratory
Department of Computer Science

University of Wate rloo
Waterloo. Ontar io. Canada N2L3G I

(519)-886-1351

ABSTRACT

The Geometry Processor is a high speed. programmable. floa ting point peripheral processor design~d to
rapidly perform the computations commonly needed for graph ics applicati ons . Its firmware is written in
a high-level, machine oriented assembly langu age. A prototypica l host softwa re package. ba sed on the
GSPC CORE Standard. has also been completed .

KEYWORDS: geometric transform processor. machine oriented language. microprocessor. raster
gra phics.

Introduction

The economics of integrated circuit fabrica tion argue forcibly
that future computer graphics workstations will make use of low­
and medium-cost special purpose hardware to achieve high­
performance graphical interaction with raster displays. To gain
experience with such hardware, Tektronix Laboratories has
designed , built and tested a microprogrammable geometric
transform processor to perform the geometric manipUlations
commonly needed for graphical output. The architecture of this
"Geometry Processor" (GP) is flexible enough to support its use
either as a solita ry graphics periphera l processor (the present
configuration) or as part of a multiple-processor pipeline
[8,9. 18.19] . The Geometry Processor is presently attached to a
PDP 11 / 44 running the Unix opera ting system.

The GP is progra mmed in a "high-level microassembly
language" which provides both high-level control structures like
a n IF-THEN-ELSE or DO-loop and a natural syntax for machine
instructions . The language provides full and direct access to the
bare machine whenever necessa ry, but automates much of the
book-keeping a nd error checking involved in writing correct
horizonta l microcode .

The assembler has been used to write a resident firmware
package of approximately 1700 microinstructions . This firmware
executes macroinstructions stored in host memory.
Macroins tructions have been implemented which multiply
matrices, a ppl y matrices to homogene ous coordinate vectors,
push/ pop ma tri x stacks, line/polygon cl ip coo rdinate vectors,
viewport tran sformed / clipped da ta, a nd transfer data into and out
of the GP .

A host software library modeled on the GSPC CORE [I] has
been implemented which allows a pplication programs to pass data
to the GP for processing, or to invoke a simulator for the GP . A
display pack age has also been implemented which partia lly scan
converts transformed / clipped pol ygo ns from the GP and passes
them on to a sepa ra te z-buffer di splay .

The prepar:Hion I)f th is paper was su pported by the Natu ra l Scienct!S and Engineer.
ing Rosea rch Counc il of Cmada under gra nt A3022 .

Geometry Proce!lSOr Architecture

The Geometry Processor is conslructed of about 465 MSI and
LSI TTL integrated circuit chips, organized on three boards [2) .
It was designed to max imize the speed with which tloating point
mat rix operations ca n be performed. Microinstructions are 48
bits wide and operate on 32-bit integer and floatin g point
o perand s. Control of microprogra m fl ow is provided by an
Advanced Micro Devices 2910 microprogram se quencer . Floa ting
point hardware is built around a special 24x24 bit LSI multiply
chip provided by TRW (not commercially avai la ble) . I nteger a nd
logica l operations are implemented by ut ilizing circuitry in the
tloating point adder. Two 32-bi t para llel i/ o ports a re provided
fo r GP-controlled i/ o, a nd a separate host-contro lled 8-bit control
or pilot port is provided for downl oading microcode and for
microprogram debugging. The principal processor components
a nd da ta path s (figure I) are described below in somewhat more
detail.

Data is stored in a 2,048 word by 32 bit register memory
(R M) built of 55 ns high speed H MOS ram chips . RM is
accessed through the A, B and C poin te r registers . The A and B
registers contain left and right operand source addresses for
arithmetic and logica l o perations: the C register may be used to
specify the RM address at which a resu lt is to be stored . The A
and B reg isters may be autoincremented by a variety of va lues
(discussed below), and the C register may be autoinc remented by
I . All three registers may be loaded from the da ta bus, by means
of which the principa l hardware components commu ni ca te.

Operand va lues may a lso be stored temporarily in the T regis­
ter . 32-bit va lues may be t ransferred between the T register a nd
the bus, and any byte in the T register m ay be loaded fro m any
byte of the bus . This enables arbitra ry 32-bit values to be
constructed from 8-bit va lues pl aced on the bus by the pilot port.

I Present addrc~,, : E\' : l n~ & Sutherland Computer Coq')(}ratio n. 580 Arapee" Dri ve.
S.,1t Lake City. Utah 84 108. (80 1)-582-5847 .

2 Prt:scnt ~tddr("ss : DCr;In lllcnt of C Oll1puter Scicnl:c. Ca rnt:gie- M c= lIon lJ ni vc rsil\.
Pitls hur~h . PA 1521.1 (4Ic l-578-c592. .

Graphics Interface '82

356

DOlo Bus Figure I. A block diagram of the Geo metry PrOl;esso r .
32

.1 pitol pari I
I I 8

AMD 2910 inslruclion

, i nslrucl ion~ memory
dOlO rellisler conlrol (2k words) 1/0 porI

(48 bil. wide) oulo Inc., address 16
size rellisler

sequencinll T
op code ~

I inslruclion , dolo rellisler rellisler 1/0 porI

nexl address I conslonls oulo inc. 1 address 16
size relliSler

~ rellisl.r

~~ memory

(2k words) 1
~ (32k bils wide .1

floolinll poinl

•
ri 1

floolinll poinl
~ +

by I. , '- S rell isler
swoPpinll

J t , T rellisler ,
l

Figure 2. The layout of a Geometry Processor instruction .

I I I I I I .. ·
47 32

···JI __ ~I __ -L __ 1--1 __ ~ __ L--L_S-1_T~IL·_C-LI·_F_F~I_I/_O~I __ -L __ L-~ __ -LI···
31 16

.. ·1 1
15 o

Graphic. Interface '82

To discuss the floating point subsystem intelligibly we need to
mak e some preliminary remarks ahout instruction execution and
sys tem timing. Execution of a new instruction begins every
machine cycl e (300 ns) . Most in st ructi ons complete in a single
machine cycle. but the results of float ing point additions and
multiplications a re available only at the end of the following and
second following instructions. respectively. More precisely: each
machine cycle is sub-divided into three phases of lOOns each . If
a microinstructio n enables an arithmet ic or logical operation. the
right and left operands are acquired from the bus during the first
and second phases of the instruction, respectively. Results are
stored during phase three . However, most arithmetic and logica l
operations require three additional phases to complete once the
operands are ava ilable. and their results are therefore stored dur­
ing phase three of the following instruction .

Multiplica ti ons and divisions are an exception to th is scheme.
as they require six additional phases to complete. The multiplica­
ti on it sdf is performed during the first three of these: during the
second three th e result is optionally added to the contents of the S
register and normalized . Hence the result of a multiplication is
avai lable fo r storage during phase three of the sec.o.n.d. instruction
following the instruction in which the mult iplicatio n W<lS hegun .
so that a total of nine ph<lses (three complete machine cycles) are
required for operand fetch, computation. and storage of the
resu It .

Thus the location at which the result of an arithmetic or logi­
cal operati on will be stored is specified in the instruction during
which the operation completes, lllll in the instruction which
invoked the operation . Thi s is a major source of programming
complexi ty.

Although these operations require two or three machine cycles
to complete, they are pipelined so that successive operations may
begin on successive machine cycles. Thus a 4x4 matrix multipli­
ca tion may be performed in <I pprox im ately 23 microseconds, and
a m<ltrix may he applied to a vector in approximately 7
microseconds .

The GP transfers data hetween itself and the outside world
through two 32-bit parallel i/ o ports. Each has a 32-bit data
register, a 12-bit address register, and a 4-bit autoincrement regis­
ter. The hardware attached to an i/ o port is expected to have a
rdocation register which is added to the port address . (In the
case of the 11 / 44. to which the GP is currently attached . the
res ulting address is run through the Unibus map.) Readin g or
wr itin g the data register for the selected i/o port triggers the
co rresponding operation on whatever is attached to the port. and
the port address is au toin cremented.

Microinstructio ns are stored in a 2,048 word by 48 bit ins truc­
tion m emor y (I M) built of 150 ns ram chips . The layout of a
micro in str u~tion is indicated in figure 2. The follow ing co mments
a rc intended to indicate the range of functionality ava ilable.
Much unnecessary detai l is omitted, for which the reader should
be thankful. ..

If we schematically represent an alu operation by

C := A op B

then the integer and logical operations available a re

357

C 0
(' -- B - " - I 1+11
c - A- B-1 1+ 11
C - A + B 1+1]
C - A xor B
C A or B
C A and B
C - all I' s

([+ I) ind ica tes that the result may optionall y be incremented hy
I) and the fl oa tin g point operations avai lab le are

C - A + B
C A*B+O
C A* B+ S
C - A * B - S
C A-R
C - A / B+O
C - A / B+S
C - A / B - S

(S is the fl l)ating poi nt accumul ato r). Floatinl! point va l\l ':s ar.:
rcprcscllh:d aCl:ording to the proposed I EEE standard. and thus
possess an 8 bit exponent and (implicitly) a 24 bit mantissa. (The
OMA interface connectin g the GP i/ o ports and the POP 11 / 45
is ab le to convert between OEC and GP fl oating point formats .)
Hardware division results in 8 significant bi ts since a division by B
is replaced with a multiplication by I/ B (an 8-bit value obtained
from PROM): true division (requ ired fo r perspective projection) is
accomplished by a 3.5 microsecond firmware algorithm.

The fl oating point hardwa re sets status flags to record the
occurrence of underflow or overfl ow. and a val ue is produced
which ca n be consistently used in a subseq uent arithmet ic compu­
tation . Thus the firmwa re may check fo r the occurren ce of a
fl oa ting point error at the end of a seq uence of operati ons and the
va lue produced always makes sense.

The AMO 2910 microprogram sequencer provides a program
counter (PC), suhroutine ca ll and retu rn using a five word address
stack. a loop counter (COUNT). and conditional or uncondit ional
branching . The sequencer op code field selects one of the sixteen
standard AMO 2910 instructions: these arc listed in the next sec­
tion. Fo r appropriate 2910 instructions . the branch condition
field sdects one of the tests BUS = O. BUS>O. BUS> =0, i/ o
husy, int crrupt pending, floating point overflow. and fl oati ng point
error; the co mplement of each test may a lso be select ed. The
comple ment of overfl ow is underfl ow.

The B source and A source fie lds of the instruction ma y
specify that the corresponding phase I and phase 2 operands are
to be the:

(I) T register:
(2) constant defined by the FF field:
(3) RM word pointed to by the B or A register:
(4) RM word whose address is co nta ined in the FF field .

The selected operand is placed on the bus during the appropriate
phase.

The C source field selects the value which will be stored by
phase :1 of an instruction . The va lues which ma y h.: selected
include the:

Graphics Interface '82

(I) constant defined by the FF field:
(2) R M word pointed to by the C regi ster:
(3) R M word whose address is contained in the FF field:
(4) alu output from phase 2;
(5) data register for the current i/ o port (a read).

The C destination field selects the location at which this value will
be stored . Any or all of the following destinations may be
selected. in most cases simultaneously:

(I) output from the alu may be written to the S register:
(2) T register:
(3) RM word pointed to hy the C register:
(4) R M word whose address is contained in the FF field:
(5) data register for the current i/o port (a write):

Routing alu output to the S register does not tie up the bus dur­
ing ph<lse three, so that another value may simultaneously be
routed to any of destinations (2) through (5).

The "load / modify A, B, C pointers" field may be used to load
any combination of these pointers, including all or none of them,
from the hus during phase 3, or to c<luse the A and B pointers to
be autoincrcmented during phase 2 and phase I. respectively. In
the latter case one of eight autoincrcment pairs is specified. The
corresponding values are defined by a PROM . Six such pairs are
currently being used , including (\,0] (increment A hy I and B hy
0) and [1.41 (increment A by I and B by 4) . The latter pair
provides exactly the address modification needed when computing
an entry in a matrix product: other pairs are selected for similar
reasons. Autoincrement control of the C register is provided by
the bonus bit.

Ordinaril y the FF field serves as an immediate constant, an
address, or is used to load the lo<'p counter (COUNT) in the
sequencer chip. (Of particular utility are the flags which allow the
rea l values 1.0 and 0.5 to be generated as immediate constants.)
When the FFtag instruction bit is set to I , however, the FF field
ma y instead serve a numher of special purposes. (Exactly which
is indicated hy its It:ftmost two bits.) Briefly, these are:

(I) read Ill' write I M from the hus during phase 3:
(2) sclt:ct ,In i/ o port:
(3) set or dear <In i/ o interrupt:
(4) load the selected i/ o address register :
(5) load the selected i/o autoincrement register:
(6) shift alu output left or right by I:
(7) reset the floating point error flags :
(8) select bus byte and T byte for a T register load;

The pilot port is not involved in the normal execution of the
GP. It serves two purposes: it provides the means by whieh
microcode is downloaded into instruction memory from the host.
and it provides a mech anism for debugging firmware.

Data may be transferred in either direction through the pil ot
port, one byte at a time, between the host and any of the four
bytes of the T register. The pilot port may also eause the
co ntents of the T register to be loaded into the instruction register
(IR) . This enables a host program to manipulate the GP hy load­
ing a n instruction into the T register, transferring it to the I R,
and executing it. Microcode is thus downloaded hy assembling a
word in the T register and executing an instruction which writes
the contents of the T register into either the high 32 or the low 16
hit s of a word in IM .

358

To facilitate thi s process the pilot port ma y start. stop. single
step and reset the GP. I nteractive debuggi ng is performed from
the host by halting the GP, saving the contents of the T register
and the address from which the IR was loaded (la tched in a spe­
cial register just for this purpose). and inserting an instruction
into the IR which causes the contents of an arbitrary register to
be moved to the l' register , from which it can be read via the
pilot port. Microprogra m execution can then he resumed after
restoring all mod ilied n:g is ters . Breakpoints ma y be inserted in
such programs by setting the left most bit of a n instruction to I:
the result is to haIt tht: processor before the instruction is
executed so that the pilot port ma y examine or modify the state
of the GP. .

Microassembler

As ca n be appreciated from the preceding section . direct
microcoding of the Geometry Processor is a tedious and error­
prone occupation, made especi ally so by the number of fields in
each instruction and the pipelining of arithmetic and logical
operations. This is, of course, the usual argument for the use of
high -level languages . On the other hand. the GP exists ror the
sole purpose of executing a sma ll number of algorithms at the
highest possihle speed, motivating the careful preparation or
optimal code. This can be done. in general , only by as~emhly­
level programming. Hence the primary goal in designing a
microassembler for the Geometry Processor was to provide high­
level language constructs wherever possible while retaining the
capability for setting specific fields within a microinstruction [6J.

Statements within a GP program or procedure consist of
declarati ons, procedure definiti ons, assignment statements. control
statements, branch statements, and assembler directives. Each of
these will be discu ssed below. A general design pri nciple. how­
ever, was that each executable statement correspond to the notion
of an instruction in a traditional assemhler. modulo the effects of
pipelin ing.

The ol'crall intention was, then. to maintain the run-timl'
efl'ic iency and fl exihility of machine code while gaining the
adv;lntagl's or :1 hig h-kvel languagt· . This is :1 philos(' ph v
horrowed I'ro111 Niklaus Wirth's "machine oriented language"
PL360 [21/ . Th<.: CiP micr()ass~ mhly language was also much
influenced by the work of Don Faul on a language I'or the
ISI / Child programmable frame buffer designed in the mid-19 70's
at Lawrence Liverrnore National Laboratory [7].

The language accepted by the GP microassembler is a mi xture
of S, C, Pasca l. and various traditional assemblers. I n man y
cases this amounts to little more th an " syntact ic sugar" which
renders the source code more readable. However. the
microassembler will report any attempt to assign conflicting
val ues to a microinstruction field: this feature is particularly use­
ful in the case of arithmetic or logical instructions. which
necessa ril y result in the setting of fields in subsequent
microinstructions. To preserve the correspondence between
source and object code, the assemhler does not attempt to
automaticall y mt:rge consecutive instructions which use disjoint or
compatihle fields. [t is expected th at the small amounts of speed
critica l code involved will be hand optimized by the programmer.

Wc int roduce the GP microassemhl y language hy wa\' of the
fo ll owin g example program, which read s 100 homogl'ncous
vectors from the input port. multiplies th em by a matr ix. and
writes the resu lt vectors to the output port. For simplicity the
matrix is assumed to have been initi ali zed elsewhere.

Graphics Interface '82

program Transform;

con~t N = 100;

va r rm row[l :4]. matrix[I:4,1 :4] ;

port input = 0, output = I;
set port to input, set port increment to 4;
set port to output, set port increment to 4;

B : = address(matrix);
do N times:

set port to input;
A : = C : = address(row);
[C+ I] := [10+1];
[C+I) [10+1);
[C+I] : = [1 0+1);
[C +I) := [10+1] ;
S [A + \) .. [B+4), set port to output;
S := [A+I]·· [B+4) ++ S;
S := [A+I)·· [B+4) ++ S:
[10+ \) := [A-3) •• [B-II) ++ S;
S :=[A+I)··[B+4);
S := [A+I)·· [B+4] ++ S:
S := [A+I)·· [B+4] ++ S;
[10+\) := [A-3]·· [B-II) ++ S;
S [A+I) •• [B+4] ;
S := [A+I) ·· [B+4] ++ S;
S := [A+I) •• [B+4] ++ S;
[10+\) := [A-3)·· [B- 1\) ++ S:
S [A+I]** [B+4);
S : = [A+\)·· [B+4) ++ S;
S : = [A+I)·· [B+4] ++ S;
[10+1) : = [A+I)·· [B-15) ++ S;
nop; /* Wait for the result • /

end do; r The final store occurs here • /

t r Dump the symbol table • /

end program Transform .

Since the assignment, control and branching statements
described below often make use of distinct microinstruction fields,
the programmer may make them part of the same statement
(instruction) by separat ing them with a comma; a semicolon
marks the end of such a li st, and indica tes that the assembly of a
new instructi on should hegin . Thus

S : = [A + I) •• [B+4]. set port to output;

results in an instruction whose fields specify the initiation of a
multiplica tion and the se lection of an ijo port. It will be con­
venient to refer to the pieces of such a composite statement as
" actions". If the actions in a statement require that any field of
the corresponding instruction have two or more distinct values
then an error message is generated .

We shall now sketch, in turn. the va rious kinds of statements
accepted by the GP microassembler.

Decla ra tions such as

359

const N = 100:
port input = O. ou tput = I;
field rI = RITS[15:81: r Th ird hyte in a data word • /
field 1'2 = FFIII :01 ; 1* branch address in FF • /

provide for the crea tion of symbolic names for constants. i/o
ports, a nd bit fields. Notice that the register na mes discussed in
the previ ous section (such as FF. A. B, C, S , T and 10) are
known to the assembler and may be used wherever appropriate .
The name itself (such as A) represents the contents of the register.
while enclosing the name in squa re brackets (for example: [A])
refers to the val ue poi nted to by the address in the regi ster. Va ri­
able decl arations such as

va r rm row[I :4]. matrix[I :4, 1:4);

may be used to associ:Jtc a symbolic name wi th a block of storage
in regislt:r memory (rm - the default) or instruction mcnlllry (i m).
Sto rage is allocated statica lly. so tha t a unique porti on of thl::
a ppro priate mem ory is permanentl y assoc ia ted with every
declared va riable . The scope of an ide ntifier is the entire progra m
or procedure in which it is declared . Procedures may he nested.
However. aside from defining the scope of identifi ers declared
wi thin it. a procedure definition is equivalent to the definition of a
label at the sa me location; there is no savi ng of registers. return
addresses, or anything else a t procedure entry and when a pro­
cedure ex its the next instruction is sim ply executed. Labe l a nd
procedure names must be declared before they are defined and the
scope of the na mes is the scope of the declarations . Since the
assembler operates in a si ngle pass. every ident ifier must be
declared before it is used .

Variables a re not typed . Instead the floating point ve rsi on of
a n a rithmetic operation is di stingui shed from tht: integral version
by repea ting the opera tor . Thus + den otes integer addition and
++ denotes real addition . In order to preserve the correspon­
dence between assembler statements and machine inst ructi ons. the
assembler accepts as the r ight ha nd side o f an ass ignment state­
ment o nly those ex press ions whose co mputation can be ini tia ted
in a si ngle micro instruction. such as

S := [A+I]·· [B+4] ++ S;

Only the sma ll number of autoincrement/a utodecrement values
implemented directly by the hardware are a llowed . Multiple
ass ignments such as

A := C := address(row);

a re a ll owed in so fa r as they comprise compatible phase 3
destinations.

Co ntrol st atements such as

SET PORT INTERRUPT
RESET PORT INTERRUPT
ENABLE PORT BASE LOAD
ENA BL E PORT ADDRESS l OAD
SET PORT TO < 0 or I>
SET PORT INC R EMENT TO < cxpr>
R ESET FP ERROR

modify the state of fl ags in the G P in the obv ious way.
A va riety of hra nch sta tements a ll ow the microprogrammcr to

speci fy the microi nst ructio n fields whi ch control program flow .

Graphic. Interface '82

Most of these statements make use of conditio na l bra nch fea tures
of th..: AM [) 29 10 sequencer chi p. The conditions avai lable a rc

WH EN BUS = 0
WHEN BUS != 0
WHEN BUS > 0
WHEN BUS < 0
WHEN BUS >= 0
WHEN BUS <= 0
WHEN INTE RR U PT
WHEN BUS Y
WHEN FP E RROR
WHEN F P OVERFLOW
WH EN FP UN DERFLOW

UNLESS BUS = 0
UNLESS BUS != 0
UNLESS BUS> 0
UN LESS BUS < 0
U NLESS BUS> = 0
UNLESS BUS <= 0
UNLESS INTERRUPT
UNLESS BUSY
UNLESS FP ERROR

ALWAYS N EVE R

BUS co nditi ons tes t fl ags indicating the va lue of the bus during
phase 3 of the p.reri.au.s. microinstructi o n. BUS may be replaced
by a ny va lid phase 3 source . If a pipelined opera tio n is s pec ified
in the same instruction then the test is delayed until the o peration
is complete.

The va ri o us branch s tatements ava ilable make use of the
COU NT regis ter a nd add ress stack in the AMD 2910. The
eou NT reg is t..:r may be used as the ..:o ntro l va riable of a loop.
or may be loaded with an address through which a jum p may
subsequently be executed . The address stack may be used for
nesting subroutine ca lls. a ltho ugh the ha rdwa re does not provide
any mechanis m fo r t rapp ing stack overfl ow and the assembler
does not attempt to predict such an eventuality. The primitive
branching instructions. which correspond exactly to the
capabi lit ies of the hardwa re. a re as follows :

GOTO <t arget >
GOTO < target> < condi t ion >
GOTO <target> < condition> ELSE GOTO [COUNT]
GOTO [COUNT]

C ALL <target>
CALl. <target> < co ndition>
C ALL < target> < condition> ELSE CA LL [COUNT]
CALL [COUNT]

PUSH

A <ta rget> is either a label or a procedure . A conditi on
is a WHEN or UNLESS cla use . The COUNT regis ter is
assu med to have been loaded previously with the address of
interest. A CALL pushes the current content s of the pro­
g ram counter o n the addn.:ss stack and tra nsfers control to
the < target> address .

P US H T H EN COUNT < expr> TIMES
P US H THEN COUNT < expr> TIMES < condition >
PUSH THEN LOAD <target> INTO COUNT
PUSH THEN LOAD <target> INTO COUNT < condition>
ITERATE ELSE POP
IT E R A T E ELSE POP TO <target >
COUNT <expr> TIMES
LOA D <target> INTO COUNT

PUSH simply causes the program counter to be pushed on
the address stack . COUNT <expr> is used to initialize
the COUNT regis te r to < expr>-I at the top of a loop;
presumably a subseq uent IT E RATE statement will cause a

360

branch b:1Ck to the top-of-stack-a ddress afte r decremen ting
COUNT if COUNT is nOn -fenl . so that the loop will he
..:xecutco nactl y <npr> lill1l·s . When COLJNl glle~ to

I.ero the address stal' k is popped ami ..:o ntl"ol either
proceeds sequentia ll y or is passed to the specified <tar­
get>. LOAD <target> initializes COUNT wit h <t a r­
get> . wh ich will presumabl y be used later as a jump
address.

R ETU RN
RETU RN <condition>
LOOP
POP
POP < condition> ELSE LOOP
POP TO <target>
POP TO <target> < condit ion >
POP <conditi on> ELSE ITERATE ELSE POP TO <target>

RETURN causes the stack to he po pped after transferring
to the top-of-stack add ress , LOOP simply causes control to
ret urn to the top-of-stack address. a nd POP simply pops
t he stack.

AI a somew hat higher kvd . :l construcl mllch lik..: the
Iraditional "if-then-else" is accepted hy the assemhle r . 11 is hest
described by an example.

T := [A] & [B] . WH EN BUS = 0 TH EN:

ELSE square : = T .. T ;

END IF [C] := T:

The " THEN-part" co nsists of the statements up to and including
the sta tement which begins with ELSE. while the "ELSE-part"
consists of the statements following the statement containing
ELSE, up to and including the statement beginning wit h EN DI F.
The < conditional> appearing in the first statement may be either
a WHEN or an UN LESS. and selects which clause is to be
executed. In this example the THEN-.:lause has as its last a.:tion
a floatin g point multiply, which will require two machine cycles to
complete. The assembler would normally a rrange that the second
fo llowing inst ruction ca use the result to be stored into the ,·a riable
sq uare. Unfortunatel y this instru('tion lies in the ELSE-clausl'.
and wou ld not be executed . To avoid such anomalies the pipeline
is always a llowed to empty at th e start of the condi t ional. and at
the end o f the THEN- a nd ELSE-clauses. by inst:rting NOP
instructions as needed .

The GP assembler also accepts d o-loops such as

T : = T·· T. DO 10 TIMES;

ENDDO T := T ++ 1.0;

The o ptional action (here T : = T .. T) is performed , COUNT is
loaded with the number of ite rat ions minus one, and the top-of­
loop address is pushed ont o the address stack . The bod\ of th e
loop, including the final ac ti on on the ENDDO. is executed the
spec ifi ed number of times. On ce again. the pipdine is allowed to
empty at the top and bottom o f the loop hy inserting NOPs .

The assembler simplifies the programmin!! of arithmeli c and
Il'gi.:a l opcr:ltions by aUlomaticall y inserting. the deslination
specified in a subsequent instruction . and vcr ifving that this does
no t result in a con fli ct with o ther actions in that instruction . The

Graphics Interface '82

programmer must. of course, be aware: that thi s will happen .
When a branch occurs, however, the textua lly following
instructions need not be the next inst ructions executed. As we
have seen. the m icroassembl er mi nim izes errors by "flushing" the
pipeline whenever a branch is specified by inserting one or two
NOP instructions prior to the branch so that the result may be
stored before the branch is taken . For the sake of efficiency it is
occasionally desirable to suppress this padding . Appending the
keyword I MMEDIATEL Y to a n action accomplishes this; notice,
however , that the fir st or second textually following instruction
will still contain the phase 3 source and destination fields needed
to store the result. For example, the following loop will move N
words using 3+2*N instruction cycles.

wh ile

C: = ADDRESS(< source» ;
A := ADDRESS(<destina tion>);
DO N TI M ES: /* N is a const ant * /
ENDDO [C +I]:= [A+I] ++ 0;

361

Oil t,l a second spcc' ial pu rpose pnll:essnr f'H SGI Il cO llversion and
display.

Th.: present GP firlllware. thcll. is periodically given the
add ress of a macroinstruction li st in host memory, which it
executes. These macroinstructions are each 8 bits in length, and
are either control. matrix , or operand instructions . The firmware
maintai ns a number of va riables in register memory, which vari ­
ous macroinstructions depend upon or modify. including an i/o
address, two mat rix stacks, a viewport transformation, and an
operand / result data a rray . Within the GP vertices a re always
represented in homogene ous coordinates.

There a re four contro l instructions . NOOP has no effect.
STO P halts the G P aft er no tifying the host of co mpletion .
R ESET empties either or both of the matrix stacks .
SET A DDR ESS ma y be followed by up to 3 bytes, and specifies
a n address in hos t memory (I) at which the next macroinstruction
wi ll be found, or (2) which a suhsequent instructi on will lIse for
reading or wri ting mat ri ces or da ta .

There are fi ve matrix instructions. Each may modify either or
both of the mat ri x stacks . MOVEM causes the ma tri x stored at

C := ADDRESS(< source>); the current i/ o address in host memory to b~ pushed onto the
A := ADDRESS(<destination>); selected stack(s). or returns one or both of the top-of-stack
lOAD N-2 I NTO COUNT; /* N-2 is computed by the assembler * / matrices to the host. D U PM cause~ the matrix at the top of the
[C+ I] : = [A + I] + + 0, PUSH IMMEDIATELY; selected stack(s) to be duplicated , increasing th e stack depth(s) by
[C+I] := [A+I] ++ 0, ITERAT E ELSE POP IMMEDIATELY: one. POPM causes the matrix a t the top of the selected stack(s)
NOP; to be released, decn:a sing the stack depth(s) by one. MUlM

will require only 4+ N instruction cycles.

When all else fails. the bits in a specific fie ld of an
may be set direct ly by means of an action
"BITSI5:41 = 2".

instructi on
such as

A more detai led description of the GP assembly language may
be found in (6). The descri pti J n supplied here should be sufficient
to give the reader a feeling for the way in which the so mewhat
co nflicting desi res both for full , efficient access to the machine
and for the simplic ity a nd expressiveness of high-level language
constructs have heen resolved.

Progra ms a re run through the C preprocessor [11) before
undergoi ng assembl y proper so that macros (with parameters), fil e
inclusion, a nd conditi ona l assembly a re all supported . The assem­
bler recognizes the line number and file markers embedded in
preprocessor output so that error messages may speci fy correct
line numbers and file names.

The assembler conta ins a lexical analyzer generated by l EX
[14) and an lAlR(I) parser generated by YACC [10) . Use of
these tools grea tly eased both implementat ion and maintena nce of
the microassembler.

Firmware

The motivation for designing the Geometry Processor and a
microasse mbler with which it ca n be programmed was to co n­
struct a special purpose peripheral processor which could be used
to rapidl y perform the geometrical transformations and clipping
operations necessary in 3-d imensi onal computer graphics
applications.

Because the GP is progammable it ca n readily be adapted to a
va riet y of system organizations. I n the present configuration the
GP is connected to a PDP 11 / 44, from which it reads instructions
and data, a nd to which it returns result s. although transformed
and clipped output could equally well have been passed directly

causes the two matrices top most on the se lected stack(s) to be
replaced by their prod uct, again decreas ing the stack depth(s) by
one. APPL YM has exactly the same effect on the sele<.:ted
stack(s) as would a DUPM , foll owed by a MOV EM. followed by
a MUL.M.

Matrices are transferred from the host in a "para meterized"
form which contai ns only the non-zero entries. Thus the host
rep resentatio n of the matrix for a transla tion in x and y ha s a
header containi ng a code for translation and bit fl ags indicating
that dx a nd dy va lues are present: this 16 bit header is followed
by the two 32-bit floating point va lues of dx and dy . (The
MOVEM instruction expa nds the parameterized form into a full
4x4 matrix before pushing it onto the stack(s).) T he parameterized
representations of scaling and rotation matrices a re analogous .
T here is also a full 4x4 format for matrices which do not fit this
scheme.

The operand instructions are cons iderahly more heterogene­
ous. The MOVEO inst ruct ion is used to transfer d ata between
host memory and the GP operand/ result array. There are four
bit fl ags in addi tion to the four-bit op code. The first specifies the
direction of data movement. A second indicates whethe r conver­
sion is desired between homogeneou s and non-homogeneous form .
There is a lso a bit fl ag for each of the stacks. If the flag for stack
i is set then the topmost matrix on stack i is applied to each 4-
tuple transferred . If both flags are set then the topmost mat rices
on each stack a re applied to alternate 4-tuples. (Thus if data
heing read from the host consists of R-tuples comprised of a posi­
tion and a normal. and if stack one is a tra nsform ation stack and
stack two records only the rotations which have hee n
acc umulated, then we are able to apply the current transformat ion
to positions and compute the effect of rot ations on normals .)

The LI NECLI P and POl YCLI P instructions ca use a stan­
dard line or polygon clipping algorithm to be applied to the dat a
in the opera nd / result a rray. Clipping agai nst the near, far and
side clippi ng planes may be indi vidua lly enabled or disabled .
Clipping automatica lly results in the conversion of vertices from

Graphics Interface '82

h<lll1ogeneo us to non-homogeneous form; the fourth coordinate is
replaced by a "move/ draw" flag . The POL YCLlP instruction
has an additiona l flag which can be set to indicate that each
incoming homogeneous coordi nate carries with it a normal which
should be interpolated, not clipped .

Finally, the VIEWPORT instruction is used to apply the
current viewport transformation to the data in the operand/result
array, or to extract a lightsource dot-product from the data in the
operand/ result array, or both (in which case the two kinds of data
alternate). The lightsource computation amounts to no more than
replacing a 4-tuple by its third coordinate, on the assumption that
the 4-tuples to which it is applied are normals which have been
transformed into a coordin ate system in which the z-axis is paral­
lel to the light source vector.

Thus the macroinstructions presently implemented allow the
Geometry Processor to stack or concatenate the modeling and
viewing matrices commonly used in graphics applications. to
apply these matrices to vertex or normal data. and to appl y a
viewporting transformation. Scan conversion is the responsibili ty
of a subsequent processor.

A detaikd description of the way in which the Geometry Pro­
cessor is interfaced with the POP 11 / 44 to which it is presently
attached may be found in [5,12,13,20) . Briefly, to use the GP the
requesting process is locked in core. The pilot port is then used
to download the firmwa re, initialize the i/o port base addresses,
and patch into an agreed-upon location in instruction memory an
address in the host program at which an instruction list pointer.
error return code field, run / halt flag and completion flag can be
found by the GP. The pilot port is then used to start the GP
executing. A control loop in the GP firmware samples the
ru n/ halt flag to determine when a new instruction list has been
presented for execution. Execution of the STOP instruction
terminating the instruction list is illdicated by setting the com­
pletion fl ag and generating an interrupt. which is propagated to
the host program as a signal.

world coords
~ - ~
~

transformations ~
graphics Geometry

module virtual coords
Processor

E
0

I ~

0'
0
~

a.
I: ---%l service
~ module
0

X filter X device
.~

I a.
a.
0 plot format

display t device coords
Depth

module
(scan line data) ~

Buffer

Figure 3.

Host Software

A schematic of the host softwan: with which an aPl'lil';lIion
program may current ly use the Geometry Processor appears in
figure 3.

The graphics module, which is the actual interface between a
program and the GP, contains the following kinds of routines .

I) Control Routines. These are used to initialize and terminate
the graphics module, and provide a means of switching
between a data mode in which lines. polygons and
transformations are passed to the GP for processing, and a
viewing mode in which the viewing transformation is specified.

2) 3D Viewi ng Routines . For the most part these conform to the
GSPC CORE Standard [I). For convenience, however, a
camera mode is available in which the view plane norma l is
automaticall v determined to be the vector from the eye point
to the view reference poi nt (suggested hy Tim Stevensnn).
Also. following [17). a foreshortening ratio and receding angle
are used to specify parallel projt:ctions .

3) Modcling Transformatio ns. These routines cause an al'propri ­
ate matrix to he passed to the GP. where it is conl'atentated tll
the current transformation and li ght ing matrices (in the c:ase
of a rotation). These matrices may first be saved on stacks in
the GP. The lighting matrix is initialized so as to transform
normals to which it is applied into a coordinate system in
which the light sou rce vector is aligned with the z-axis . The
projection of a unit norm al onto the light source vector is then
simply the z coordinate of the vector which results from apply­
ing the lighting matrix to the normal.

4) Data Routines . Vertices are passed to the GP in arrays. The
vertices defining a polygon may optionally carry a normal
which the GP will interpolate while clipping. Informat ion
about the direction and nature of the lightsource may also be
specified . since the GP can be asked to appl y the usual cosint'
law 10 compute the intensity al a vertex from an associated
normal and a light source vector .

The display module is a separately compikd set of routines
which can be used to display data transformed by the graphics
module and GP. The primary output device used while debugging
the GP was a 512x512 z-buffer having 24 bits of colour informa­
tion and 16 bits of depth at each pixe1 [15.16). The display
module breaks polygons into sca n line segments. which a Z80
contained in the display (slowly) processes. Constant. facet and
Gouraud shading (with and without depth modul ation) are
supported (figure 4). Alternatively . the display module can also
generate images on a variety of line draw ing displays via the stan­
dard Unix plot utility .

The general scheme. then is as follows . An application pro­
gram will build and manipulate data structures containing coordi­
nate information. modeling transformations. colou r information.
and additional application dependent object att ributes . When a
picture is ciesired . appropriate viewing parameters arc passed to
the graphics module. and the Geometry Processor is initi.dized
with a transforllliltion effecting the desired viewi ng projection
The applicalion dat,1 structures. which typically contain a mixture
of modeling transformati ons and polygon data. are then I ra vt:rscci .

As each transformati on or pol ygon is en co untered during
traversal.

Graphics Interface '82

Figure 4.

+ for each rotation, translation , or scaling desi red , a graphics
module routine is ca lled to request that the GP update the
cu rrent transformation a nd lighting matrices, possibly altering
the stack as well , or

+ the coordinates defining a polygon (or line trace) are placed in
an array and an appropriate graphics module routine is called
to transmit the array to the G P, where it is transformed,
clipped and viewported.

The resu lting polygons, now described in virtual coordinates,
are then retrieved from the GP and passed to a display routine,
where shading co mputations are performed, and scan segments
are passed on to the z-buffer for depth-comparison with the
current image and possi ble display.

The app licatio n program may call routines in the graphics
module and in the display module directly, but for convenience a
standard set of "service" routines have been provided which send
polygons off to the GP to be processed and automatically pass
returned virtual data on for display.

Debugging

An important pa rt of the Geometry Processor's design was the
provision of convenient mechanisms for debugging. At the lowest
level, bit 15 of the instruct ion is not used by the GP itself. When
the hardware is thought to be malfunctioning, a small loop which
includes the offending instruction is repeatedly executed. Bit 15
of this instruction only is set to I and used as a "scope trigger"
while pertinent signals are probed and compared with their

nominal va lues. Thus faulty signals can be easily located .

At a slightly higher level , the HALT bit can be used in con­
junction with the pilot port to implement a fully interactive, host­
resident microprocessor debugger . Indeed, firmware debugging
from the PDP 11 / 44 via the pilot port is no more difficult than
the interactive deb ugging of host programs. One can hardly exag­
gerate how greatly thi s fac ilitates firmware debugging and mai nte­
nance.

363

Development of the resident firmware and host software were
also facilitated by writing a simulator for the GP which ran on
the host [4) . By loading with the appropriate interface routines
host application programs were able to run either the GP
hardware or simulator. Comparing the results for a given test
program made it easy to determine whether anomalous results
were due to GP firmware / hardware problems or to bugs in the
test driver and host software library. Because the simulator was
written before the firmware, the GP instruction set had evolved to
a stable state before microcoding began . Existence of the simula­
tor also made it possible for host software development to
proceed normally when the GP was unavailable.

Conclusions

The Geometry Processor hardware, firmware and host
software are fully operational, and the first phase of the project
has been brought to a close; work has now shifted to the develop­
ment of a 1000 line, Motorola 68000 based personal workstation
to which the GP will be optionally attached. Hence this is a con­
venient point at which to take stock of what we have learned.

The scope trigger and breakpoint bits are invaluable. So to is
the provision of a mechanism like the pilot port for monitoring
and debugging the microprocessor interactively from the host.

On the minus side, the A, B, and C pointer registers cannot be
read owing to a lack of board space and because of timing
considerations, nor can the 2910 address stack. These restrictions
are a substa ntial inconvenience; it should be possible to read any­
thing which can be written.

It is now clear that it would have been simpler to use separate
circuitry for integer and logical operations, rather than arranging
for the floating point hardware to handle these as well. Indeed,
most of the arithmetic (including address computations)
performed by the GP is integral. Also, a relatively simple and
useful modification to the GP would allow the transfer of a value
between RM locations in one machine cycle instead of two by
making it possible to load the T register during any phase, instead
of only phase 3. Finally, the primary source of difficulty in fully
utilizing the parallelism available in a GP microinstruction arises
from the multiplicity of uses for the FF field. The most common
conflict results from an attempt to use FF both as an address and
for an immediate constant.

A more important observation has to do with what the GP
spends its time doing. As is apparent from the design of the alu
pipeline, the major emphasis was placed on rapidly computing
matrix products, and rapidly applying matrices to vectors. Since
the GP is programmable, it seemed a natural place at which to
clip and viewport as well. Roughly speaking, nearly 2800 instruc­
tion cycles are required to read a four vertex polygon from the
host, apply the current transformation matrix, clip the result
(assuming the polygon leaves and re-enters the clipping frustrum
once), apply the viewporting transformation , and return the
processed polygon to the host. Of these only about 75 instruction
cycles are actually involved in applying the current transforma­
tion. The most expensive step is polygon clipping (about 2275
cycles), followed by viewporting (about 285 cycles). Also, to use
the GP most effectively a separate high speed scan conversion
processor is needed; further work on such processors is
anticipated.

Graphics Interface '82

The effort of designing and implementing a structured assem­
bler was clearly worthwhile. Indeed the GP assembly language
has already been used as a model for the design of a language for
another microprocessor. It is not clear, however , that it was wise
to stay so close to the hardware in designing the la nguage
accepted by the GP assembler. Even at the level of the Geometry
Processor, progra ms consist of a few inner loops which should be
executed rapidly and a lot of setup code whose execution time is
rela tively unimportant. The latter is shot full of special cases,
decision making, and control logic of the kind found in ordinary
progra ms. whose syntax is clearly easier to understand than is the
syntax accepted by the GP assembler (which closely reflects the
hardware).

Indeed a better approach may be to strip unnecessary features
out of an existing language like C and compile relatively
inefficient code for the microprocessor, dropping into a primitive
assembly language within procedures to implement the small
inner loops on which total execution time mostly depends. We
a re pursuing this a lternative in designing a high level language for
a comparable microprocessor which is attached to an Ikonas
frame buffer system at Waterloo, with the intention of comparing
the two approaches.

Note

The hardware described in this paper is experimental, and
should not be co nstrued as a product commitment by Tektronix,
Inc .

References

[I] " Sta tus Report o f the Graphics Standards Planning Com­
mittee." A CM Siggraph Quarterly. 13,3 (August 1979).

[2] Bates, Roger D., Special Purpose Geometry Processor
Architectural Description. Technical Report CR-79-12.
Computer Resea rch Laboratory, Tektronix Laboratories,
Beaverton, Oregon 97077 .

[3] Bates, Roger D., Special Purpose Geometry Processor Pilot
Port to DEC II /xx Architectural Description, Technica l
Report CR-BO-II (April 19BO), Computer Research Labora­
tory, Tektronix Laboratories, Beaverton , Oregon 97077 .

[4] Beatty, J ohn c. , A User Interface for the CRL Geometry
Processor, Technical Report CR-BI-B , Computer Research
Lahoratory. Tektronix Laboratories. Beaverton, Oregon
97077.

[5] Beck, J ay W. a nd John C. Beatty, Special Purpose
Geometry Processor Functional Specification , Technical
Report CR-BO-14, Computer Research Laboratory, Tek­
tronix Laboratories, Beaverton , Oregon 97077.

[6] Booth, Kellogg S . and Marc Wells. Special Purpose
Geometry Processor Microcode Assembler, Technical
Report CR-BI-II (July 19BI), Computer Research Labora­
tory. Tektroni x Laboratories, Beaverton, Oregon 97077.

364

[7] Faul, Donald R ., The Design and Implementation of a
High-Level Language for a Programmable Frame Buffer,
Technical Report UCID-I7745 (October 1977), Lawrence
Livermore National Laboratory, Livermore. California
94550.

[B] Fuchs, Henry, "Distributing a Visible Surface Algorithm
Over MUltiple Processors," Proceedings of the ACM
National Conference 1977. October 1977.

[9] Fuchs, Henry and B. Johnson , " An Expanded Architecture
for Video Graphics," Proceedings of the Sixth Sy mposium
on Computer Architecture," April 1979.

[10] Johnson, Steven C .. Y ACC - Yet Another Compiler
Compiler. CSTR 32 (1974) , Bell Telephone Labora tories,
Murray Hill , New Jersey.

[11] Kernighan , Brian W . and Dennis M . Ritchie , The C
Programming Language. Prentice-Hall (197B) .

[12] Laskodi , Terry. Special Purpose Geometry Processor - User
Software Interface. Technical Report CR-BO-2, Computer
Research Laboratory, Tektronix Laboratories, Beaverton .
Oregon 97077 .

[1 3] Laskodi , Terry, Special Purpose Geometry Processor -
Software Generation and Maintenance Technical Report
CR-BO-3, Computer Research Laboratory, Tektronix
Laboratories. Beaverton , Oregon 97077 .

[14] Lesk. M., LEX - A Lexical Analyzer Generator. CSTR 39
(1975), Bell Telephone Laboratories, Murray Hill , New Jer­
sey.

[IS] Matthies, La rry H ., FBLlB - Th e' Frame Buffer Support
Library. CRL PDP-II / 70 online documentation FBLIB(7).
Computer Research Laboratory. Tektroni x Laboratories.
Beaverton, Oregon 97077 .

[16) McCan n, Ben a nd Larry H . M atthies , The CRG Frame
Buffer. Tech nica l Report CR-BO-16, Computer Research
Laboratory, Tektronix Laboratories, Beaverton , Oregon
97077.

[17) M ichener , J ames C. and Ingrid B. Carlbom, "Natura l and
Efficient Viewing Parameters," Computer Graphics . 14 ,3
(July 19BO) pp 23B-245 .

[IB) Parke, Fred I. , A Parallel Architecture for Shaded
Graphics. Te chnical Report . Computer Engineering Depart­
ment . Case Western Reserve University, J anuary 1979.

[19] Parke. Fred I.. "Simulation and Expected Performa nce
Analysis of Multiple Processor Z -Buffer Systems," Com­
puter Graphics 14.3 (July 19BO) 4B-56.

[20] Reuss. Ed, Transform Processor to PDP-II DM A Interface
User Description . Technical Report CR-BO-19 (September
19BO). Computer Research Laboratory. Tektronix
Laboratories . Beaverton, Oregon 97077 .

[21] Wirth. Niklau s. "PL360 - A Programming Language for the
360 Computers. " Journal of the ACM. 15. 1 (196B) 37-74.

Graphics Interface '82

