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ABSTRACT 

This paper describes the organization of a large-scale graphics hardware system which can 
produce color, shaded, anti-aliased, perspective images of complex three-dimensional 
scenes in real time. By complex scenes we mean those consisting of at least 25,000 
polygons. In contrast, existing high-performance raster systems of this type can handle 
only 1000 to 4000 polygons. This level of complexity is attainable with reasonable cost 
and reliability only if large parts of the system can be implemented as custom VLSI chips. 
In particular, it is possible to replace a traditional frame buffer with a device which 
stores polygons rather than points and performs scanout, shading, and anti-aliasing on 
them. With the addition of other special-purpose chips which perform transformations, 
clipping, perspective projection, and lighting calculations, such a "polygon buffer" forms 
the core of a parallel, pipelined organization which achieves the desired level of 
performance. 
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1.0 INTRODUCTION 

Recent advances in the availability of 
design techniques and fabrication facilities for 
VLSI circuits have created new opportunities for 
designers to produce special-purpose 
architectures. Computer graphics is one of the 
application areas which has benefitted most from 
this situation to date. Using the custom VLSI 
design techniques introduced by Mead and Conway 
[11], a number of researchers in recent years 
have developed new hardware systems whose 
function is the high-speed implementation of 
algorithms essential to the production of 
high-quality images by computer [1] [2) [3) [7) 
[8) [14) [17]. These new approaches complement 
the work of designers of graphics hardware 
systems who did not have access to the 
technology of integrated circuit design and who 
therefore could not regard as feasible methods 
which may now may not only be possible, but in 
some cases even preferable. 

The goal of this work is to design a 
hardware system which can produce color, shaded, 
anti-aliased, perspective images of complex 
three-dimensional scenes in real time. By 
complex scenes we mean those consisting of at 
least 25,000 polygons. In contrast, existing 
high-performance raster systems of this type can 
handle only 1000 to 4000 polygons in real time, 

so our requirements include about an order of 
magnitude increase in the complexity of the 
scene. In order to achieve increased 
performance cost-effectively, it will be 
necessary to make use of massive parallelism of 
operations and of pipelining techniques, while 
carefully designing the system to consist of 
only a few basic module types and thus only a 
few chip types which can be used in large 
numbers to achieve the desired performance at a 
low cost. In this sense, the architecture we 
are proposing is a radical one in that it would 
have been impractical at the level of complexity 
we wish to obtain without the use of 
special-purpose chips. 

The reduction of this complexity into a 
simple, regular structure suitable for VLSI 
implementation is a task which must proceed in a 
top-down fashion as the system design 
progresses. This paper is a preliminary report 
of an ongoing project, and thus only the higher 
levels of the design are described here. 

*This work supported in part by NSF Gr a nt 
MCS- 8109489. 
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2. 0 SYSTE~l OVERVIEW 

The fu nctions which must be performed by a 
graphics sys tem in order to produce a realistic 
iQagc of a three-dimensional polygonal model are 
by nO~1 we ll understood. Figure 1 gives a 
pictorial representation of the operations which 
must be performed in transforming a database into 
a n image on the sc reen. We may envision data as 
being pipelined through the various operations 
f rom thl~ mo de l. data structure onto the di.splay. 
The two ends of the pipe line represent the scene 
in object coordinates (the model) and image 
coordinates respectively. In the former case, 
the representation is more compact, due both t o 
hierarchical encoding of the data and to the fact 
that at even the lowest levels of the hierarchy 
the geometric primitives used are polygons or 
higher-order parametric surfaces. The 
representa tion of the scene in image coordinates 
must ultima t e ly be reduced to points, which are 
the lowes t -level and least compact geometric 
primitives available for representation of 
complex sc:e nes . 
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We ca n pa rtition th e operatlo~s being 
performed dur i ng the image synthesis process into 
t wo general c lasses. The first is a 
transformation froD a model in object coordinate 
space t o a n image coordinat e space description 
and the sec ond is the r edu c tion of a stnlctured 
collection of hi gh-l e vel mod e ling priQitives t o a 
set of low-level ou tput primitives, which for th e 
case of raster displays are points. Instance 
trans forma ti ons a nd viewing tra nsforma tions are 
d evot~d prima rily to the firs t task of coordinat e 
system tra ns formation (although instance 
transforma tions also serve to decode the 
structure of the model to form a simpl e 
collection of modeling p rimitive s ), while 
scanout, shading, and anti-aliasing are involved 
in the conversion from mod e ling t o output 
primitives. Clipping may be considered to fit 
into th e first ca tegory since it is peforQed on 
high-level primitives as part of th e 
transformation to a n appropriate image-spac e 
representation . Hidden-surf~ce removal can be 
considered an independent operation since it can 
be performed in con j unc tion wi th ei ther process. 
although for the impl eme ntations we a r e 
interested in, it is inticiate ly rela t ed t o t he 
primitive redu c t ion process. 

Hardware app roaches to hie h-performance 
image gene ration have handled these two classes 
of opl'r<ltions ind"]ll'lIcienlJy, il lld thl' ilr('hfte c t"rl' 
we p ropose will follow this tradition. Both 
hi gh -pe r fo rm3ncr raste r a nd vec tor d i spl~y 

systems have long employ ed sp ecial-pul"pose a rra y 
process ing mndulp s fo r doing the matri x-vecto r 
multiplicaticl1 '; required for coordi nate 
transfo rnation as we ll as hardware clippi ng 
devices. The a dvent of VLSI technology has made 
possibl e t he crea tion of special- pu r pose chips t o 
perform the same ope r a ti ons a t a l owe r hardware 
cost and with gr ea ter reliabi lity. The Geome try 
Engine of Cl a rk ha ndle s both of these functions 
with a set of l 2 v irtually identical 1I0S chips in 
current technology , which could be reduced to a 
single ch ip in the near future Il]. This system 
can currently pr ocess approximately 1000 polygon s 
in real time , a nd with the projected redu c tions 
in s iz e a nd conc omitant increases in speed, thi s 
should i ncrease to about 4000 . 

The second class of opera ti ons invo l ving 
pr imi tive reduc tion has been somewha t more 
difficult to handle at real-time r :1tes and has 
therefore con tribut ed more t o the complexity a nd 
expense of r ea l-time image gene ration sys tems. 
Thi s is easily see n when the cos t of a typical 
r ea l-time vec t or display is compared with t hat of 
a r aste r display of comparable performance , since 
th e primary distinc tion between the two in terms 
of hardware r equirements arises as a r es lll t of 
t he absence of most ope rations of thi s t ype . 
Most VLST-ori ented app roaches to solving this 
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portion of the image synthesis problem have begun 
wi th the idea of enhancing the capabilities of a 
frame buffer in order to allow i t to tackle 
problems of this class [2] [7] [8] [17]. The 
work of Cohen [3] is a notable exception to this. 

The architecture proposed here is based on 
the same idea, to take advantage of the 
opportunity to create custom chips in order to 
add processing capability to the previously 
passive memory function of the frame buffer. If 
we assume that each element of a frame buffer 
need not be merely a memory cell, that we have 
the freedom to make the unit more complex, 
endowing it with the capability to implement for 
itself some operations which must be done for ' 
image generation in parallel with all the other 
cells of the frame buffer, then the question 
arises as to whether it might not be better to 
make each unit a higher-level primitive than a 
mere point. This is the approach we take, which 
is distinct from those noted above, in which the 
primitives remain points but the points are 
provided with added processing power. In our 
system, the "frame buffer" consists of a 
collection of polygons rather than points. For 
simplicity and uniformity of implementation, the 
polygons are required to be triangles. The 
advantages of this requirement outweigh its 
limitations. Since any polygon can be easily 
triangulated, any scene described by a collection 
of polygons can be easily transformed into a 
description consisting only of triangles. In the 
process, any "non-planar polygons" which may have 
existed in the original scene description are 
removed. Moreover, procedures which are used for 
automatic generat i on of scene descrip~ ions from 
real-world input data typically generate only 
triangles [5]. Finally, Gouraud shading, the 
most suitable smooth-shading techni que for fast 
hardware implementation, produces no shading 
anomal i es on triangles. 

It makes sense to call this collection of 
triangle processing elements a frame buffer 
because it performs an analogous function in the 
graphics system to that of a traditional frame 
buffer in that it serves as a medium for storing 
the scene description after it has been 
transformed into image space. Of course, no 
reduction of high-level to low-level primitives 
has been performed before the image space scene 
description is stored, so this funct i on must be 
performed by the frame buffer itself. From the . point of view of the refresh controller for the 
raster display, the "triangle buffer" appears to 
be a frame buffer in that the controller outputs 
addresses to it on an address bus and receives in 
return a pixel's color value on a data bus. Each 
triangle processor performs a scanout of the 
triangle it contains, incrementally determining 
the color and Z coordinate value for each pixel. 

375 

These are f e d through arbitration logic which 
determi nes which pixel is closest t o the observer 
and returns the color of that pixel on the data 
bus. At t 'he cost of added c omplexity, the 
arbitration logi c can also be used to perf orm 
anti-aliasing, resulting in a filtered pixel 
color value being returned on the data bus. Thus 
the triangle buffer performs all operations 
involved in the reduction of high-level to 
low-level primitives. 
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The remaind e r o f the syst em' imp lements the 
coordinate transformations, clipping, perspective 
division, and shading calculations for the 
vertices. It also contains a dual-ported memory 
for storing the object-space scene description. 

3.0 SYSTEM ORGANIZATION 

In this section we describe in more detail 
the organization of the major portions of the 
system. The overall organization is depicted ill 
Figure 2. Our dlscussion will begin with a 
consideration of the triangle buffer, followinp, 
which the modeling memory and transformation 
pipeline are described. 

3.1 The Triangle Buffer 

The triangle buffer consists of an array of 
triangle processing units, each of which performs 
scanout and smooth-shading of the triangle it 
contains. A triangle processor could be 
considered a smart, dual-ported memory "cell". 
It is connected on the one hand to a bus over 
which it receives information from a triangle 
initialization unit, and on the other hand to a 
comparator tree onto which it outputs color and Z 
coordinate values. It is also connected to an 
address bus through which the CRT refresh 
controller indicates the X-Y address of the 
current pixel. Since the data bus is write-only 
from the transformation and clipping unit into 
the triangle buffer, no corresponding address bus 
is required. When polygon data is output to the 
triangle buffer, it is simply accepted by the 
first free triangle processor available. The 
advantage of this scheme is that it simplifies 
the interface to the transformation and clipping 
units. The disadvantage is that it requires 
every polygon in the scene to be rebroadcast to 
the triangle buffer at every refresh cycle. The 
overall collection of triangle processors in the 
buffer is partitioned into a set of "slices", 
each containing the number of triangles which can 
be processed in real time by a single 
transformation, clipping, and triangle 
initialization pipeline. In our system this 
number is estimated to be about 1000. 

3.1.1 The Triangle Processor -

Each triangle processor consists of 20 
registers, with associated addition, compariso n , 
and control logic, as shown in Figure 3 . Ea c h 
processor performs a simple scanout of t he 
t r ~ i l'1 g1.< · . ba s e d o n a n .identi f ication of the 
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third "alternate" ed ge by the triangle 
initiali.zation module ( see Figure 4). The 
processor monitors the address bus until a Y 
a ddress eq ua l to the va lu e s tore d in the Y 
r e giste r is sent. If then monitors the X address 
until it rea ches a valu e e qua l to X-left, at 
which time it outputs the initial color a nd Z 
coordinate. For each subseque nt pixel, the color 
is incremented by d c /dx and the Z coordinate 
value by dz / dx and the new values are output. 
When the X address rea ches X-right, the output is 
halted and the next scanline is prepa r ed by 
adding dx/dy-left, dx /dy-right, d z /dy and dc /d y 
to X-left, X-right, Z-l e ft, a nd C-l ef t 
respective l y . The va lues o f Z and C a r e t hen se t 
equal to Z-left a nd C-l e ft and t he va lue o f 
deltay is decremented by 1. 7\-1 s process 
c ontintlf>s Rcanli.ne b y sC<Jn.l i. ne un til de l tay 
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Direction 
of scan + alternate 

Figure 4 

Assignments of triangle edges 

reaches O. At this point, X-alt is compared to 
X-left and X-right to determine whether the left 
left or right edge should be replaced by the 
alternate edge. The value of dx/dy-alt, is then 
copied into dx/dy-left or dx/dy-right as 
appropriate. In the former case, the values of 
dz/dy-alt and dc/dy-alt are copied into dz/dy and 
dc/dy respectively. deltay is set to the value 
of deltay-alt, and the processing cont~nues until 
deltay once again reaches zero. At this point 
output is disabled, and the triangle processor 
enables itself for input of a new triangle. Note 
that this scanout procedure for triangles is 
similar to that of [12] and [IS]. The use of 
trapezoids in which the top and bottom edges are 
horizontal, as done in [10] and [16], would allow 
a reduction of 5 registers and some 
simplification of the control. However, this 
would require the polygons in the scene model to 
be subdivided into such trapezoids each time they 
are transformed. By maintaining the scene model 
as a set of triangles, we totally avoid the need 
for polygon subdivision at each refresh cycle. 
All operations of the triangle processors are 
fixed-point. Operations on colors are assumed to 
be in RGB space, with the addition unit actually 
performing parallel operations on each of the 
three components. The use of separate, fast 
adder units for color and Z coordinate 
calculations assures that new values of each can 
be generated at the required bandwidth. 
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3.1.2 Arbitra tion Logic -

The triangle processors resemble the object 
processors proposed by Cohen [3] and Weinberg 
[16]. A significant difference in our approach 
is that we do not serialize the operation of 
these processors using a linear array of 
comparators. Instead, we use a binary tree of 
comparators, through which the depth and color 
values output by the triangle processors are 
pipelined. As a result, all triangle processors 
are equidistant from the endpoint of the pipeline 
and thus can operate on the same pixel 
simultaneously. This simplifies the 
synchronization and control of the system, and 
indeed allows the triangle buffer to resemble a 
frame buffer in its function. The complexity and 
number of comparators required is the same in 
both cases. Their operation is straightforward; 
they compare the two input Z values, and the 
closer of the two to the observer is output to 
the next pipeline stage along with its associated 
color. The root of the comparator tree outputs 
the color of the visible portion of the scene at 
the current pixel to the CRT refresh controller. 

If anti-aliasing is desired, it is possible 
in principle to employ the method proposed by 
Weinberg [16], modified to work on a binary tree 
rather than a linear array of comparators. This 
method involves scanout of polygons at subpixel 
resolution so that the degree of coverage of the 
current pixel by each triangle can be determined. 
The comparators then maintain a list of partially 
visible polygon sections for the current pixel, 
sorted by Z. The last comparator outputs the 
list to a filter processor which calculates the 
appropriate color for the pixel. This algorithm 
requires that each comparator be able to merge 
two sorted input lists, which is no more complex 
as a pipelined algorithm for a binary tree than 
for a linear array. However, in addition to the 
added complexity of the comparator unit, this 
approach has the serious drawback that it builds 
a list which can grow as it passes through the 
comparator pipeline. Thus more values must be 
passed through later stages of the pipeline than 
through earlier ones, requiring that the 
bandwidth of the pipeline increase with proximity 
to the output end, or else that synchronous 
operation of the system be fatally disrupted. 
This drawback holds for a linear array of 
comparators as well as for a binary tree. As a 
result, we have chosen not to use this approach. 
For simplicity, the current system design does 
not include anti-aliasing, although we a re 
investigating me thods which can be used without 
unduly complicating the operation: of the triangl e 
buffer. 
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3.2 Modeling, Transformation, And Clipping 

As mentioned in an earlier section, th 0 
ob j ec t space representation of the scene is 
maintained in a separate, dual-ported memory. 
This memory contains a set of triangles, each of 
which consists of a color and a sequence of 
vertices described in world coordinates. In 
addition , each vertex is associated with a normal 
vector, which is the average of the normals to 
all polygons adjacent to the vertex, in order to 
perform smooth-shading. All coordinates a r e 
stored as floating-point numbers. 

This memory is attached to the system bus of 
a host computer on the one hand, and to a set of 
transformation processors on the other. The host 
computer may be a general-purpose machine or a 
dedicated graphics processor. It is responsible 
for all manipulations of the scene database, for 
int e racting with the user and for execution of 
all application software. If a 
hierarchi cally-structured model is used as a 
source datahase, this process o r must decode the 
s truc ture f o r us e by the display sys t em . It is 
also responsible for controlling the motion of 
the observer and of the objects in the scene. 
This involves specifying transformations to be 
performed on designated sets of polygons in the 
scene description. The transformations are 
encoded in the form of standard 4x4 homogeneous 
matri ces. Only a single such transformation is 
performed by the transformation processing units 
o n a triangle, so all coacatenation of instance 
and viewing transformations must be done by the 
hos t processor. 

The organization of the model memory and its 
interface to the transformation processors is 
shown in Figure S. Each transformation unit 
communicates over a local bus with only as many 
polygons as it can process in real time, along 
with a set of transformation matrices which allow 
the set of polygons to be segmented into disjoint 
sets of objects. Each such matrix is associated 
with a pair of registers in which the identifiers 
of the first and last polygon in the 
corresponding object are stored. Thus an object 
is a contiguous sequence of polygons on the loca l 
bus. If a transformation pipeline can process 
1000 triangles in real time, then a hout 23, 000 
words of memory will be accessible on each local 
bus if we allow 10 independent objects. In this 
way l a rge numbers of triangles can be processed 
in parallel slices of 1000 triangles. 

The transforma-tion pipeline consists of an 
interface to' a local model memory bus, a 
ma trix-vec tor multiplier, a seque nce of clipping 
units, and a triangle initializa tion unit, as 
depicted in Figure S. The interf ace functions t o 
ncr.ess the object memo ry, load matrices into the 
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transformation processor, load clipping 
parameters into the clipping unit, and feed 
polygons into the pipeline. The transformation 
unit does matrix-vector multiplication, either as 
a systolic linear array [4) or as done by Clark 
[1). The clipping pipeline consists of six 
identical units, each of which clips a polygon 
against a plane of the truncated viewing pyramid. 
The triangle initialization unit is primarily a 
division/subtraction engine which calculates the 
color for each vertex, performs perspective 
division, sorts polygon vertices by Y and then X, 
and then calculates the parameters of the 
triangle to be loaded into the triangle buffer. 
It also converts the floating-point values used 
by the transformation and clipping processors to 
fixed-point format for use by the triangle 
processors. Note that each triangle 
initialization unit communicates with only the 
triangle processors in a slice of the triangle 
buffer via a local bus analogous to that used to 
interface with the object memory. 

4. 0 VLSI IMPLEMENTATION 

The system described here is a very 
large-scale project which requires the design of 
a number of special-purpose units. The 
dual-ported object memory is available 
commercially, but the other parts of the system 
must be custom designed. As stated before, the 
goal of the system is to allow real-time display 
of scenes consisting of at least 25,000 
triangles. This implies 25,000 triangle 
processors and an equal number of comparators, 
and an estimated 25 transformatio~ pipelines, 
along with approximately 575,000 words of object 
memory. To build such a system at a reasonable 
cost it will be necessary to make use of all the 
capabilities of today's VLSI design and 
fabrication technology. If we optimistically 
assume one micron feature sizes, we can 
reasonably estimate that two chips will suffice 
for each transformation pipeline and that perhaps 
32 triangle processors and an equal number of 
comparators will fit on a large chip. With these 
assumptions, implementing a 32,000 triangle 
system will require 1000 triangle processor 
chips, 1000 simple comparator chips, 64 
transformation pipeline chips, and 736,000 words 
of dual-ported memory. At a cost of $100 per 
chip, we obtain $264,000 for special-purpose 
chips, so we can generously estimate a $500,000 
cost of goods for the system and thus a selling 
price in the neighborhood of $1 million. This is 
comparable to the cost of existing systems which 
provide an order of magnitude less performance. 

The design of this type of system i s 
certainly a non-trivial task, particularly in a 
university environment. We view this overall 
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organizati on as a rich source of design projects 
which can be implemented and tested 
independently, with the object of consolidating 
them into a s naIl-scale working prototype. The 
comparator unit, the simplest independent 
subsystem, has been designed and is currently 
being prepared for fabrication. The design of 
the triangle processor is currently underway, and 
the various parts or the transformation pipeline 
will be undertaken subsequently. 

5.0 CONCLUSION 

We have described a high-performance 
hardware organization suitable for real-time 
display of complex three-diminsional scenes. It 
is primarily intended to provide an order of 
magnitude increase in the capability of 
high-performance systems used for such 
applications as flight simulation. These goals 
are distinct from those of most other researchers 
who have applied · the opportunities afforded by 
the availability of custom-designed integrated 
circuits to the design of graphics display 
hardware. The complexity of the system makes it 
more ambitious and its realization a more distant 
prospect than these other design efforts. 
Nonetheless, it illustrates at yet another level 
the exciting prospects made available to the 
field of computer graphics by recent advances in 
VLSI technology. 
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