
- 1 -

SOITW ARE TOOLS FOR MICROPROGRAMMED GRAPHICS PROCESSOR 
DESIGN 

Lawrence D. Finkel 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

As bit map display systems strive for higher resolution, the ability to maintain a high 
bandwidth update rate is constrained by the need to refresh the screen. In order to make greater 
use of the available update memory cycles, a microprogrammed graphics processor, the BitMover, is 
being designed to execute high speed pixel calculations. Standard microprocessors are too slow to 
meet" the design goals of this project. 

Controlling the BitMover requires a horizontal microinstruction word of approximately 94 bits 
is required. Debugging microprograms at the hardware level with a microinstruction format of this 
size is difficult and costly. To circumvent this, software has been written to simulate the execution 
of microinstructions. It consists of a series of software routines in which the chip inputs and outputs 
comprise the parameters passed to the routines. A graphics mode has been implemented that eases 
the debugging process. 

1. latroducdoa 

A new bit mapped CRT terminal is 
being designed to achieve high resolution, and 
high graphics throughput at a moderate cost. 
Specifically, 1024 lines by 1280 pixels per line 
will be displayed. Supporting such a high 
resolution, non-interlaced image requires a 
video bandwidth of over lOO MHz. Since 
many of the available memory cycles will be 
spent refreshing the display, the time available 
for display memory updates will be severely 
constrained. A means must be found to make 
the greatest possible use of the available 
memory update cycles. 

To effectively make use of update 
memory cycles, a graphics processor, the 
Bit Mover, is being designed to implement 
graphics algorithms. Perhaps the greatest 
allure the bit map display has is its ability to 
do high quality graphics. To achieve this, the 
bit map display stores intensity information for­
every pixel, irrespective of its neighbors. This 
is contrary to normal alphanumeric terminals, 
in which the smallest addressable region is a 
character cell. Bit map terminals can thus 
draw complex graphical entities by individually 
turning pixels on or off in the displayed image. 

The BitMover off-loads host generated 
graphics commands and calculates the 
'lddresses of pixels requiring modification. 
Common algorithms for point, line, circle, arc, 

and area fill are provided in microcode. Also, 
the architecture was designed to allow fast 
area copy operations, to obtain high speed 
scrolling. Note that the size of display 
memory is 2K by 2K pixels. Non-displayed 
memory locations can be used for storage of 
fonts , or portions of obscured windows. An 
address counter giving the x,y location of the 
upper left hand corner will be used to 
determine which area of memory is currently 
being displayed. 

Due to the high speed needed by the 
Bit Mover in order to use 100% of the available 
memory cycles, the use of conventional 
microprocessors was ruled out. At the other 
extreme, special purpose hardware would 
require a long and costly design time and 
would present a difficult environment in which 
to make changes to the system. So, a 
microprogrammed system, representing the 
best cost/benefit implementation was chosen. 
This can be designed using off the shelf parts, 
and yet still meet the speed requirements for 
our system. 

Microprogramming, though ideally suited 
to dedicated device designs such as the 
BitMover. presents unique problems for code 
generation and debugging. Since the 
microcode development for the BitMover is 
going on in parallel with the hardware 
development, the algorithms cannot be tried on 
the Bit Mover itself. Even with the hardware 

Graphics Interface '83 



complete, debugging is difficult, often requiring 
special purpose test equipment. For these 
reasons, a microprogram simulator is being 
developed, not only to debug microcode, but 
also to test alternative machine architectures. 

1. TIle BltMoyer Architecture 

The general layout of the BitMover is 
shown in Figure I. The microcode memory is 
a 4K by 94 bit writable control store 
implemented with fast static RAMs. An input 
fifo is loaded by the host system with the 
graphics opcodes and operands. The numerical 
value of these opcodes is then used as an index 
into a jump table of graphic subroutines. This 
jump table contains the starting addresses of 
the desired subroutines. Values from the 
BitMover can be returned to the host system 
by means of the output fifo. The 
microprogram controller being used is the 
Advanced Micro Devices (AMD) 2910-1 high 
speed sequencer. Multiway branch logic has 
been added to the address lines of the 
sequencer in order to implement four, eight, or 
sixteen way branching. A condition code 
multiplexor chooses one of the many possible 
test conditions for use by the next address logic 
of the sequencer. The ALU for the Bit Mover is 
the AMD 29116 bipolar microprocessor. A 
special MUX has been added to the instruction 
inputs of the 29116 to allow operations to have 
different source and destination registers. Also 
of interest are the AMD 2940 DMA generator 
chips, labeled as source and destination X,Y 
registers. These chips are being used as address 
counters for the graphics algorithms. The 
incremental nature of the graphics subroutines 
can be applied to the function of the 2940's to 
produce pixel addresses for the display 
memory. The chips allow an initial address to 
be loaded, and then incremented or 
decremented as required to compute the next 
pixel address. The 2940's can also be disabled 
for calculations in which the pixel address is 
unchanged. A done signal is generated by the 
2940 when execution of an algorithm is 
complete. Lastly, a pipeline register is shown 
at the output of the microcode memory. This 
allows for overlapped fetch and execution, and 
faster throughput. The data path between the 
ALU, mapping RAM, source and destination 
registers, and fifo is provided for by the sixteen 
bit wide YBUS. 

- 2 -

3. TIle Siadator 

The architecture shown in Figure I is not 
necessarily the final design for the BitMover. 
As stated, a simulator should allow hardware 
modifications, and alternative design 
experiments with a minimum of software 
changes. To accomplish this, flexibility must 
be incorporated that separates the description 
of the machines structure from the simulation 
routines of its components. This separation in 
the BitMover simulator is achieved by using 
subroutine building blocks, in which each 
subroutine block simulates a given chip in the 
design. In some cases, notably the bit-slice 
cascaded 294Os, no attempt has been made to 
separate the individual slices. Using these 
device modules, different machine architectures 
can be tried merely by the order in which the 
modules are called. Care must be taken to 
insure that the architecture designed is 
realizable purely from a timing standpoint. 

A key goal in designing the simulator 
was to minimize software changes that occur 
as a result of hardware design modifications. 
This is true for microinstruction format 
changes in which it is undesirable to have to 
change large amounts of softwa.re to 
investigate changes. The BitMover simulator 
requires changes to only one routine in order to 
change the microinstruction format. The 
pipeline register routine formats the binary 
microcode and maps that into microorders 
which the rest of the software then uses. While 
the microinstruction is 94 bits wide, the 
simulator allocates storage for 128 bits. This 
allows extra bits to be placed in certain fields 
to set breakpoint flags, signal instruction 
literals, and control other aspects of the 
simulator. A different microinstruction format 
is thus convenient to implement and extra bits 
are available for additions and diagnostics to 
be included. 

The simulation routines can be thought 
of as modules, in which each module simulates 
a physical device, or logical hardware unit. 
This software architecture yields many 
advantages. A library of device descriptions 
can be created which can be used on many 
different designs. And, the structure of the 
microinstructions is correlated with the 
hardware units being controlled. 

Graphics Interface '83 



Since the internal gate level status of the 
BitMover's chips is unavailable for any kind of 
debugging, no attempt has been made to 
simulate circuit functions at this level. A 
convenient approach has been to declare global 
variables for the pinouts of the chips. The 
inputs and outputs of a chip or module are 
thus available at all times to the debugging 
routines. 

4. User lalerface 

A typical debugging session begins with 
a file of manually produced BitMover 
microcode. The use of a microcode compiler 
was ruled out since algorithm speed was the 
most important factor. A microassembler then 
generates the binary microcode from the 
mnemonic assembler file. A postprocessing 
program is run on the resulting file to modify 
it to reflect features of the BitMover not 
provided for by the original assembler. The 
two features requiring postprocessing are 
instruction literals, which are operands placed 
on the instruction inputs of the ALU, and 
multiway branch address alignment, in which 
it is necessary for certain lines of microcode to 
be placed at even numbered addresses. 

Because the format of the Bit Mover 
microcode differs from the simulator format, a 
reformatting step is executed when the 
simulator is first called. Even if the simulation 
is not run to completion, the final Bit Mover 
microcode is still available in a separate file. 
lt is this file which is down-loaded into the 
Bit Mover and forms the microcode for the 
graphics algorithms. 

The simulation begins at address zero of 
the microcode. The first few lines of the 
microcode are a loop which waits for a graphic 
opcode to appear in the input fifo. When an 
opcode is available, a jump is made to the 
graphic routine specified, at which point the 
operands are loaded and execution of the 
algorithm begins. Output information is 
presented following each simulated cycle 
showing, the current address being executed, 
the next address to be executed, the 
microinstruction word at that address, the just 
completed sequencer and ALU instructions, 
and the status registers. Only those parts of the 
hardware which are being modified by the 
instruction currently being executed have their 
values displayed. This reduces the amount of 

- 3 -

debugging output which must be checked. 

The simulator also supports breakpoints 
to ease the debugging process. The verbose 
mode described above, in which large amounts 
of status information are displayed, can be 
totally suppressed using this brealcpoint 
feature. The verbose mode is entered upon 
reaching a microcode address containing a 
breakpoint on flag, and this mode can be 
disabled with a breakpoint off command 
embedded in the microcode. 

Perhaps the most useful feature of the 
simulator is its ability to do graphic displays 
for debugging. In this debugging mode, the 
power of an already existing bit map display 
terminal is used. The process works by 
scanning the Bit Mover's display memory as 
maintained by the simulator. This memory is 
then displayed on the bit map terminal and the 
graphics primitives produced can be compared 
to the high level language implementations. If 
these two versions are the same, then the 
correctness of the microcode is reasonably 
assured. Also, being able to see the graphics 
output produced by incorrect microcode 
generally gives a better indication of the cause 
of the problem. 

S. Coaclusioa 

A microprogram simulator is a necessity 
in designs using complex microinstruction 
formats and highly parallel microcode. Use of 
hardware debugging techniques to inspect 
system status requires that the hardware 
design has been substantially completed. The 
time and cost of hardware debugging is thus 
limited to all but final system checkout. 
Because the entire state of the simulator can 
be checked at any time, early discovery of logic 
errors is a more straightforward procedure. 
Finally, hardware design changes can be tested 
easily by using logically self-contained software 
modules in a user-determined architecture. 

Graphics Interface '83 



- 4 -

" YBUS > 
t X~ yl 

/ 

4K * 16 ADDRESS SCRATCH MULTIPLIER 
MEMORY COUNTER 

PI 
_CONDITION 

SEQUENCER r-- CONDITION CODE BITS 
MUX 

UCODE 
MEMORY 

BRANCH SEQ ADDRESS OTHER REG CONTROL I6: 15 IO:5 ADDRESS INSTR. CONTROL BITS DST 

I t l ~ 
- . '- I MUX r- IO:5 

ALU 
AMO 

L 29116 

DMB SRC X,Y DEST X,Y DMB 
1 6 :15 ADDRESS- :-- ADDRESS 

BUS ADDRESS ADDRESS BUS Y CT 

L 
" YBUS 
/ 

INPUT OUTPUT 
FIFO FIFO 

MULTIBUS 
SYSTEM 

Graphics Interface '83 


