= 65 =~

"USIPS": A Telidon Picture Creation Station

Eric Neufeld and Paul Sorenson

University of Saskatchewan, Saskatoon, Saskatchewan

ABSTRACT

A Telidon Page Creation station is in an advanced implementation stage at the University of Saskatchewan
The system takes advantages of certain features of the Telidon design phllosophy to create flexible and
powerful facility for both page creation and modification.

KEYWORDS: Telidon, videotext, page creation, information provider.

1. Introduction

Usips, the University of Saskatchewan Infor-
mation Provider System, currently being develop-
ed in the Department of Computational Science, is
a significantly enhanced version of vips, a
primitive Telidon page creation system produced
by the University of Athabasca. |t also incor-
porates many features of ge, a Telidon graphics
editor also produced by the same University, in
an interactive fashion.

Presently us{ps features real-time verifi-
cation of geometric primitives. Primitives
created may be scaled, translated and rotated in
three dimensions. The Sutherland-Hodgeman algo-
rithm has been implemented to perform clipping
of points, lines and polygons [1]. At any time,
a user may quickly locate any object in a Teli-
don page by identifying a few of its aftributes
and may modify or delete it or insert newobjects
before or after it.

As well, our system features a powerful
interactive screen-|ike text editor. Portions
of text also are easily located and modified or
deleted, etc. Once fully implemented, usdps
will be a complete page creation/editing station.
Usdips is intended to be part of a fully infe-
grated system. Unlike other systems which re-
quire that pictures be created on one computer
system and then moved to another, the pages will
be produced on the same system as the database
from which they will be displayed.

2. Telidon

Telidon is the Canadian version of "Video-
tex" which is the generic name given to various
methods of efficiently storing alpha-geometric
information.

There are different approaches to the pro-
blem of efficient]y storing alpha-geometric

information. |f resolution is not of prime con-
cern, a raster display may be divided into clus-
ters of pixels, all of which are shaded the same
colour. This method, known as afpha-mosaic, is
used in European videotex systems. This reduces
the amount of information which must be stored
about the object by a constant factor. However,
besides the loss of resolution, it is also im-
possible to present smooth curves.

Telidon, on the other hand, is the name
given to an encoding protocol designed by the
Department of Communications of the Government of
Canada [2]. Simply stated, the Telidon encoding
protocol is a redefinition of the ASCI| charac-
ter set. |In this redefinition, the ASCI|| charac-
ters become Picture Description Instructions
(PDI) to a device we may call a Telidon terminal
in graphics mode. The PDI may be transmitted to
the Telidon terminal by a communications proces-
sor or by a typist working at a keyboard attach-
ed to the terminal, although this usually would
be impractical.

In graphics mode, the Telidon terminal acts
as a command decoder for the PDI. Each redefin-
ed ASC!| character becomes either an instruction
to the Telidon terminal to begin drawing one of
eight geometric primitives or text, or an inst-
ruction to reset the status of the Telidon tfer-
minal. The characters which represent geometfric
primitives are followed by an arbitrary number
of data encoded Telidon screen coordinates.
Conceptual ly, the status instructions set various
attributes of the Telidon terminal - colour or
black and white, height and width of fext, the
density of shading, texture of lines. Thus, if
you set the status of the Telidon terminal to the
colour yellow, the next object that is drawn will
be yellow.

Since the PD! are executed as soon as they
are received by the Telidon ferminal, the

Graphics Interface ’'83

- 66 -

Telidon encoding protocol is such that a Telidon
picture or page "unfolds" as a 4equence of geo-
metric figures and fText which may overlap one
another as they are drawn, rather than as a
raster or pixel by pixel image. This unfolding
is fairly slow.

This sense of "sequence" or "unfolding" of a
Telidon page strikes the viewer of Telidon pages
immediately. An artist viewing pages of geometric
designs consisting of poiygons rotating in 3-space
created at the University of Saskatchewan commen-
ted immediately that it is not just the final
image that the user sees which is important, but
also the way that the image unfolds. |t must
present ifself smoothly, but at a reasonable
speed, efc. Artists working at Telidon page
creation stations take advantage of this feature
in order to create dynamic effects such as the
illusion of motion. This aspect of Telidon is
not purely aesthetic. Many proposed implementa-
tions of Telidon are advertising-oriented, and no
advertiser wishes to present jarring or unpleas-
ant pages to his public.

This feature of sequence greatly simplifies
the design of a Telidon page creation and editing
station. Since the image unfolds as a sequence
of sub-images which might overlap, it is not
necessary to worry about such problems as hidden
line removal. |f at any point it is necessary
for either the program or the artists to display
the image, it is only necessary to write the
sequential PDl file to the Telidon terminal as
trivially as any ASCII| file might be writften to
any standard device.

The sense of sequence also makes possible
the elegant implementation of a traversible
stack as the main data structure for the station.
Since the user/artist has an idea of the position
in Zime of any object in a Telidon page he is
creating, the idea of "forward" and "backward"
searches are very natural, and reasonably simple
to implement.

3. Usips

In terms of hardware and firmware, ws{ps
consists of an Electrohome colour monitor and
Norpak decoder which together act as the Telidon
Terminal as described above, as well as a Volker-
Craig 4404 terminal and keyboard and Summagra-
phics bitpad and pen which are "hard-wired" to-
gether. The bitpad contains a command menu, from
which commands (DRAW, SET COLOUR, etc.) may be
selected, as well as a drawing area. All These
peripherals are connected to the Department's Vax
11/750 running on the UNIX operating system.

4. Invoking Usips
A Telidon artist wishing o use usd{ps simply

logs intc his UNIX account in the normal way and
invokes us{ps |ike any other program. A status
monitor illustrated in Fig. 1 is displayed on the
VC4404 terminal. The user enters the name of the
file to be created or edited. Apart from actual
text entry this is the only time the user has to
use the keyboard. All other activities transpire
through the use of the bitpad.

5. Drawing Objects

The artist selects various attributes for
his drawing from the commands on the bitpad menu,
shown in Fig. 2. The most recent change is high-
lighted on the status monitor. He may change his
mind as often as he likes. However, the artist
can be sure of what will appear when he actually
wishes to draw an image since all the information
is on the monitor. We are also considering op-
tionally displaying a small rectapgle on the
colour monitor to show current machine status.
However, this interferes with the display.

When the artist wishes to draw, he selects
one of the geometric primitives or the TEXT func-
tion from the bitpad menu. He then takes thebit=
pad pen to the drawing area of the bitpad. Each
point he draws is echoed on the colour monitor
with a small blinking dot. At any time, the
artist may fine tune the point, by moving it up,
down, right or left one pixel at a time. Or he
may alternately step backward and forward through
the set of points, moving them slightly until
achieving the desired positioning. This idea
was borrowed from [3].

When satisfied with the positioning of the
coordinates, the artist selects the COPY command
which then "connects the dots" and fills the ob-
Ject in according to specifications. The user
may then reselect various attributes and redraw
the object on top of itself by repeatedly selec-
ting the COPY command from the bitpad menu. This
allows for attractive and precise visual effects,
such as outlining an object in a different
colour or doing colour mixing by overlaying a
shape on itself in different colours and differ-
ent fill patterns. In this sense, the system has
a notion of a "current object" which may be drawn
and drawn over and over again until the artist
begins a new image.

Another way of fine ftuning the position of
an object is via the MOVE command. Notice that
the status monitor contains all the standard
motion parameters: scale, rotate and translate.
Every Time the artist selects the MOVE command,
all the motions are applied to the object and
it is redrawn. The object's colour, etc., may be
changed as it is moved, again allowing for very
attractive visual effects.

Graphics Interface '83

- 0/ =

”)
UNIVERSITY OF SASKATCHEWAN TELIDON SYSTEM
FILE- I1DC 1
PICTURE STATUS TEXT STATUS CURSOR STATUS
FIGURE [rectangle] SIZE COLOUR [white]
COLOUR [magenta] HEIGHT BLINK fon 1]
LINE [Solid] ROTATION
BLINK [Off] SPACING ERASE STATUS
TRANSPARENT [Off] CHAR SET
FILL X[01YC 0] COLOUR [black]
HIGHLIGHT [Black] MOTION STATUS BLINK [Off]
DISCRETE
OUTPUT DEVICE [021 ROT A4 01 oI[
SCALE [101C 101C
c™MD []
AT [501C 401C 301
COCRDINATES(C] T0 [0If 01l
Figure 1 Status Monitor
LINE
oot
DASH
] .. o . GURSOR
e | e e | O IR0 e | risn i fooom | sevecr
; oASH POLY- | RECT- | ARC POINT | BLack | || SELECT
i GN | ANGLE GREY | COLOWR
| DASH | TEXT [MOTION. | HiGH- NEXT 1RASER
: HEIGHT x : | Lo % % OBJECT BLINK |COLOWR | seLECT
1 COLOWR GREY | coLowr
T T | vove |ooe - X z oot |omseet 7 3 9
soLio | TEXT
sPoT CANCEL X z INSERT | GO TO ‘ 5 6
END
cowow . | sun|trans- el Spisc. X z MOOI FY 1 2 3
: PARENT
[o b CE
/ GREY. L?:g s
WITE | YEL- (O GREEN |WG- |RED 8LACK @ Q speci- —— ot
! v o | = o

Figure 2 Bitpad menu layout

Graphics Interface '83

The setting of the motion parameters, inci-
dentally, was greatly enhanced by the creation of
a paper "numeric keypad" on the bitpad menu. A
4 by 3 section of the bitpad menu was made t+o
look just like a standard numeric keypad, com=-
plete with a minus, DELETE and CONFIRM-ENTER
"keys". This eliminated the nuisance of moving
from the bitpad back to +he keyboard and back to
the bitpad. Whenever the user selects a command
which requires additional numeric input, he sim-
ply enters numbers via the keypad. The numbers
appear in the set of square brackets opposite
the appropriate command on +he status monitor.
Like many calculators, if too many numbers are
entered, they simply "fall out" the left.

Although all the geometric primitives are
two-dimensional, they may be moved through three
dimensions. All objects are clipped, however,
the rectangles and arcs behave ancmalously when
clipped. Polygons, lines and points behave well.

6. Text Entry

If the artist selects TEXT, he is put into
a modest screen editor, that is, the characters
appear on the colour monitor in real time. All
of the cursor motion keys have the usual meaning,
with wraparound. The CLEAR key erases all the
text in the current screenful from the screen and
the HOME key moves the cursor to the upper left
hand corner of the screen. Some of +he program
function keys have been programmed to erase a
single character, erase a single line, delete a
line, insert a |ine, etc. Pressing the ESCAPE
key saves the current screenful of text and re-
furns the artist to the bitpad menu.

Before selecting the TEXT command from the
bitpad menu, the artist may select the point on
the drawing area at which he wishes the cursor
to apoear. This is useful, for examole, in
labelling diagrams.

One preoblem that arose during the implemen-
Tation of the screen editor was the time delay in
producing the blinking cursor. To maintain a
blinking cursor, it was necessary to write in *he
order of 30 characters to the Telidon terminal
for every character +hat the artist typed.

Since we were dealing with a 1200 baud !ine,
this was extremely z2nnoying to anyone who typed
much faster than 30 words per minute. To eli-
minate this, one of the program function kevs
was used Tc foggle the curscr off znd on. When
*the cursor is toggled off, the speed problem is
Totally eliminated.

Again berrowing from [3], we made it pos-
sible for the user to determine what colour the
cursor snouid be and whether it should blink or
neT. As Chang poinTs out, iT makes no sense to

place a blinking cursor on a blinking background.

7. Editing

AT any point, the artist may return to any
object in the file, by selecting the FIND com-
mand from the bitpad menu. He then gives The
program a "list" of attributes tc search for.
He may include *the shape and the colour, just the
colour, just the shape, blink on or off, and
combinations of these. He then selects either
of the FIND_BACKWARD or FIND_FORWARD commands
from the bitpad menu. As soon as an object with
the desired attributes is found, it is outlined
with blinking white. (Since tThis can be annoy-
ing, the user may Turn the blink off without
moving the pointer to the current object.) If
the object found is not the one the user wants,
he may repeatedly select the search commands,
and the program will keep going further forward
or backward through the PDI file looking for
objects with the desired attributes, which it
will bigh[ighf after automatically turning off
the highlight on the previously found object.

Having found an cbject in the file, the
user may elect to insert new objects before or
after the current object, without any side of-
fects to the rest of the file. He may also mod-
ify the existing object with full power. At any
time, the artist may return to the end of the
file. |If the artist has selected a text object,
he may screen edit it as before.

8. Design Decisions

We began with the vips software produced by
the University of Athabasca, which at that t+ime
was in a rather primitive state. The page cre-
ation program, v{p4, provided a menu which was a
one-to-one mapping from the bitpad to every PDI
defined, plus simple |line-by=line tex* en+rv.
Many of the commands a2t the PDI level are not of
interest to an artist. Others incorporate sev-
eral commands infc a single byte. For instance,
the PD! instruction describing 2 rectangle also
describes whether the rectangle is to be filled
or just outlined and whether The rectangie is +o
begin frem the last point drawn or whether a new
object should be started. This is an annoying
array cf choices To have to make.

Furthermore, an object was boTh drawn *o

the Telidon moniftor and writ+en +o *he file as
scen a2s it was drawn. The artist could not
"sonder" over an object before cocmmitting it +o
The file. Tc =2dif, 2 separate program had *o be

used. The editing program relied totally on the
POl file being encoded with a lccal conventicn
of control sequencas. This is not so bad if all
Telidon pages are produced on *hat system, but
it makes it impossible to modify pages oroduced
by cther institutions, which destrcys fThe sor+a-

Graphics Interface ’'83

- 69 -

bility of Telidon.

Another problem with vips was the necessity
to transfer continually between input devices -
certain commands were entered from the bitpad,
others required bits of numeric information from
The terminal keyboard.

After installing and using the basic system
for a few months, and after studying other sys-
tems, we came to the decision that it was neces-
sary to build a system that provided a natural
drawing capability. The artist should be able to
"sketch" or rough out an object without "commit-
ting" himself to it. |t should be possible to
""massage" the object thoroughly before drawing
the final object - that is, the artist should be
able to change the colour, fill density, etc.,
as many ftimes as required. Furthermore, he
should be able to fine tune any of the coordi-
nates of the object until satisfied with the
shape.

At any time, the artist should be able to
traverse the PDI file and return fo work on any
object with as much power as he had at its crea-
tion.

It is important to provide an artist at a
Telidon page creation station, with a text entry
capability that is as close to writing as pos-
sible. In an effort to achieve this objective,
we decided that a simple screen editor should be
written.

Usually a screen editor is not a small task.
Usips, however, takes advantage of the fact that
a Telidon page consists of a s4ngle screengul of
videotex information. Knowing that a text buffer
will never get larger than a thousand or so
characters made possible a very simple but power-
ful implementation of a screen editor using a
Two-dimensional array as the main data structure.

Usips relies on the conception of a geome-
tric object consisting of a set of attributes
(colour or gray tone, density, texture) and a
set of coordinates, which are treated differently
by *the system. An artist wishing to locate an
object is likely to look for a red object or a
rectangle, or a red rectangle, rather than sear-
ching for a red object with at least one coordi-
nate at (106, 82). Having found that object,
the artist is likely to redraw the same object
in different colours or fill patterns or he may
alter or fine tune some of the coordinates.

Therefore, on usd{ps, the Volker-Craig
terminal acts as a status monitor as shown ear-
lier in Fig. 1. Selection of a colour, fexture
or line pattern is like writing fo a register.
The most recently made change is displayed in
standout mode on the status monitor. Whenever

the artist begins to actually draw an object, all
the status registers are dumped. This status
monitor was written using the "curses.h" screen
package for terminals under UNIX.

9. The Data Structure

The main data structure for wsdips, the
traversible stack, consists of a twice double
linked list of records or structures, each of
which points to a "line" of Telidon code, as
shown in Fig. 3. A line of Telidon code may con-
sist of either a set-status command or a define-
object command.

A set-status command, by the definition of
the Telidon technology may only set one attri-
bute on the terminal, |t may change the colour

pointer to
last ot ject f
v T
Line

T 4 lJ T L 4
Line Pointer ; Starting | Finish ! LAST ¢ NEXT ' LAST: NEXT
'

T

L}

L}

: Position ; Positlon i STATUS } STATUS} LINE ! LJNE
r

|

pointer
ENTER TEXT MODE (line describing to next
and character string text string) cbject
pointer
to last
reset of
line pattern
T T T T T T L)
Line ! Line Pointer :Sfarﬂng :Finlsn : LAST ! NEXT ! LAST ! NEXT
No ' | JlF‘osiﬁon :Pcslﬂon ! STATUS i STAITUS; LINE § LINE
{———J ‘
pointer
to next
CHANGE STATUS reset of
reset |ine pattern Iine pattern
T T T T T T T
Line ; Line Pointer t Starting | Finish ' LAST ' NEXT 1 LAST ¢ NEXT
No 1 i Position | Position | STATUS | STATUS! LINE} LINE
H Ll i (1 H
J = =
pointer
|_enrer craprics wone | ot
object
4; r
o [l H T . T T
Line y Line Pointer | Starting ! Finish { LAST ! NEXT) LAST } NEXT
No : | : Position \ Position i STATUS ! STﬁTUS: LINE bl NE
poihter
to next
object
RECTANGLE
AND COORDINATES pointer
to last
colour
rese*f
T T T T TT T
Line ! Line Pointer | Starting | Finish 1 LAST ! NEXT | LAST | NEXT
No | i Position | Position | STATUSI STATUS} LINE I LINE
poY;?er ‘L
to next
colour
RESET COLOUR reset
Yellow

Figure 3 Data Structure for Usips

Graphics Interface ’'83

- 70 -

for example, or it may switch the mode of the
terminal from colour to black and white. As it
turns out there are about ten different types of
sfatus commands. The line contains pointers to
the previous |ine where the same type of status
was last set and to the line where it will be
next set, besides the usual pointers to the pre-
vious line and next line. Each line also carries
the coordinates of the logical position of the
Telidon terminal cursor before the status com-
mand is issued fo the decoder and the position
the cursor would be in after the command was
executed. This is very useful knowledge to have
while fraversing a PDI file. Knowing the virtual
position of the cursor at any position in the
file makes the prediction of side effects from
insertion, deletion and modification of objects
quite simple.

Thus by maintaing a very small block of
pointers, it is equally easy to traverse the PDI
file backwards or forwards in search of a set of
attributes.

A define-object line consists of either 1)
one of the 32 ASCI| characters which define the
geometric primitives available on Telidon and an
arbitrarily large set of coordinates encoded
according to Telidon conventions, or 2) an ENTER
TEXT MODE character, followed by arbitrarily
many text characters. |t is here that we rely
most heavily on the user being able to conceive
of a screenful, or partial screenful of text as a
type of object.

Note that the diagram shows |ines consis-
ting of nothing but a single ENTER GRAPHICS MODE
character. These are necessary, of course, so
that the geomefric objects don't get printed out
as ASCI| strings. However, it is both trivial
for the calling program to insert such lines in
the PDI file and for the searching algorithm to
ignore them. As well, this type of line is in-
visible to the Telidon artist.

The traversible stack almost trivializes
the writing of a Telidon code optimizer when
writing the file although currently, this is not
implemented. Nevertheless, optimization is
important since the whole videotex philosophy is
concerned with storing as much graphic informa-
tion as cheaply possible.

Support for this data structure results in
many run-time requests for storage from the
operating system. Space for every record as well
as storage for every "line" of code are requested
separately.

In the worst cast, our structure requires
30 times as much storage as the information it is
maintaining. Despite this, we feel it useful for

many reasons. First, it is efficient for search-
ing. From the artist's point of view, it is pos-
sible to search a PDI file consisting of a thou-
sand objects backwards or forwards instantly.
Secondly, it reflects very naturally both the
artist's and the viewer's idea of a Telidon page
as a sequence of geometric objects and text.
Thirdly, it seems to be reasonable to assume that
the average Telidon page will be very small.
While users may at first enjoy the colour dis-
plays for entertainment, generally the graphics
are too slow and very likely to annoy the aver-
age user who really wants fo get at "fast" infor-
mation. The same applies to the use of Telidon
as a lecturing and teaching aid. In one field
trial of videotex technology offering a poison
control service,.a user whose infant might have
Just swallowed something dangerous had to watch
and wait while a detailed image of a skull and
crossbones was drawn on the screen. Such an ex-
tended delay is not only annoying but could be
tragic.

10. Conclusions

In this paper we have described an inter-
esting and powerful page creation system that
runs under the UNIX operating system. Pages can
be created and added to a Telidon-like hierarchi-
cal database on the same system.

Future research and development efforts
include the ability to create, name and later
generate complex objects and the use of image
analysis to create, from a pixel by pixel repre-
sentation, pictures that are primarily composed
of the high-level graphic primitives of Telidon.
Both of these enhancements can significantly
improve the quality and quantity of Telidon pages
that are produced.

Acknowledgement

The authors acknowledge the support of
NSERC under grant number A9290.

References
[1] Sutherland, |.E., Hodgman, G.W., Reentrant

Polygon Clipping. Communications of the
ACM, Volume 17, Number 1. January 1974,

[2] Bown, H.G., 0'Brien, C.D., Picture
Description Instructions PDl for the Telidon
Videotext System. CRC Technical Note 699-E,
Communications Research Centre, Department
of Communications, Canada. November 1979.

[3] Chang, Ernest, Design Considerations for
the Telidon-APPLE Picture Creation System.
Technical Report DCS-16-1R, Department of
Science, University of Victoria, Victoria,
B.C., Canada. February 1982,

Graphics Interface ’'83

