
- 71 -

NAPLPS IMPLEMENTATION: HARDWARE AND SOFTWARE ISSUES 

Leo Lax, Assistant Vice-President, Corporate Marketing, NORPAK Corporation 

ABSTRACT 

With the acceptance of the North American 
Presentation Level Protocol Syntax (NAPLPS) 
videotex standard by major manufacturers 
comes the problems inherent in implementation. 
The primary issue in decoder design is the 
partitioning of implementation between hardware 
and software. Here the tradeoffs that result 
when judging which features should remain in 
software, which designed in hardware, are 
examined. Measures for judgement include cost, 
performance and desired features. NAPLPS 
features particularly problematic include text 
generation, color mapping, blink process, 
geometric primitive generation, and processing 
of common or often-used code. The judicious 
choice of placement of these features in 
software or hardware can ensure a successful 
and efficient implementation of an NAPLPS 
decoder. 

KEYWORDS: videotex, NAPLPS, protocol, 
display generator, decoder, designer. 

Graphics Interface '83 



INTRODUCTION 

The North American Presentation Level Protocol 

(NAPLPS) standard for videotex coding has been 

tentatively accepted by both ANSI and the 

Canadian Standards Association. While 

deliberations continue, an announcement was 

made at SIGGRAPH in Boston last spring that DEC, 

Intel, Tektronix and ten other North American 

computer firms had, in fact, accepted NAPLPS 

as a standard. These firms have since re

affirmed their commitment to producing chips, 

boards or intelligent terminals which 

incorporate NAPLPS. 

The endorsement given to NAPLPS at SIGGRAPH 

indicates that computer makers, even before the 

standards bodies, have recognized the inherent 

advantages of using NAPLPS as a communications 

protocol. It is efficient for data storage, 

transmission, and display. Most importantly, 

it is device-independent. And, as more 

manufacturers produce NAPLPS equipment, each 

compatible with the other, hardware costs will 

certainly be reduced for the customer. 

Tradeoff Issues 

The protocol implies a certain level of 

functionality i n the videotex hardware and 

software. As we continue to refine and develop 

these systems, any tradeoffs between hardware 

- 72 -

and software must be carefully defined and 

evaluated to ensure the provision of cost

effective and useful devices. There are two 

basic measures for judging the tradeoff: unit 

price and performance. Unit price is 

determined by: 

a) the number of components required, ie, 

level of integration; 

b) the memory requirements - RAM for inter

mediate buffers and computation, ROM for 

program size; 

c) processing power requirements for 

computation, housekeeping, and I/O. 

Factors affecting performance include the speed 

of decoder processing provided by the manu

facturer and the speed of the display generator/ 

display function. 

This paper will examine five principal features 

of NAPLPS and discuss the implementation options 

available for each. 

TEXT GENERATION 

Traditionally, text generation hardware in

corporates CRT controllers and ROM-based text 

fonts. The use of the CRT controller assumes 

fixed character size and the division of the 

screen into fixed character cells, with 

locations only on character boundaries. 

Graphics Interface '83 



NAPlPS Requirements 

The service reference model (SRM) for NAPlPS, 

however, demands multiple fonts (with regard 

to Dynamically Redefinable Character Sets -

DRCS) as well as "standard ASCII", 

- 73 -

proportional spacing horizontally and vertically, 

and multiple character paths and character 

rotations. The text should also be able to 

scroll horizontally and vertically. 

Implementation Options 

Table-driver character generation may be 

implemented in software using ROM (ASCII) 

or RAM (DRCS) character set tables and "copying" 

characters from the table into video RAM. DMA 

support would offer speed enhancement and 

offloading of processor overhead. 

Another option is to use a specialized processor 

to generate the character font in "real time" to 

reduce ROM and RAM requirements. One approach 

is to encode the character using "chain 

encoding" techniques. 

The manipulation of characters is required 

primarily i n the scroll mode; this places con

straints upon the display generator. Additional 

video RAM must be available to provide buffer 

space for scrolling and smooth-scrolling 

circuitry . 

Three scrolling implementation options are 

possible. One is to create software which will 

"copy" the scrolling characters to their new 

position. Another is to use raster operation 

techniques to copy and move a "piece" of video 

memory content in the displayable video memory. 

Finally, the designer would implement smooth 

scrolling in the display generator by redefining 

the START and STOP locations (in video RAM) of 

the displayable page. 

COlOR MAPPING 

NAPlPS Requirements 

For color mapping here, a mechanism is 

required for indirect color assignment based 

on entry into a fast programmable section of 

RAM. 

Implementation Options 

All options depend upon the size of the color 

map table and its interface to the external 

world. Minimum size is 16 x 12 x 4 bits per 

gun and 16 entries. All other functions using 

color mapping are then done by software and 

possibly additional circuitry. 

One could increase the size to 16 x n, where n 

is greater than 12, to provide additional status 

information on that "col or" , such as transparency 

Graphics Interface '83 



state or blink process state. 

One could also increase the size to m x n where 
m is greater than 16, n greater than 12 to 
increase color resolution and provide more 
colors, or to implement multiple screens for 
simple screen switching. 

Interface options are also threefold. Integrate 
the color mapping table onto the display 
generator, providing access to it through set
up registers in the display generator. Design 
a color mapping circuit as a stand-alone 

device accessed by the main processor at 
appropriate times. Or, integrate the color 
mapping table with the usable video RAM space 
through appropriate circuitry in the RAM 
refresh and addressing circuitry. 

BLI NK PROCESSES 

NAPLPS Requirement 

Blink processes provide the most effective 
animation mechanism for NAPLPS, and is also 
the least costly method. NAPLPS requires the . 
implementation of 16 independently varying blink 
processes (independent on-timings as well as 
off-timings). The blink states or "on-colors" 
and "off-colors" are considered to be entries 
in the color mapping table. 

- 74 -

Implementation Options 

The blink processes may be implemented .in 
software, where each process is set up and then 
the color mapping table is modified by the main 
processor as necessary. 

Another option is to implement a programmable 
"b 1 ink' processor" tha t can be progral1ll1ed wi th 
the appropriate parameters. This processor 
then administers the blinking process. The 
hardware for the processor can be integrated 
either with the display generator or the color 
mapping circuitry, depending upon the partition
ing strategy of the system as a whole. 

GEOMETRIC PRIMITIVE GENERATION AND THE 
PROCESSING OF COMMON/OFTEN-USED CODE 

NAPLPS Requirement 

In order to reduce the required ROM and 
increase display speed for an NAPLPS decoder, 
a set of specialized routines can be defined 
that are unique to NAPLPS, such as coordinate 
conversion routines, generation of geometric 
primitives (line, arc, polygon, et all, and 
many others. 

Graphics Interface '83 



Implementation Options 

Since these routines are known and fixed, a 

custom processor can be designed that implements 

these traditionally software-based routines in 

hardware, utilizing micro-coded processors. In 

order to provide the expected improvement, the 

processor must be tailor-designed to interface 

to the display generator, video RAM, the main 

processor, and the I/O circuitry. Careful 

consideration of such design criteria can 

reduce parts count and can significantly 

improve the performance. 

Some hardware implementation of geometric 

primitive algorithms has already been attempted. 

However, the designer must weigh the implied 

danger of implementing only those algorithms 

most suited to a simple processor and ignoring 

others. This can result in an incomplete 

- 7S -

and ultimately cumbersome NAPLPS implementation • . 

Again, even though improvements in space and 

speed can be achieved through hardware 

implementation of geometric primitives and 

often-used code, it may also be shown that the 

code required for unpacking of the POI protocol 

when placed into LSI hardware calls for more 

effort than is warranted by the results. 

CONCLUSIONS 

When considering hardware-software tradeoffs 

in implementing NAPLPS, the decoder designer 

must clearly understand not only the standard, 

the technology and the software, but also the 

goals of the designer. In general, improvement 

cost, decoder performance, implementation of 

features and functionality are all candidates 

for directing the tradeoff analysis. 

Once a clear understanding of ·the primary 

consideration for the application has been 

achieved, the appropriate partitioning of 

hardware and software can take place. 

Graphics Interface '83 


