
- 97 -

Robotic Vision and Graphical Display Based on the IBM PC

M. Fee1ey and N.F. Stewart

I NTRODUCT ION

In this paper we shall discuss the design of
a robotic vision system, based on the IBM Person
al Computer, and intended to treat input from
one or more TV cameras. The system will eventu
ally form part of a larger syste~ for the treat
ment of data from various sensors, including the
TV cameras. These systems replace the vision
part of a robotic system which was described in
an earlier paper by the second author alone [22],
and documented in detail in the reports(5,6,7,9,
10,11,15,16]. The purpose of the vision system
is to permit development and testing of image
processing algorithms for robotics applications .

System organization and available hardware
wi t h be discussed first, followed by a descrip
tion of the proposed software. Design and pro
gramming of the image processing software has
on ly just begun, as part of a project course [6].
Since the purpose of the system is development
and testing of algori thms, it is expected that
the software will be continually changing.

SYSTEM ORGANIZATION AND AVAILABLE HARDWARE

The robotic system described in [22] involves
two small experimental arms with controllers,
a console, and a vision system, connected to a
Host computer (an LSI 11 / 23) . It was mentioned
there that t he prel iminary vi sion system (a
96 x 128 frame-grabber wi th 8 gray levels, sharing
12 K of RAM with an Intel 3086) would be replaced
by an i APX 88/20 system. In fact, the vision
system described here will be based on an IBM PC
(to be delivered March 83) with the 8087 co-pro
cessor ins t all ed, and this consti tutes an iAPX
88/20 system with hi gh level programming and disk
operating sys t em support. The PC has 128K RAM,
and t here i s room on the memory card to expand
t o 320 K.

A Panasonic WV-1350-A vidicon camera is avail
able for use in the vision system, and two Hitachi
KP-120 Sol i d State cameras, for use in experiments
i n stereoscopic vision, have been ordered. It
will be poss i ble to use the two Hitachi cameras
together , or the vid i con camera alone , by using
both or onl y one of the t wo f rame grabbe rs

inserted in the PC. We decided to build two
frame grabbers, rather than sharing one between
two cameras, in order to be able to digiti ze
simultaneous views of the scene when we are using
the two Hitachi cameras together. (The alterna
tive of sharing the framegrabber requires that
the image from the first camera be moved before
digitization of the second image begins. However,
to transfer the contents of a digital image from
the frame grabber memory to the ordinary memory
in the PC takes well over 100 msec, which is too
large a delay if the scene is changing, even
slowly.) Each frame grabber is based on a flash
chip and 82K of static RAM, and digitizes the
standard video signal produced by each of the
three cameras mentioned above. The di gitized
image contains 256x320 pixels, of which only 244
rows contain useful picture i nformation (the
other rows contain video synchronisation infor
mation) . Each pi xel has 64 gray levels, requ i ring
6 bits per pixel, which are stored 6 bits per
byte. The entire image requires therefore 256x
320 = 81,920 bytes of memory, whi ch i s directl y
addressable by the PC.

The frame grabbers were built using static
RAM in order to minimize design and construction
time; however, as a consequence, they are quite
bulky. In fact, each frame grabber takes up one
of the five slots of the IBM PC, and at that ,
it was necessary to piggy-back the memory ch i ps
to house them all on a single full-size board.
(\~ith the release of the 8KX8 stati c RAM chips
in summer 1983 it will be possible to build a
double frame grabber with l64K static RAM us ing
only a single slot, but we wanted to beg i n i mme
diately; moreover, since the memory board pur
chased with the computer also contains seri al
and parallel I/O ports, using two slots for frame
grabbers is not an inconven ience.)

The frame grabber di gitizes the image by
columns ·so that any 256 col umns of the 256 x 320
image fit into a conti guous 64K segment of memory .
Thus, the whole i mage is available to t he prog ram
mer, but programs using only a 256 x 256 wi ndow
run very effi ciently. (Moreover, i t i s easy to
maintain program compati bi lity i f t he camera is
replaced by one wi t h 256 x 256 di gital output,
such as the GE TN 2500 CID camera , provided that

Graphics Interface '83

- 98 -

the image is stored by columns.)

The design of the two frame grabbers is
identical, and construction of the first of the
two is fairly well advanced (it should be com
plete by the end of March). The design was done
i n our laboratory by M. Jacques, with an impor
tant contribution by G. Hurteau.

The reasons for choosing the IBM PC, as a
development system for vision algorithms, were
three-fold. Firstly, we want to be able to do
fast floating point arithmetic, in order to be
able to implement, for example, methods involving
integral convolution [13] or principal component
calculations [4]. The IBM PC executes a floating
point multiply in 19 psec., which is somewhat
slower than the PDP-ll/34, (and slower than the
MC6888l announced for 1 ate 1983 [23]), but
considerably faster than the LSI-ll/23 with the
KEF11-AA fl oati ng poi nt opti on [2, Appendi x B] .

A second reason for choosing the PC was
cost. We wanted an inexpensive system which we
could afford, and also , which can plausibly be
transferred to the factory floor. Of course,
we are i nterested i n studying some algorithms
which can not be executed in real time on the
PC, such as algorithms for the stereo matching
prob 1 em [19] , and for such problems it will be
necessary to transfer the images to a CDC Cyber
computer for off-line processing. However, in
robotics, it is also important to see what can
be done on a small system acceptable in an indus
trial context [24].

A third reason for our choice is that we have
used (and are using) another IBM PC (with the
8087) for the development of the robot control
l er s [15] , with very satisfactory results.

As described in the next section, the soft
ware will be written using IBM's Pascal and
Macro-assembler. Th i s is satisfactory for the
treatment of vision input. Sending the signal
to initiate a grab can be done from an assembly
l anguage procedure or from IBM Pascal, as can the
interrogation of the flag set by the frame grab
ber when the digitization is complete. Critical
sections of algorithms can be written as assembly
language procedures. On the other hand, i n the
context of input from a larger variety of sensors
(for example, we have two Leuze position detectors
and a Polaroid range finder), i t would be much
more attractive to use an i nterrupt based system.
We have some experi ence with Modul a-2 [11 ,25] ,
a high level (Pascal extension) language permit
ting interrupt handling, and our tentative plan
is to base an Integrated Sensory System on an
LS I-ll / 02 using Modula-2, running under the RTll
Oper at ing System. The ISS would be connected to
the host computer by a 9600 bps serial l ink , and

would handle sensory information from various
sensors, amongst them the PC based Vision System.
In this way we can essentially write all of the
software in Pascal, while still having an inter
rupt based system when it is needed, and fast
floating point when it is needed.

SOFTWARE AND HOST VISION SYSTEM PROTOCOL

We are primarily concerned with the case
when the system has a great deal of prior knowl
edge about the likely contents of the scene being
viewed [14]. This is consistent with, and to
some extent a consequence of, our decision to
study systems suitable in an industrial context.
For the same reasons, at least the first versions
of the software will be restricted to a very
small set of object types, and will be based on
simple but fast line-finding schemes.

The software for processing visual informa
tion will in fact be divided between the Host
and the Vision System. The Vision System takes
care of the digitization of the image, analysis
of the image, and recognition of objects in the
scene. The Host uses this information, sent by
the Vision System, to update its internal des
cription of the environment. Such information
can be used, for example, to calculate the
relative position of objects for use in object
avoidance algorithms [17] .

The system referred to above, being imple
mented as a course proj ect [6] , wi 11 be based on
a Hough transform 1 i ne-fi ndi ng method [21] , with
extrapolation of the path of moving objects in
time, in order to avoid reprocessing of the entire
image at every step by tracking moving objects.
In fact, a window will be associated with each
object identified, and only the windows l i kely
to contain an object will be reanalyzed at each
step.

The system will normally be in an infinite
loop in which it digitizes and analyses the image,
recognizes objects, and transmits updates of the
scene description to the host, breaking this loop
only to execute instructions from the Host:

Graphics Interface '83

I

Initialization
(Initialize first grab)

Await termination of grab
~-

Analyze picture I
Initialize next grab I

~
Object recognition

~ransmit updated informationJ

- 99 -

Note: Treatment of commands from the Host is
done concurrently, by means of a polling
process (i.e. periodic calls to a procedu
rp. which processes such commands).

Amongst the commands accepted from the Host
wi 11 be:

FIXED <object name>
MOBILE.CR <object name>
MOBILE.CI <object name>

The vision system itself identifies the objects
in the scene. The purpose of the FIXED command
is to permit the Host to signal to the Vision
System that it knows about a certain object,
that the object is not going to move, and that
therefore it need neither track the object nor
consider sending an update about the object's
position. (For example, the squares of a chess
board.) The other possibility is that the object
is mobile, but here there are two subcases,
depending upon whether the object is Currently
Relevant to what the Host is doing, or Currently
Irrelevant. If the Host (perhaps temporarily)
does not need information about the object, the
command MOBILE.CI should be sent to the Vision
System. The system will continue to track the
object (and it must do this even if the object
is always "currently irrelevant", in order to
prevent its interpretation as a new object), but
it will not send the information to the Host,
thereby reducing the communication load.

Analysis of the image will involve extraction
of feature lines by means of method based on the
Hough transform and a digital approximation to
the gradient, resulting in a list of feature
lines [20,21]. The first version of the software
is limited to a small class of recognizable
objects, defined by a separate procedure for each
type of object (cube, sphere, ...). In later
versions of the system we intend to include the
possibility of a LEARN command, which would permit
the Host to request the Vision System to describe
any new objects which satisfy constraints speci
fied in the command [1,12]. We also envisage a
DESCRIBE command, which would return a low level
description of the object.

The Host will maintain a list of objects in
the environment, specifying the (unique) name
of the object, type or size parameters associated
with the object, object position, speed and
orientation, and so on. We expect to be able to
maintain synchronization between the two systems '
clocks to within a fraction of a second.

As mentioned above, processing of the entire
image at each cycle is avoided by tracking
objects, and analyzing only the appropriate part
of the image. However, i n order to detect new
objects appearing on the scene, the whole image
must be sampled periodicall y .

Graphics Interface '83

- lOO -

EXTENSIONS

As mentioned above, our tentative plan is to
extend the system by linking it with an LSI-l1/12,
available in our laboratory. Additional sensors
available or ordered include two Leuze position
detectors based on a modulated LED light source,
with a filter for ambient light, a Polaroid
ultrasound ranqefinder, and a Hitachi VK-C2000
solid state colour TV camera. In addition, a
laser range finder is being built by L.-P. Oemers
and A. Foisy as a student project [3]. It is not
clear whether this device will have adequate
precision, since it is being built entirely with
equi pment borrOloJed here and there, but even if
not, it may at least serve as a prototype for a
more accurate device. Finally, one of us [8]
has with a colleague designed and implemented a
graphical simulator for the 6E arms used in our
system. The system runs on the COC Cyber and
permits wire-frame display of the two arms, and
objects from a small class (cube, sphere),
including the possibility of perspective changes.
It is important in the context of off-line pro
gramming of robots to be able to simulate a
taught sequence of moves before moving the mani
pulator itself [18] , even if the simulation is
slow. (In fact, slow-motion simulation is more
desirable than actual speed simulation, provided
that it is not too slow.) Implementation of such
a simulator on a small system, which would be
subordinate to the Host, appears to be feasible,
but at present we do not have the necessary human
resources to do so.

ACKNOWLEDGEMENTS

D. Fortin and G. Hurteau have collaborated
closely on most aspects of the design of the
system described and proposed here (but respon
sibility lies entirely with the authors). The
work was supported in part in the Natural Sciences
and Engineering Research Council of Canada.

REFERENCES

[1] Capson, D., Pena, M. and Kitai, R. A
silhouette vision system for robots.
Proceedings, Canadian Conference on Robotic~
Mississauga, 20-21 September, 1982, pp.73-84.

[2] DEC (Digital Equipment Corporation).
Microcomputers and Memories (LSI-11 Hand
book), 1981.

[3] Oemers, L.-P. and Foisy, A. Laser range
finder, 1FT 6111 course project, Universite
de Montreal, 1983.

[4] Duda, R.O. and Hart, P.E. Pattern Classi
fication and Scene Analysis, Wi1ey, 1973.

[5] Feeley, M. Transformations de coordonnees
pour le bras SMART ARMS 6E. Document de
travail #133, Departement cl'informatique et
de recherche operationne11e, Universite de
Montreal, 1983.

[6] Fee1ey, M. Syst~me d'ana1yse d'image.
Document de travail #134, Departement d'in
formatique et de recherche operationne11e,
Universite de Montreal, 1983.

[7] Feeley, M., Fortin, D. and Hurteau, G.
AUbusson-expansion possible. Document de
travail #138, Departement d'informatique
et de recherche operationne11e, Universite
de Montreal, 1983.

[8] Fee1ey, M. and Gagnon, F. Systeme d'emu1a
tion d'environnement robotique (Manue1
d'usager et Manuel d'imp1antation). Unpu
blished manuscript, Departement d'informati
que et de recherche operationne11e, Univer
site de Montreal, 1983.

[9] Fortin, D. Aubusson-Description du systeme.
Document de travail #130, Departement
d'informatique et de recherche operationne11e ,
Universite de Montreal, 1983.

[J 0] Forti n, D. Aubusson-r1anue 1 d' usager et
description technique. Document de travail
#131, Departement d'informatique et de
recherche operationne11e, Universite de
Montrea 1, 1983.

[11 1 Fortin, D. Modula 2-Imp1antation au L.I.A.
Document de travail #135, Departement
d'informatique et de recherche operation
ne11e, Universite de Montreal, 1983.

[12] Geschke, C.C. A system for programming and
controlling sensor-based robot manipulators.
IEEE Transactions PAMI, Vol. PAMI-5, No. 1,
1983, pp. 1-7.

[131 Hildreth, E. Edge detection for computer
vision system. Mechanical Engineering,
August 1982, pp. 48-53.

[14] Horn, B.K.P. Derivation of invariant scene
characteristics from images. AFIPS Confe
rence Proceedings, Volume 49, 1980, pp.
371-376.

[15] Hurteau, G. RUM-Robot Controller University
of Montreal. Document de travail #132,
Departement d'informatique et de recherche
operationne11e, Universite de Montreal, 1983.

[16] Hurteau, G. Turn your IBM PC into a real num
ber cruncher. Document de travail #136,
Dept. IRO, Universite de Montreal, 1983.

Graphics Interface '83

- 101 -

[17] Lozano-Perez, T. and Wesley, M.A. An
algorithm for planning collision-free paths
among polyhedral obstacles. CACM, Volume
22, No. 10,1979, pp. 560-570.

[18] Kretch, S.J. Robotic Animation. Mecha
nical Engineering, August 1982, pp. 32-35.

[19] Nishihara, H.K. and Larson, N.G. Towards
a real time implementation of the Marr
and Poggio stereo matcher. SPIE Vol. 281,
Techniques and applications of image
understanding, 1981, pp. 299-304.

[20] O'Gorman, F. and Clowes, M.B. Finding
picture edges through collinearity of fea
ture points. IEEE Transactions on
Computers, April 1976, pp. 449-456.

[21] Rosenfeld, A. and Kak, A.C. Digital Pic
ture Processing, Second Edition, Volumes
1 and 2. Academic Press, 1982.

[22] Stewart, N.F. A multiple robot system
with vision. Proceedings, Canadian
Conference on Robotics, Mississauga,
20-21 September, 1982, pp. 85-90.

[23] Stock ton , J. F. Growth of processor family
boosts system options. Computer Design,
February 1983, pp. 71-80.

[241 Warnecke, H.J., Schweizer, M. and Haaf, D.
Programmable assembly with tactile sensors
and visual inspection. Proc. First
International Conference on Assembly
Automation, 1980, pp. 23-32.

[25] Wirth, N. Modula-2. ETH Zurich, March
1980.

