
- 103 -

VEGA 

A GEOMETRIC MODELLING SYSTEM 

Robert F. Woodbury 

Carnegie·Mellon University 

Gregory John Glass 

Carnegie·Mellon University 

11 March 1983 

ABSTRACT 

VEGA is an interactive geometric modelling system which has been developed at 

Carnegit~ · Mellon University primaril\, for education in architecture and the arts. Its 

educational use is twofold: first :lS a medium for description r.llld manipulation of form to 

aid in creative work and second as a base package of procedures that m:lY be usen by 

advanced architecture students in the creation of specialized modelling packages. 

VEGA is wriiten in PASCAl. There are versions of VEGA currently running on VAX 

111780computers under the UNIX and VMS operating systems. VEGA has been designed 

to run on a stand· alone personnl computer. Currently VEGA is being converted to run on 

Sun Microsytem and PERQ machines. 

VEGA is used in the undergraduate curriculum of the School of Architecture at 

Carnegie·Mellon University. Its primary use to date has been as a means to introduce 

geometric modelling to architecture students who have minimal computer experience. 

VEGA may be viewed as a complete geometric modelling package or as a programming 

aid for development of special purpose geometric modelling programs. To date, one such 

specialized system, a robot arm design package, has been created as a student project. 

The development of the IfEGA system is continuing . Current areas of interest include 

the development of more powerful yeometric operaticns on pOlyhedra, parametric shapes 

and assembl ies, i"'5tancing of sub'<lssemblies, user clefinition of primitive shapes and an 

interactive macro languu9L' for (he manipulation of form. 

KEYWORDS: assemblies, interaction, modelling , polyhedra. 

The work outlined in this report was partially 5upported by an internal grant from Carnegie·Mellon 

University. The authors wou ld like to thank Charles Eastman for providing the physical and 

intellectual environment in which this research was conducted. 

Graphics Interface '83 



1 Int roduction 

In 1981 the College of Fine Art3 at Carnegie·Mellon 
University initiated a program to bring compulers into active 
use in education in the arts. COrqputers are seen as a tool 
which can be directly used in the creative process of the arts. 
The purpose of what came to be known as the CF /\ project is 
to provide an environment for the creation of and instruction 
in such computer· based tools. The emphasis of the CFA 
project is on tools and media which can be used in the 
creative process. Computer· aided instruction is not a goal. 

Three principal areas of development within the CFA project 
have evolved. In the design arts, the initial goal of the prject is 
the creation of software packages which support three· 
dimensional modelling, colour rendering and two·dimensional 
drawing. These packages are seen as being "vanilla 
flavoured", in that they exist to demonstrate the functionality 
of a modelling technique rather than attempt to make it 
directly applicable to a particular discipline. The next phase of 
the project involves the creation of specialized software 
systems which directly support specific design di~ciplines. It is 
intended that the data types of the " vanilla· flavoured" 
modellers will be used to structure the special· purpose 
modellers. 

In music, a computer·assistect solfege program is being 
developed. The immediate purpose of the solfege program is 
as an assist in the development of cognitive skill:> of music 
department majors. 

In drama, a Skirpan Autocue system is blOling used to 
enrich en the lightillg sequences that can be sllpported in a 
production. 

1.1 The CFA Computing Environment 

The computing environment of the College of Fine Arts is 
distributed spatially auout the College and functionally across 
several different computer systems. There are presently five 
lab spaces within the College. Three of these directly address 
the design arts. 

The CAD Lab is a joint facility of Architecture and the 
Computer Science Dep3rtment of CMU. Its purpose is to 
provide an environment for research and system development 
in Computer·Aided Design. The Lnb uses a VAX t 11780 
running UNIX, an E&S Multi·Picture System running off of a 
PDP 11 / 34 and Sun Microsystems. 

The CFA Lab is a facility for co! lege wide ~tudent use in the 
design arts . It currently usf'~ Visual500 terminals connected to 
a VAX 11/780 running VMS and several ~l11all workstations 

. based on AED512 terminals anc LSI 11 / 03 processors. Sun 
Microsystems are planned for this lab. 

- 104 -

The CAD/Design Lab is used by the Department of Design 
primarily as a research laboratory. An IBM CADAM system is 
used here. 

2 Geometric Modelling 

VEGA (Vanilla Environment for Geometric Applications) 
was developed as part of the CF A project. VEGA is a 
geometric modeller that supports solid polyhedra related 
together to form assemblies. 

2.1 Definition of an Assembly 

It is a rare occurrence in architectural design to be 
concerned with a single object. Almost every architectural 
solution is a composite of parts, related together into an 
assembly. 

An assembly is a collection of parts. When viewed from a 
designer's point of view these parts are complexly 
interdependent. The conceptual forces that determine a shape 
are many: location relative to other shapes, size dependent 
upon geometric constraints, functional requirl'!ments(strength, 
connectivity, mass) machining technoloQY and materials 
standards to mention a lew. Eastman [4j makes a distinction 
between two types of dependencies; internal and external 
dependencies. He also states that the recognition of external 
dependencies is a necessary step to the creation of geometric 
modelling systems that strongly support the definition of 
assemblies. 

One type of external dependency is relative location. An 
-assembly of parts, for example a precast concrete panel , is 
composed of many pieces which maintain constant spatial 
relationships to each other independent of the location of the 
overall assembly. Some of thesE'! pieces may in turn be 
subassemblies themselves consisting of many pieces. 

A modelling system for assemblies should support the 
groupings of parts into an assembly. An assembly may be 
defined as being composed of a part or of assemblies of parts. 

It is no coincidence tilal this definition of an <Js~elllbly is 
similar to the definition of a tree . The data structure which 
represents an assembly of [lart:J is a tree of relative locations . . 
A part may have a [lurent . unother part to which it is always 
spatially :lssoci3ted . Similarly a part may have children, which 
are other parts which are dependent for their spatial location 
on the location of tile parent part. 

Graphics Interface '83 



2.2 Definition of a Part 

The part is lhe basic unit in an assembly. In the real world a 
part is usually associated with a pllysical entity which has a 
boundary b"tween inside space and and outside space. This 
physical entity is called a solid or polyhedron . Any component 
of a boundary. for example a face. edge or vertex is located 
relative to some datum that is used to define the geometry of 
tile boundary. This datum can be thought of as a coordinate 
system for the boundary of the part . The existenr.e of this 
coordinate ;,ystem allows the specification of a boundary 
independent of the spatial location of the part itself. 

A part may have numerous other properties which may be 
described in non · spatial ways. These properties or attributes 
of the part do not generally depend explicitly on a description 
of the boundary of the part. 

A part must also have a location in space. For example, it 
would be meaningless to say that a screw existed without the 
conc.ept of its existing somewhere. The location of a part is 
given by specifying a coordinate system somewhere in space 
at which the part can be defined in its own coordinate system. 

These three properties of a part, a spatial boundary, non· 
geometric attributes and spatial location together define a 
part. 

2.3 The Location Property 

The location of any part in an assembly is determined by 
speCifying a transformation relative to some other location. 
The resulting tree of transformations is called an instance tree 
or a location graph [4J . In each node of the tree there resides 
a transformation relative to the parent of the node. For the 
sake of computational convenience, there is also a 
transformation which locates the node in global space, or the 
space defined by the root of the instance tree. The operators 
on the instance tree automatically maintain data integrity 
between the two transformations. 

Each node in the instance tree may have associated with it 
two types of properites, a shape and non ·geometric attributes. 

. Either of these properties may be a null property. The 
composite of the three components, an instance or node in 
the instance tree , Cl shape and a collection of non·geometriC 
attributes provides enough information for a complete 
description of some physical part. 

A set of operators is used to create, query and modify the 
instance tree representation. These operators ensure the well· 
formedness of the instance tree. 

- 105 -

2.4 Solids Model 

The usefulness of solids modelling for the representation of 
geometric components is solidly established in CAD. There 
are many strong reasons to use a solids model. These 
include: 

• The existence of only one data type for all solid 

geometric artifacts. 

• The maintenance of well · formedness concitions. 

• The completeness of information necessary for 

the calculation of all geometric properties of a 

polyhedron. 

A solids model representation may be used as the general 
representation for the generation of views into any design 
system. 

There are several types of representations for solids 
models. Requicha [6] a has outlined the following different 
types: pure primitive instances, spatial enumerations, cell 
decompositions, simple sweep representaticns, boundary 
representations, and constructive solid geometry trees. 

Of these, the boundary model . specifically the winged· edge 
data structure [1] [2] and its variants evolved at Carnegie' 
Mellon by Eastman et al. [3] has served as the primary 
representation scheme for solids modelling in our lab. The 
advantages of the the boundary representation scheme for 
architectural use include the readiness of display of parts for 
interactive viewing , the ability to use a large number of 
primitive shapes without a concommitant large extension of 
code , and the ability to Jirectiy acCess components of a 
shape's boundary. 

2.4.1 The Winged Edge Data Structure 

The winged·edge data st ructure rcprs-sents a solid by 
defining its boundary as a network of bodies, faces, r ings, 
edgt:!s and vertice$. [3J [2J Each entity in the data structure 
carries two types of information: in fonno.tion describing the 
connectivity of entities to other en tities of tile same or of 
di fferent types and information describ ing the location of the 
entity in euclidean space. These two types have come to be 
known respectively as the topology and geometry of a shape. 
[3] 

2 .4.2 Euler Operators 

A particular in stanti at ion of the wi nged edge data structure 
as a ~olid ' or polyhedron is createci by use uf a set of operators 
known collec ti vely as the eu ler cperators. These opera tors 
0uarantee that the resul ting gr<.1ph parti::llly con forms to the 

Graphics Interface "83 



well-formedness conditions of non-self-intersection, -closurr, 

and orientability. [3] 

2.4.3 Definition Operators 

The euler operators are used to create other higher-level 
operators which define shapes. These operators create the 
primitive shapes which the system uses. The primitive shapes 
currently supported by the modeller are cube, cuboid, cone, 
frustum, cylinder and extrusion. A new primitive shape can be 
created by using the euler operators to write a function which 
returns the required shape. Primitive shapes can be defined 
parametrically. Figure 1 gives an example of an extruded 
primitive shape. 

Two shapes may be combined to form a resultant. There are 
four shapes possible from a combination of two shapes. These 
are the shapes resulting from union, intersection and the two 
difference operators. Figure 2 gives an example of shape 
operations on two polyhedra. 

Shapes may be modelled. They may be scaled in each of the 
principal t:uclidean axes or rotated about the axes. Translation 
of a shape by changing its local origin is also supported. 
Figure 3 gives an example of scaling of a shape along one 
axis. _ 

Figu re 1: Example of an extruded primitive shape 

,"----@_I 
Figu re 2: A difference operator on a cone and a cuboid 

- 106 -

Figure 3: Example of a shape scaled along a single axis 

A single shape may be used many times in an assembly of 
parts. An instance which defines a part may point to a shape 
which is already "being used" by other instances. When a 
-shape which is used by multiple instances is changed, all of 
those instances automatically change. This allows a designer 
to quickly modify all parts which refer to a given shape by 
modifying only one shape. Since no canonical form exists for a 
boundary representation the use of a single shape by many 
instances provides the only means to maintain a notion of 
identity between parts. Use of a single shape representation 
for multiple instances of the same shape also results in a 
significant reduction of the storage used for a model of given 
complexity. 

2.5 Non-geometric Attributes 

A part is not fully described by its location and physical 
boundary. Other information must be provided to provide 
complete information. Much of this information can be 
described textually. Currently, ·non-geometric information -is 
stored as pairs of text strings referring to the name and value 
of a part property respectively. Multiple name-value pairs may 
be used by a single part or instance. In this case, they are 
grouped together into lists of attributes. An instance may point 
to one list of attributes. As with shapes multiple instances may 
point to a single attribute list. 

3 The User Interaction Environment 

Modeless interaction as proposed by the implementors of 
Smalllalk80 [7J is the goal that was strived for in the design of 
the user interaction for this system. This also seemed familiar 
as we are used to the reverse polish notation of our 
calculators. This permitted us to perform editing operations 
on the elements of a design without having to refer to them by 
name. When the user defines a shape that shape becomes the 
current shape template and any operations that references a 
shape will utilize that current shape as an argument. This is 
similar to the type of interaction provided in the EMACS text 

Graphics Interface '83 



- 107 -

editor [5] where tile delete word operution deletes the word at 
the current location. The interuction for u design system can 
not be exactly the same as that for a text editor because of two 
problems. The first is that wllile a text editor manipulates 
characters that are combined into words that have meaning 
.using a keyboard . ttlere is not a way for a user to "type in" a . 
new shape. We must perforlll the generation of shapes by 
either specifying the shape by supplying values that 
correspond to properties of the shape or by composing 
primitive shapes togp.ther to form new ones. The other 
problem with tile editor modet is that it is really working on a 
one dimensional entity . the ~tring of text being manipulated . , 
In a design system we must manipulate three dimensional 
elements within a three dimensional space. For doing this 
task we do not have tools which are as well adopted to this 
task as the CRT terminal which has been tuned to the task of 
manipulatin9 characters; Because of the interactivity of 
terminal/software systems chan~les may be easily made on 
completely unstrL!ctured text but the introduction of structure 
to text (i.e . paragraphs-lines) makes these alterations simpler. 
It is this imposition of structure that we may use to facilitate 
alterations in three dimensional design . Because the changes 
are more complicated during a desiqn process we can not fall 
back on a well understood structuring as is present in text but 
users must be able to define their own structural order which 
includes the definition of the operations that may be used to 
modify that order. 

The interaction was influenced by the interaction of the 
Smalltalk system and our desire to deal with the problems of 
working in 3-D spaclJ. 

The interaction environment presents several types to the 
user that are not embedded in the underlying model. There are 
stacks for interaction with instances in the instance tree. for 
manually input values and strings and for shapes. Notions of 
current parent in the instance tree and current view are also 
maintained. A network structure of menus is used to. 
functionally separate different operations and to allow the 
inclusion of a large number of operators in a limited screen 
space. An example of a typical menu is shown in Figure 4. 

4 Cu rrent Uses 

VEGA is currently being used in a computer modelling 
course in the Department of Architecture and for graduate 
student projects. The purpose of the modelling course is to 
introduce students to the use of various modelling tools as 
media for representation in architecture. The course requires 
a minimal background in computing. particularly an 
understanding of the concepts of algorithm and data 
structure. Typical assignments include the demonstration of 
cubic symmetry. wood framing layout and site planning 
studies. Students are also asked to prepare a critique of the 

Edit Shapes 

Figu re 4: An Example of the Menu and Display 

user interface of the VEGA . Graduate students are using 
VEGA to write specialized geometric modelling systems. 
These systems attempt to imbed the semantics of specific 
disciplines or design activities into a geometric modelling 
syst(~m. The models produced by one special system are data 
compatible with the VEGA system as a whole. To date. one 
such project has been completed ; a robot arm manipulation 
package written by one of the authors, Gregory Glass. See 
figure 5. 

5 Futu re di rectiot'\s 

5.1 Increasing the power of geometric operations on 
polyhedra 

The data structure used for solid polyhedra currently makes 
little separation between topological and geometric 
information. This constrains the developer of modelling 
software to a particular view of the creation of polyhedral form. 
The development of a data structure for solids that would 
separate topological and geometric information and allow the 
definition of polyhedra to be made from either or both in 
conjunction would significantly increase the shape definition 
power of the modelling system. 

Graphics Interface '83 



- 108 -

Figu re 5: Robot Arm Manipulator 

5.2 Polyhedra Definitions 

The capabilities of the VEGA to define and alter shapes are 
now limited to a small number of primitive shapes, some 
simple modelling operations and the spatial set operators. 
Much more is possible. We intend to define a group of 
functions each of which produce a family of shapes. The first 
of these functions will be the generalized extrusion function, 
which will be ci'!.pable of generating simple extrusions, pocket 
and face extrusions, extrusions with integral holes, shapes of 
rotation and swept shapes with variable dimension orthogonal 
to the sweep axis. Other types of special shapes include 
primitives for the platonic and archimedean solids, for general 
spatial connectors for linear elements and for parametric 
shapes. Parametric shapes give the ability to define and 
manipulate shapes which can be scaled locally. For example, 
any wide· flange beam can be modelled using the same 
topological model, which is then scaled appropriately to give a 
particular instance of a wide· flange beam. Creation of an 
effective method for the definition and manipulation of 
parametric shapes involves some research on the 
representations used to model shapes. Particularly important 
is the restructuring of the shape data structure to establish a 
stronger independence between "topological" and 
"geometrical" information in the shape model. 

For the functions which create these new classes of shapes 
to be lIseful , new interaction techniques must be designed 
and implemented to make the definition and manipulation of 
these shapes more facile. One function required for true 
generality of a generalized shape definition function is a 
general purpose well · formedness test. 

5.3 Parametric shapes and assemblies 

The definition and modification of assemblies based on 
parametric value has been addre~sed previously [41. Often 
there is a dynamic relation amongst the dimensions of forms 
that comprise an assembly. An example is a steel truss in a 
building where the length of the web members depends on the 
distance between the top and bottom chord . One way to 
model such a dimensional dependency between parts is 
separate storage and definition of geometric entities which 
may be related to polyhedra. 

5.4 Limitations on the instance tree concept 

The lIse of an instance tree imposes a strong hierarchical 
structure onto assemblies. While ::Issemblies are generally 
constructed in a hierarchical manner, there are many 
situations which arise in design which do not lend themselves 
to a hierarchical structure. Research is needed to develop a 
more general information structuring system for geometric 
modelling. . 

5.5 Instancing of subassemblles 

An immediately implementable and powerful addition to the 
modelling system would be the ability to create instances of 
instances. This would allow us the use of entire subassemblies 
of parts as if they were :1 single entity and still retain the notion 
that these parts are used repetitively in the data structure. The 
probable response to t11is issue is the conversion of the 
current binary tree representation into an acyclic graph of 
instances. New well· formedness maintainers would have to be 
written. 

5.6 Special Purpose Systems 

Two special purpose modeller are in the planning and 
design stages; a site mapping system that will handle site 
contours and data overlays, and a system that will prepare the 
input data files for an energy analysis program. 

Graphics Interface '83 



- 109 -

References 

[1] Baumgart, B.G. 

Wingc(! edge polyhedron representation. 

Stanlord Artificial Intelligence Report CS·320, Stanford 

University, October, 1972. 

[2] Braid, I.C. 

The Synthesis of Solids Bounded by Many Faces. 

Communication 01 the ACM , April , 1975. 

[3] Eastman, Charles M. and Weiler, Kevin . 

Geometric Modeling Using the Euler Operators. 

Technical Report 78, Institute of Physical Planning, 

Carnegie·Mellon Univ., February, 1979. 

[4] Eastman , Charles M. 

The Design Of Assemblies. 

Technical Report 11 . Institute Of Building Sciences, 

Carnegie·Mellon Univ., October, 1980. 

[5] Meyrowitz, N., van Darn, A. 

Interactive Editing Systems: Part 1 and Part 2. 

Computing Surveys 14(3):321-415, September, 1982. 

[6] Requicha A.A.G., Voelcker H.B. 

Advances in Information Systems Science. 

Plenum Publishing Corporation, 1981 , pages 

293·328chapter 5. 

[7] Tesler, L. 

The Smalltalk Environment. 

BYTE 6(8) :90, August, 1981. 

Graphics Interface '83 


