
- 135 -

ADVANCED CONCEPTS FOR HIGH-LEVEL GRAPHICS LANGUAGES

Gunther F. Schrack

Departments of Ele~trical Engineering and Computer Science
The University of British Columbia

Vancouver, B.C. V6T 1W5

ABSTRACT

Much effort has been expended in the past years on the specification of the
CORE and the GKS subprogram system standard proposals. Both have a common
intent: They standardize the input/output interface between an application
program and the graphics terminals. Such systems can not, however, address the
modelling problem, i.e. ways and means to create or define graphical objects.
This task is at present still left to the application program.

As the demand for increasingly sophisticated graphical output rises, more
effective software tools must be developed. It is the purpose of this paper to
demonstrate the capability and effectiveness of a high-level graphics
programming language for modelling. In particular, high-level operations
required for modelling, such as the explicit definition as well as functional
generation of graphical objects, and the systematic manipulation, editing, and
substitution of graphical data are discussed. Several explicit examples of
modelling of graphical objects with the aid of essential program fragments and
their resulting output are presented, by this means simultaneously high-lighting
some of the characteristics of the Language for Interactive Graphics (LIG6).

KEYWORDS: high-level graphics programming languages, modelling of three­
dimensional objects, programming tools for computer graphics

In the past few years, significant
accomplishments have been achieved in
computer graphics on both the hardware
and the software level, which, without
doubt, furthered its cause and its
acceptance as an effective tool in many
human activities. The market which
supports computer graphics has already
grown at a phenomenal rate~ yet it is
predicted that such growth rates will
continue for some time in the future.

To sustain such growth, productivity
needs to be increased , particularly on
the software level, since hardware prices
are falling and software costs are
rising. In this context, software means
software creation and hence, to a large
part , it means programming. Therefore,
it is essential that progress occurs in
programming support and in improved
programming tools for computer graphics.

Advances
programming

i n h i gh- l evel
languages will

graphics
become as

important as the advances · made in the
past in general-purpose high-level l ang­
uages. It is the purpose of this paper
to show that such advances are possible
by illustrating the effectiveness of a
high-level graphics language. To this
end, a number of advanced concepts are
discussed.

The idea of high-level graphics
languages is not a new one, as the survey
of McLean [McLe78] shows: The first
proposals were published as early as
1967. In recent years, the reports of
Barth et al. [Bart82], Magnetat-Thalmann
et al. [Magn81], and van Wyk [VanW81] are
particularly relevant.

Advances at the Language Level

The CORE and GKS standard proposals
have influenced t he graphics community i n
numerous ways , e.g. by unify i ng many
t echnical terms , by prov i d in g a
perceptual model for graphics output

Graphics Interface '83

- 136 -

systems, and by clarifying important
concepts such as, e.g., windows
vs. viewports in a two- and three­
dimensional environment. In particular,
the proposals are to be credited with
establishing clearly the distinction
between modelling of graphical objects on
one hand and their display on an output
surfac~ ~n the other.

The expressed task of computer
graphics is the synthesis of pictures,
not their analysis. Thus, modelling of
objects is a challenging problem,
particularly since the CORE/GKS proposals
specifically exclude that activity,
concentrating on the display and output
of pictures.

It is becoming increasingly clear
that all possible graphical objects
cannot be collected into one single class
of objects. On the contrary, the world
of graphical objects consists of many
classes which must be catered to
individually. This can become possible
only by providing different graphical
languages or procedure packages. The
individual characteristics of an object
class can then be exploited to advantage.
Of course, the more objects belong to a
class , i.e. the larger t he domain of a
graphics language is, the more versatile
that language will be.

The Language for Interactive
Graphics, version 6 (in short, LIG6), is
a language which allows modelling
structured objects in two or three
dimensions by means of lines or flat
polygonal faces; they may be coloured or
rendered in grey scale. LIG6 is a true
high-level graphics language, as its
characteristics will witness.

Data types.

Two system-derined data types are
provided, GRAPHICAL and VECTOR. The
latter functions in a supporting role,
allowing triples of type REAL in the form
of vector var i ables, constants, and
casts. The usual vector operators, such
as the dot and cross product, are also
provided.

The data type GRAPHICAL plays a
central role, allowing the naming of any
simple or complex object or subobject.
Its data structure is not fi xed, as it
c an be regarded as a set of nodes were
t he str ucture o f a node i s a f i xed

record, but the number of nodes per
variable can expand or contract.

Each node stores a number of
attributes such as position, scaling,
rotation, colour, and, additionally, two
pointers. The pointers refer to other
nodes; the value pointer must always be
p~e~~nt, and may point to a graphical
primitive, the super pointer may be set
to NIL.

Operators

A large number of monadic and dyadic
operators have been defined which create
and or operate on the data structure and
nodes. Among them are modelling
transformation operators for geometric
transformations, and modelling attribute
operators which set or reset values such
as colour, lightness, saturation, and
pattern.

Assignment Statements

A distinction is made between three
levels of programmer sophistication:
basic, medium, and advanced [Ross82a].
At the basic level, the programmer models
objects entirely at the syntactic level.
The medium level introduces additional
language features, e.g. several identifi­
cation statements. At the advanced
level, the programer is given complete
access to the internal data representa­
tion, requiring h i m to understand and
know the data structure thoroughly. Four
different assignment statements, the
synonym assignment, the copy assignment,
the value assignment, and the super
assignment aid in this task.

Input/Output Statements

A number of input statements,
allowing interact ive execution of an
application program, are provided.
Graphical objects can be output to
several terminals such as a Tektronix
4027 colour raster display and a
Printronix printer-plotter. Several
output statements generate perspective
projection; a camera model has been
adopted in their design.

Example

Figure 1 shows a short program,
defining a cube of cubes, as well as t he
output i t c r eated. The program i s
written at the basic level, as only a few

Graphlc8 Interface '83

- '37 -

of the actually available modelling
operators were required for the task. No
direct data structure manipulation or
interaction (input) statements are used.

C
C LIG6 PROGRAM TO CREATE A 3-DIMENSIONAL
C

GRAPHICAL A, CUBE (3), SPAR(5), ROW,
C
C First create a prototype cube with one
C

CUBE OF CUBES

TEMP, SIDE, OBJ,

corner at origin

(Trent Wagner)

TEXT

A : - (POLY FROM (0. 0 , 0 • 0 , 0 • 0) TO (0. 0 , 0 • 5 , 0 • 0) TO (0. 5 , 0 • 5 , 0 • 0)
Te (0.5,0.0,0.0» <LIGHTNESS 100.0>

C

CUBE(l) :- A + A <ROTX 90.0 'DEG'> + A <ROTY -90.0 'DEG'>
+ A <TRANS(0.0,0.0,0.5), LIGHTNESS 25.0>
+ A <ROTX 90.0 'DEG' ,TRANS(O.0,0.5,0.0), LIGHTNESS 50.0>
+ A <ROTY -90.0 'DEG' ,TRANS(0.5,0_.0,0.0), LIGHTNESS 75.0>

C Next form spars which will join the cubes
C

C

SPARe 1)
SPAR(2)
SPAR(3)
SPAR(4)
SPAR(5)

.-· · .-
· ·

LINE FROM
LINE FROM
LINE FROM
SPAR(3) +
SPARe 4) +

(0.50,0.25,0.25) TO (1.00,0.25,0.25)
(0.25,0.50,0.25) TO (0.25,1.00,0.25)
(0.25,0.25,0.50) TO (0.25,0.25,1.00)
SPAR(3) <TRANS(l.,O.,O.» + SPAR(3) <TRANS(2.,0.,0.)
SPAR(4) <TRANS(O.,l.,O.» + SPAR(4) <TRANS(O.,2.,0.)

C Forma row of cubes aligned with X-axis
C

C

CUBE(2) • CUBE(l) <TRANS(l.0,0.0,0.0»
CUBE(3) . CUBE(l) <TRANS(2.0,0.0,0.0»
ROW :- CUBE(l) + SPAR(l) + CUBE(2) + SPAR(1)<TRANS(1.,0.,0.» +CUBE(3)

C Form a wall of cubes (3 * 3) in Z-plane
C

C

TEMP :- ROW + SPAR(2) + SPAR(2)<TRANS(1.,0.,0.» +SPAR(2)<TRANS(2.,0.,0.»
SIDE :- TEMP + TEMP <TRANS(O.O,l .0,0.0» + ROW <TRANS(O.0,2.0,0.0»

C Create final (3 * 3 * 3) object and the title
C

C

OBJ :- SIDE + SPAR(5) + SIDE <TRANS(O.,O.,l.» + SPAR(5) <TRANS(O.,O.,l .»
+ SIDE <TRANS(0.,0.,2.»

TEXT :- 'Edmonton' '83' <SCALE(6.0,6.0,1.0), TRANS(O.12,-0.50,2.30»

C Set camera model parameters and display all parts
C

VIEW POINT = (5.5,5.5,8.0)
AIM POINT = (1.0 ,1 .0,1.0)
VIEW WIDTH = 3.00
VIEW UP VECTOR = (0.0,1.0,0.0)
DISPLAY (OBJ + TEXT)
STOP
END

Figure la

Graphics Interface '83

r .~
l .. J \"1 1-,.

I " I 1-'"
--) I I

- 138 -

c-·, -. Jf,
I

Figure lb

Graphlc8 Interface '83

- 139 -

Advanced Level Programming

Experience with previous versions of
the language LIG led to several
conclusions which influenced the design
of LIG6 [Ross82b]. "Real life" graphical
objects are usually v~ry complex; indeed,
there is no upper limit of complexity an
object can possess. Thus, it cannot be
stored in a static data structure; the
structure must be dynamic, i.e. must be
able to be expanded and contracted. A
graphical object is often structured, and
it is possible to exploit this
characteristic in its definition,
storage, and manipulation. The data
structure of a graphical object is not
unique; different data structures can
represent an object with the same
external representation, i.e. the same
output, independent from the viewpoint
specified [Requ80].

Therefore, graphics programming
requires skills of the programmer which
are different from other programming
activities, namely to understand in
detail the structures and properties of
graphical objects which are to be
created. This ability becomes even more
important if the programmer knows only
the class of objects with which his
program has to deal, but not the
individual objects from that class which
a user will create.

For these reasons, a language must
assist a programmer to a large degree.
Conversely, the skilled programmer must
know the programming language intimately,
particularly he must know the internal
representation of the objects, thus
having complete control in their
creation. This philosophy represents a
departure from classical programming,
where the programmer does not need to be
familiar with the internal representation
of, say, INTEGER, REAL, or CHARACTER
types. Furthermore, it does run counter
to recent trends in abstract data types,
which suggest to hide and prevent access
to "unnecessary" information of a given
type.

Data Structure Manipulation

Two graphical objects can be
combined into one by superimposing one
onto the other. A superposition operator
(symbol "+") achieves the desired effect;
superposition does not change its
operands. The operation expands the data

base by a node which stores the
modification operator values (transforma­
tion, colour, etc.); also, the value
pointer and super pointer are set to
point to the nodes of its operands. The
data base can be accessed directly by
referring to an object's identifier.
Subobjects can be accessed indirectly,
with either a system function or an
assignment statement. Two graphical
system functions, VALUE and SUPER, return
values of its argument, as follows. Let
P, Q, R, and S be declared graphical
variables and assume that P, Q and R have
been assigned graphical values. Let S be
the object obtained by superposition of
instaces of Rand Q on P, syntactically
expressed by

S :- P <mod1> + Q <mod2> + R<mod3> ••• (1)

Here, <mod1> etc. indicate arbitrary
attribute or transformation
modifications, as, e.g., geometric
transformations. The first operand of
the graphical expression is an instance
of P, having the topology of P but
modified by the modifications <mod1>.
Once def ined, it can be referred to by
SUPER(P) and SUPER(SUPER(P»,
respectively. The language allows
nesting of graphical expressions in a
"natural" fashion, i.e. with the use of
parentheses. For example, assignment
statement (1) could be written as

S :- (P<mod1>+Q<mod2»<mod4>+R<mod3> .. (2)

This statement will have a different
internal storage structure, even if the
modification <mod4> is missing; it will
produce a visually identical output as
statement (1). Whereas execution of
assignment (1) creates a data structure
as shown in Figure 2, assignment (2)
results in a different structure, as
depicted in Figure 3.

The synonym assignment creates new
nodes and sets pointers, but never copies
part of a structure, as may have become
clear by above examples. Therefore, care
must be exercised by the programmer when
redefining the value of a graphical
variable: if that variable appeared in a
graphical expression previously, the
object of which it forms a part of will
be changed as well.

Graphlca Interface '83

- 140 -

S P

modl

Q

mod2

R

mod3

Figure 2

S P

mod4 modl

Q

mod2

R

mod3

Figure 3

Such a dependence on other graphical
objects can be avoided by duplicating the
relevant parts of the data structure,
using the ~ assignment statement. It
must be used Judiciously, however, as the
size of the data base may grow much more
quickly than anticipated. With the
system functions VALUE and SUPER, any
part of a data structure can be accessed,

system functions VALUE and SUPER, any
part of a data structure can be accessed,
no matter how complicated that structure
may be. However, they do not allow
alterations or replacement of the
substructures they refer to. For this
purpose, in addition to the synonym and
copy assignments, two special assignments
have been defined. W~th the value
assignment, the defining instance of an
object can be replaced by another
instance, i.e. the value pointer and the
transformations of an object can be reset
to refer to a new and possibly entirely
different instance.

As an example, consider the
graphical variable P, defined initially
as follows

P:-POLY FROM (Vl) TO (V2) TO (V3)+Q<modl>
• •• (3)

where Vl, V2, and V3 are vector
variables, Q is a previously defined
graphical variable, and <modl> are
certain modifications.

with execution
assignment statement

P :> R <mod2>

of the value

the graphical value of P is altered by
replacing the polygon with the instance R
<mod2>; thus, P assumes a value as if the
assignment

P :- R <mod2> + Q <modl>

had taken place.

Similarly, the superpointer can be
reset with the super assignment, but the
transformations of that node remain
unaltered. As an example, consider again
the graphical variable P, defined as in
statement (3). Execution of the super
assignment

P :< R

results in a value for P as if the
assignment

P :- POLY FROM (Vl) TO (V2) TO (V3) + R

had occurred. More complex right-hand
sides of the value and super assignments
are possible, including references to
subobjects wi th the aid of the system
functions VALUE and SUPER.

Graphics Interface '83

- 141 -

Advances at the Programming Level

In addition to the language systems
themselves (the compiler or preprocessor
and the subprogram library), several
programming tools have been created in
the form of programs and subprograms to
assist future graphics programming. At
this stage, such efforts simultaneously
serve to test the effectiveness of the
language, providing further insight for
graphics programming activities.

Translational Sweep

Modelling of three-dimensional
graphical objects can be achieved in
numerous ways, one of which is extrusion.
Extrusion is an operation which allows
creating an object from the specification
of a cross-section, a closed polygon, and
a direction, a vector. A translational
sweep of the cross-section in the
direction and for the length of the given
vector defines the desired three­
dimensional object. The object itself is
defined by surface panels, stored in the
data base which stores two end panels of
the size and shape of the cross section,
and a number of rectangular side panels
which)Oln the end panels. The column
thus created has one side panel for each
edge of the polygon. A subprogram which
creates objects of this class requires
only about 16 lines of high-level code
(Figure 4).

Rotational Sweep

An immediate extension of transla­
tional sweep is rotational sweep, where
t~e given end face is rotated about a
glven axis by a specified angle. The
object is in fact created by heaping a
series of identical wedges upon each
other . If the Object is to be built from
flat faces , an additional parameter is
required which specifies its resolution,
i.e. the step size of the rotation. The
LIG6 program wich accomplishes rotational
sweep requires approximately 25 lines of
code only (Figure 5).

Graphics Editor

As discussed above, a programmer
will benefit by knowing the data
structure that the subprogram system will
create for an object. Similar to a text
editor, a graphical editor which will aid
a user in modelling objects would be very
useful. Its tasks will be to make
graphical objects visible and to carry

out additions, deletions, and other
operations, particularly those which
affect the topology of an object. These
operations will be easy to carry out when
both the actual image of the object, as
well as the internal structure of the
Object can be made visible. Such an
interactive graphics editor has been
implemented, written, of course, in LIG6.
The editor displays the data structure as
a binary tree, with a node represented by
a small box containing the subobject
which the node represents and with
pointers as branches. A strict
representation convention is used, with
the value pointer always emanating from
the right of a node, and the super
pointer from the bottom (see, e.g.,
Figures 4 and 5). The user can operate
on the pointers, creating or inserting
new nodes, and deleting existing ones.
Each operation is immediately reflected
in the updated display of the object
itself. At present, the experience
gained with this programming tool is
insufficient for reaching definitive
conclusions. However, it is evident that
the editor expects the user to know the
internal data representation and its
relationship to the external representa­
tion of an object. For ·further details,
see [Ros s8'2b) •

Conclusion

The major motivation for investiga­
ting high-level graphics languages is the
potential of increasing productivity in
writing interactive and passive graphics
programs. All the well-known advantages
of general-purpose high-level languages,
such as ease of learning the language,
writing, debugging, documenting, and
maintaining programs, apply.

Due to the complexity of data in
graphics programming, a higher level of
sophistication should be expected of a
professional programmer. A well-designed
high-level graphics language and certain
programming tools can be of much aid.

Acknowledgements

I am indebted to many of my students
for assistance, ideas, and encouragement
in this work, particularly to Robert
Ross. Financial assistance was granted
from the Natural Sciences and Engineering
Council of Canada (Grant A-5148).

Graphics Interface '83

- 142 -

GRAPHICAL FUNCTION EXTRUD(XSECT,DIREC)
GRAPHICAL XSECT
VECTOR DIREC, OLD, NEW
INTEGER ORDER, PRILEN
EXTRUD : - BLANK
ORDER = PRILEN(XSECT)
CALL LINPNT(XSECT,l,OLD)
DO 10 1=2, ORDER

CALL LINPNT(XSECT,I,NEW)
EXTRUD :- EXTRUD + POLY FROM (OLD) TO

(OLD+DIREC) TO (NEW+DIREC) TO (NEW)
OLD = NEW

10 CONTINUE
RETURN

END
Figure 4

GRAPHICAL FUNCTION REVOLV(XSECT,AXIS1,AXIS2,DEGS,STEPS)
GRAPHICAL XSECT, MDSTR1, MDSTR2, ONEARC
VECTOR AXIS1, AXIS2, NEW1, NEW2, OLD1, OLD2
REAL DEGS
INTEGER STEPS, ORDER, PRILEN
MDSTRl • BLANK <MAP (AXIS1), (AXIS2) TO (0. ,0. ,0.), (0. ,0. ,0.),

ROTZ DEGS/STEPS 'DEG', MAP (0., ° . , ° .), (0., ° . , ° .)
TO (AXIS1), (AXIS2»

ONEARC : - BLANK
ORDER = PRILEN(XSECT)
CALL LINPNT(XSECT,1,OLD1)
CALL APLYMD(MDSTR1,OLD1,OLD2)
DO 10 I = 2, ORDER

CALL LINPNT(XSECT,I,NEW1)
CALL APLYMD(MDSTR1,NEWl ,NEW2)
ONEARC :- ONEARC + POLY FROM (OLD1) TO (NEW1) TO (NEW2) TO (OLD2)
OLDl = NEWl
OLD2 = NEW2

10 CONTINUE
REVOLV :- BLANK
MDSTR2 :- BLANK
DO 20 I = 2, STEPS

REVOLV. REVOLV + ONEARC <MODIFICATION(MDSTR2»
MDSTR2 .- MDSTR2 <MODIFICATION(MDSTR1»

20 CONTINUE

Literature

RETURN
END

Figure 5

(Bart82] Barth, W., J. Dirnberger, and [Ross82a] Ross, R., Language for Interac-
W. Purgathofer, The high-level tive Graphics, Version 6: LIG6
graphics programming language User's Manual, Tech. Rpt.,
PASCAL/ GRAPH, Comput. and Graphics, Department ' of Electrical
6 (1982),109-119. -- Engineering, The University of

[Magn81] Magnenat, N. and D. Thalmann, A British Columbia, Vancouver, B.C.,
graphical Pascal extension based on 1982, 58 pp.
graphical t ypes, Software Prac- [Ross82b] Ross, R. and G.F. Schrack, The
tice and Experience, 11 (1981)~- effectiveness of high-level graphi -
62. cal languages in dealing with

[McLe78] McLean, M.J., A survey of inter- various graphical domains, in:
active graphics software, Aus- D.S. Greenaway and E.A. Warman,
t ral. Comput. J., 10 (1978), 11-22. Eds., EUROGRAPHICS 82, North-

[Requ~Requicha, A:A.G., Representation Holland, Amsterdam, 1982-,-339-356.
for r i gid so l ids: Theory, methods , [vanW81J Van Wyk , C.J., A graphics type-
and systems, ACM Computing Surveys setting language, SIGPLAN Notices ,
12 (4 : December 1980), 437-464. 16 (June 1981), 99-107.

Graphics Interface '83

