
- 171 -

Colour Selection, Swath Brushes and Memory Architectures for Paint Systems.

P. Tanner W. Cowan* M. Wein
Division of Electrical Engineering

*Division of Physics
National Research Council of Canada

Ottawa, Ontario, Canada

ABSTRACT

The development of raster graphics based on frame-buffer technology has introduced a new
artists' tool - the computer paint system. With such a system, an artist uses such tools as "instance
brushes", "simulated air brushes", and "simulated acrylic paint" to create an image, using them as he
would a brush on canvas.

This paper describes developments in three aspects of paint systems: colour selection, swath
brushes, and memory architecture. The colour selection technique uses the tablet in a two
dimensional mode, varying hue and saturation integrally. A separate, one-dimensional mode varies
brightness. The swath brush is a brush that affects a swath of the frame buffer in an even and
controlled way. This swath follows the motion of the tablet stylus. With the decreasing cost of
memory, raster systems can be built with a memory architecture specifically suited for paint systems.
This paper. describes an architecture that greatly speeds the read-modify-write pixel operation which
is used so frequently in such systems.

RESUME

Le developpement de l'infographie a quadrillage utilisant la technologie de memoire-image a
donne a l'artiste un nouvel outil: le systeme de peinture informatise. Un tel systeme met a sa
disposition des outils comme des "pinceaux ponctuels", des "pinceaux vaporisateurs simules " et de la
"peinture acrylique simulee" lui permettant de creer une image, un peu comme avec un pinceau sur une
toile.

Le document decrit les perfectionnements de trois aspects des systemes de peinture: la
selection des couleurs, 1es coups de pinceau et l'architecture de memoire. La technique de
selection des couleurs utilise une tab1ette en mode bidimensionnel, faisant varier integra1ement la
teinte et la saturation. Un mode unidimensionnel d1stinct permet de faire varier l'intens1te. Le
coup de pinceau est une operation qui permet d'introduire un trait uniforme et commande dans la
memo1re-image. Le trait suit le mouvement du style de la tab1ette. Etant donne la diminution du
coat des memoires, 11 est possible de fabriquer des systemes a trame dont l'architecture de memoire
est specialement adaptee aux systemes de peinture. Le document decrit une architecture qui accelere
grandement l'operation lecture-modification-ecriture de pixels, s1 frequemment uti1isee dans de tels
systemes.

Graphics Interface '83

1.0 INTRODUCTION

Any paint system is a set of complementary
tools, adding one tool often increases the power
or capibilities of the others. This paEer
describes two new tools as well as the design of
a memory architecture for a raster paint
station. The first tool, described in section
2, is a technique for colour selection one
that assists the user in selecting a desired
colour more easily and quickly. Colour
selection is, of course, integral to the use of
any paint system. Section 3 describes the
second tool, a swath brush. This brush modifies
the display in a more even manner than does the
more common instance brush, and supports such
effects as transparent brushes and brushes that
combine transparency with tint paint or value
paint. Paint systems make very special use of
the frame buffer system on which they reside.
In particular, the pixel-blending (the combining
of an input colour with the current pixel
colour) of many brush types taxes the resources
of most frame-buffer systems. With memory costs
going down, a memory architecture designed
specifically to support pixel-blending 1n
particular, and paint systems in general now
becomes feasible. Such a design is described 1n
Section 4.

1.1 Paint Systems

A paint system, given an input such as the
path of a tablet stylus or a mouse, modifies
pixels in a frame-buffer on or about that path.
Typically, the user defines a "brush" as a
specific coloured pattern.

Figur e 1. A brush ha s been "rubber stamped" on
the "canvas " six times. The long
streak i s the s ame brush brushed over
the s ur f ace of t he table t.

- 172 -

The artist may then "rubber stamp" this brush at
will anywhere on his "canvas" (display screen)
with the tablet pen (Figure 1). By moving the
pen along the surface of the tablet, the artist
can make a series of brush instances (also in
Figure 1). Notice in this figure that the
spacing between instances varies because the
speed that the artist paints is too fast for the
host computer. This problem of speed will be
discussed in more detail in both sections 3 and
4.

Basic to many paint system capabilities is
the concept of pixel blending - the blending of
the pixel colour of a brush with the original
frame buffer pixel colour. Whenever a brush is
rubber-stamped into a frame-buffer, the
resulting image is a function of both the
current pixel values in the frame buffer and the
pixel values of the brush. If a brush were to
have a transparency component of 0.2, each pixel
that is written during the stamping operation
would have a final value of 0.2x(brush pixel
value) + (1.O-0.2)x(original pixel value). The
brush colours are blended with the background
colours so as to make the brush appear
transparent. Figure 2 gives an example of the
brush in Figure 1 being stamped on different
coloured backgrounds in non-transparent mode
(top corners), stamped in transparent mode (each
non-black quadrant), and brushed in transparent
mode in the centre. Notice that the result of
the brush is quite different depending on which
colour it is combined with.

Figure 2. A transparent brush stamped and
brushed onto different coloured
backgrounds.

There are many other paint effects that can
be obtained by taking functions of the brush
colour and t he current pixel colour . For
example, TINT paint uses the hue a nd saturation
of the brush while leaving the intensity of the
pi xel untouched. Inversel y , a VALUE brush sets

Graphics Interface '83

the pixel to the intensity or value of the brush
while not affecting the colour (hue and
saturation) of the pixel. Both of these
techniques can be combined with the transparency
function so that a stroke of the brush will
produce a subtler effect. Other brush functions
blend colours from a neighbourhood around the
brush in such a way as to simulate a smearing
effect. Alvy Ray Smith describes a large set of
painting techniques in an excellent paper on his
own paint system [Smit78a].

1.2 Applications

Television studios, conventional and
experimental animation studios and graphics
design artists can all make use of paint
systems. Initially, these systems were
developed for artists to paint background images
for computer animated films. The foreground
animation made use of two-dimensional key frame
or three-dimensional geometric modelling
techniques. Of course, richly coloured painted
images contrasted with the structurally more
complicated, but simply coloured animated
objects. As the idea of mapping shaded images
onto three-dimensional geometric shapes has been
around sice 1976 [Blin76], it was a logical step
to take painted images and map these onto
three-dimensional geometric objects. Perhaps
the most familiar examples of such mappings are
the planets and moons in Jim Blinn's films made
at JPL for NASA [Blin80, Blin8l, Blin82].
Another application is the use of a painted
image for texture control [Blin78]. This
texture control can be mapped onto a
three-dimensional object so as to vary the
intensity of light reflecting from the object,
thereby giving it an apparent texture.

Commercially, paint systems are
used in the advertising business.
or frames of video, after they
digitized, can be manipulated and
the same way as a painted image.
synthetic images may be combined.

frequently
Photographs
have been
modified in

Real and

A newer, but little used application of the
paint program is direct animation. ~ach frame
of an image is either painted separately, or
created by modifying another frame by
overpainting. This process, although time
consuming, has the potential for quite stunning
sequences.

2.0 COLOUR SELECTION.

In a paint program the brush
colour of an area of the screen.

changes the
Associated

- 173 -

with the brush is a target colour, which may be
the final colour of the area, or which may be
used in deriving the final colour, as with pixel
blending. Somehow, the artist must choose the
colour.

2.1 Colour Selection Desiderata.

A colour selection program should have as
many of the following properties as possible:

1. Completeness - It should make available
the full gamut of colours. This means
not only fully-saturated colours, but
also colours that are arbitrarily close
together. If 4,000,000 colours are
available, each should be individually
selectable.

2. Predictablity - The artist should be
able easily to predict which operations
are needed to get to any new colour.

3. Transferability The artist should
easily know from the selection process
how the colour will look in the image.
Deficiencies in transferability occur
most often because of contrast effects
[Goet82], which happen when the colour
has a different environment in the
image than it does during the selection
process.

4. Simplicity Colour selection is a
small part of a large program; its
operation should be kept as simple as
possible.

Most colour selection schemes fail to provide
one or more of these features. To be fair,
however, we should note that traditional artists
media: paint, etc., also fail to provide them
all.

2.2 Current Colour Selection Hethods.

Two methods are currently in wide use for
colour selection. The first is the palette
type. Small patches of a variety of colours are
visible to the artist, who uses a pick operation
to select one of them. This method is
predictable and simple. It has reasonable
transferability, since the colour patch is
surrounded by a variety of colours in the
palette, as it is in the image. ~ut, except for
systems with small «100) numbers of colours
available, it is seriously incomplete. One
solution is to introduce a hierarchy of

Graphics Interface '83

palettes, each containing a narrower range of
colours separated by smaller steps. Note: if
4,000,000 colours are made available in a 32
colour palette, at least five levels of
hierarchy are needed. Such solutions, to create
completeness, eliminate simplicity. They also
lessen transferability, since colours in the
palette are now all very similar.

The second uses one or another colour order
scheme. The artist sees three indicators which
show the current value of each dimension of the
chosen scheme (RGB, HSV, etc.); he also sees a
patch of colour produced by the values. Three
valuators change the values until the artist
sees the colour he wants. This method is
complete and simple, though less so than the
palette. It is, however, unpredic.table,
primarily because all three controls must be
altered for a general colour change. It is
difficult to learn how to get around. HSV is
easier than RGB [Smit78b], but, in our
experience, both require considerable learning.
It is deficient in transferability. The
selection area has a black background, so that
when the colour is moved to the image, where it
is surrounded by other colours, large changes in
appearance can occur [Goet82]. Brown, olive,
and navy blue colours present particular
difficulties.

2.3 A New Colour Selection Method.

Our new method, a variety of colour order
scheme, is based on the distinction between
separable and integral properties. Properties
are separable if they are perceived
independently, as are the redness and squareness
of a red square. They are integral if they are
perceived as different dimensions of a unitary
percept, as are the hue and saturarion of a red
square. ([Garn82] and [Garn70] give more
detailed explanations of this distinction.)
Clearly, the three dimensions of a colour (RGB,
HSV, XYZ , etc.) are integral; we should vary
colours using a peripheral device having three
integral dimensions. ~ut, to keep a paint
program simple we are constrained to use an
already given device for colour selection,
usually a digitizing tablet, which has two
integral dimensions. Fort unately, the
brightness dimension (we are speaking roughly,
so this is about the same as luminance, value,
lightness, etc) is relatively separable. Thus,
we use a one-dimensional valuator to control
brightness and a two dimensional one to control
the two conjugate dimensions (roughly,
chrominance, hue-saturation, etc.). ~ach is
implemented as a mode of the digitizing tablet,
so that to select a colour the artist varies

- 174 -

brightness, then chrominance, then brightness,
and so on.

Using C syntax for illustrative purposes,
the transformation from these coordinates to the
RGB colour space of the monitor is the
following. First, in brightness mode,

for red, green, and blue guns
voltage [gun] *- (1.0 + delta / SCALEl);
voltage[gun] a max(LOWERLIMIT,

min(UPPERLIHIT, voltage[gun]»;

where delta is the valuator change, and SCALEl
is a scaling factor. UPPERLIMIT prevents the
voltage from exceeding the range of the system;
LOWERLIMIT from falling below a finite value
(low enough to be below the black-clamping level
of the monitor). The effect of these limits is
to cause saturated colours
white (black) corner of
(along maximum saturation
brighter/dimmer.

to converge to the
the RGB colour cube

.faces) as they get

In the chrominance mode

voltage[red] +- deltax / SCALE2;
voltage[red] ~ max(O, min(UPPERLIHIT,

voltage [red]);
voltage[green] +- deltay / SCALE2;
voltage[green] a max(O, min(UPPERLIMIT,

voltage[green]);
voltage[blue] = voltage_sum - voltage[red]

- voltage[green];

where deltax/deltay is the valuator change in
the x/y direction, and voltage sum is the sum of
the three voltages, which is held constant in
the chrominance mode. The blue voltage must
also be kept between 0 and UPPERLIMIT. The
method we chose translates the red and green
voltages along · a 45 degree line (in the
red-green plane) until they reach the line where
voltage_sum is a constant.

if (voltage[blue] < 0)
voltage[blue] = 0;

else if (voltage[blue] > UPPERLIMIT)
voltage[blue] a UPPERLIMIT;

voltage[red] = (voltage sum - voltage[blue]
+ voltage[red] - voltage[green]) / 2;

voltage[green] a voltage sum - voltage[blue]
- - voltage[red];

This algorithm puts red, yellow, green, and blue
colours in the four corners of the digitizing
tablet. They are arranged in a hue circuit,
with white in the middle, as suggested by
opponent-colours theory [Hurv81] . Brightness is
not held exactly constant in this adjustment
mode. Gamma correction and calibr ation of the
monitor would be needed to do so, as well as

Graphics Interface '83

considerable knowledge of visual system
function. Our experience suggests, indeed, that
constancy of brightness is unimportant. What
does matter is the hue circuit, and constancy of
chrominance under brightness adjustment.

Informal experiments with this algorithm
users are asked to match a variable colour to a
fixed one - shows that inexperienced users are
able rapidly and reliably to find the colour
they want with only a few minutes learning.
Users experienced with either RGB or HSV comment
on the ease of use of this system.

This algorithm makes colour control
complete, simple, and predictable. However,
transferability can still be a problem, and some
difficult colours - browns, olives, navy blues -
are hard to find. Surrounding the colour
selection area with a grey-white region improves
these problems. Contrast makes the difficult
colours easy to find, and transferability is
eased, since the surrounding region is, in a
rough way, an average of possible surroundings
the colour will have in the image.

2.4 Future Considerations

Several issues in colour selection remain
worth investigating. One is colour selection in
the image. Might the artist draw an area in the
image, then change its colour in situ? Such a
process, since shading should remain as the
colour changes, would require novel blending
algorithms. It is unclear how useful such a
feature would be to the artist.

A second problem area concerns colour
reference schemes. Colours are referred to by
monitor-related systems (RGB, HSV, etc.), by
light-related systems (XYZ, CIELab, etc.), and
by object-related systems (Munsell, etc.). We
do not know how the object-related system which
the artist tries to reproduce compares to the
monitor-related system which is his medium.
Further improvements in colour selection must
rest on better knowledge in this area.

3. 0 SWATH BRUSHES

One traditional method of computer painting
is the rubber stamp approach. A "brush" is
defined which is a small, arbitrarily shaped
area of pixels, with each pixel having an
associated colour. The user can then, by
positioning the tablet tracker on the screen,
cause one instance of the brush to appear on the
screen with each push of the tablet pen. Moving

- 175 -

the pen, while applying downward pressure, will
cause a series of instances of the brush.
Smooth area filling brushes are often
implemented in this fashion - Figure 3 shows the
outlines of several instances of a circle brush
as it is brushed along a path. Figure 4 shows
the result - an area similar to the shape of the
path, filled in with some colour.

!L /< " .o::r:f-I 1,\ IV , 1"'\
'IT lA 1 I ""'~ 1 \ \ Il-. ~ ./ I1 I1

N~ ~ ~I ,
::::I r->~ ,/ / o::::!

Figure 3. A series of instances of a circular
brush.

Figure 4.

:! •. -' ,:' '!

The area filled by the brush stroke
of Figure 3.

I

This method becomes less than ideal when a
pixel blending brush is being used. Consider
the example in which the brush of Figure 3 adds
10% of its colour (colour A) to 90% of the
existing colour in the pixel. In this case,
every pixel centre-point surrounded by one
instance of the brush will be 10% colour A. If
the pixel is affected by two instances of the
brush, it contains 19% colour A (not 20% due to
the compounding effect). Figure 5 shows the
percent of colour A in the various pixels.
Notice the extreme unevenness of the result.

One method used to give the artist control
to produce a smoother brush effect is to make
the transparency of the brush vary with the
distance from its centre. Applying a
convolution function to the transparenc y, so
that the brush is somewhat opaque in the centre,
and fades to total transparency around the edge,
yields the effect we see in Figure 6 . This is
indeed a smoother result, but improvements can
still be made. The swath of colour made with a

Graphics Interface '83

variable intensity brush varies with the
frequency of writing brush instances into the
frame buffer. In Figure 3, the brush instances
at the left are more frequent than those closer
to the centre. This may be due to the varying
speed of the artist's hand or perhaps
competition from other jobs on a time sharing
system. Intensity variation due to the speed of
the brush may at times be acceptable, although
often an artist would require a more consistent
result. Effects due to the loading of the
system should always be avoided.

10 10 10 10 19 10 10

10 19 19 19 19 10 19 19 19 10 10

1934 2712.1 1919 10 19 19 19 10 19 19 19

1027 27134 1919 10 10 1910 10 19 19 19 2727 19

10 19 2727 19 1019 2 34 27 19 19

10 10 1027 1919 19

1910

Figure 5. Percentage of brush colour blended
into each pixel using a brush of
constant transparency.

4 5 4 5 8 5 4

3 5 12 13 11 9 13 12 11 6 5

10 14 2021 13 11 9 13 12 12 9 11 9 4

5 1924 2817 10 4 5 7 5 11 11 "
14 19 18 10

I 5 13 231" 11 7 7 15 19 2416 5

5 10 5 15 19 13 5

10 5

Figure 6. Percentage of brush colour blended
into each pixel using a brush that is
more transparent around the edges.

A brush that affects a swath of pixels in
an even and consistent manner can be implemented
as a series of vectors, each vector exactly one
pixel away from the next in a horizontal or
vertical direction (figure 7). Each vector can
then be plotted with pixel blending, by the
software or firmware of the frame buffer
processor.

In more detail, the algorithm wo rks as
follows.

1. The first tablet value (xl, y1, status)
is read (if the pen is not depressed,
the value is of course ignored and step
1 is repeated).

- 176 -

I~ 5

LA; I\! 7 5 5 ~ ~~
\ 5 5Y id.. 10 7 7 t7 -.1..iJ./ 5

r~ 7 7 !P' 7 7 10 10 rill' """'1..1c 7 5' 5

10 10;V 5 5 7 7 1;- ...z...7 ,''' 10 7 7 ~

7 7 i 5 5 ~ Af.5 7 10 ~
'1:. 5 7 7

5' 5

Figure 7. Swath brush example showing
percentage of brush colour blended
into each pixel.

2. The second tablet value (x2, y2,
status) is read. A set of vector
endpoints perpendicular to (x1,y1)
(x2,y2), is formed (the leftmost dashed
line in Figure 7).

3. The next tablet value i s read. (Note
that nothing appears on the screen
until three values are read.) We now
have two control vectors (xl,y1)
(x2,y2) and (x2,y2) (x3,y3). If these
vectors have a similar slope, a set of
vector endpoints is found along a line
roughly bisecting the two vectors (ie.
the second dashed line in Figure 7).
If the two vectors do not have a
similar slope, the y are treated as two
distinct line segments (Figure 8a).
Treating these vectors similarly to
smooth vector pairs would result in
long pointed spears being drawn along
the bisecting line (see Figure 8b).

The lines parallel to the control vector
must be precisely an integral number of pixels
away from the control vector in either a
horizontal or vertical direction, or a few odd
pixels will remain between pairs of vectors, or
be affected by two vectors. The routine for
finding the vector endpoints must do this very
precisely.

The implementation of the swath brush has
been simulated on a PDP 11 running a Norpak
VDP1. The authors are c urrently in the process
of moving it to a M68000 which talks directly to
the CBUS of the VDP1. We hope to get artists'
opinions of the swath brush concept during the
summer of 1983.

Graphics Interface '83

/

/

/

~------------------------------~~."

Figure 8. Sharp changes in slope cause line
segments to be treated as separate
strokes (top), or else long painted
coloured areas result (bottom).

4.0 MEMORY ARCHITECTURE FOR PAINT SYSTEM

As described earlier in this paper, paint
programs make extensive use of pixel blending -
the writing of a colour into a pixel so that the
resultant colour is some function of both the
input colour and the colour originally in the
frame buffer. With many raster frame buffers,
this is a slow process. For each pixel to be
modified, the value (24 or more bits) is read
from the frame buffer into the host. Then the
pixel blending function is applied, and the
resulting value is written back into the frame
buffer. This method can be unacceptably slow
due to the time taken to initiate and process
the data transfers between the host and the
memory .

The performance of frame buffers is
affected not only by the bandwidth of the data
path between the host and the frame buffer, but
also by the intrinsic bandwidth of the frame
buffer. The intrinsic bandwidth is limited by
the contention between host access and the

- 177 -

display update. Ironically, the larger 64K by 1
bit memory circuits offer lower bandwidth than
the older 16K by 1 bit memories, because fewer
are used to implement a given resolution.
However, the emergence of the newer 16K by 4
memory circuits will improve the intrinsic frame
buffer bandwidth.

The following discussion compares the
various ways frame buffers have been driven from
the host computer. As well, a scheme is
proposed in Section 4.5, as a way of solving
some of the system problems and at the same time
reducing the demand for high intrinsic
bandwidth.

4.1 Frame Buffer Memory In The Address Space Of
The Host.

This approach of placing the frame buffer
memory in the address space of the host has been
going in and out of fashion over the last 15
years, first with caligraphic displays, then
with raster displays. Many early caligraphic
display processors were designed such that the
processor traversed the display list in the host
main memory. Early frame buffers were also
designed to have the pixel memory in the address
space. A lack of address space on 16 bit hosts
has led designers to "fold" the frame buffer
space into 64KB of the memory space.
Consequently at any time only vertical strips of
the image were mapped into the host address
space.

With the increasing complexity of operating
systems, the direct mapped frame buffer has
dropped from favour. However, the renewed
interest in such an architecture has been
stimulated by the emergence of powerful
micro-processors such as the MC68000 used as
dedicated hosts. In this way, one is
re-implementing the dedicated host of is years
ago but now on a micro. Such a wheel of
reincarnation has been described by Myer
[Myer68).

4.2 Frame Buffer On A Small Mini (PDP11/34 Or
PDP11/45 Class) Using A Programmed I/O Full
Duplex Channel.

This arrangement involves a frame buffer
connected to the host using a bidirectional
programmed interface. In such an interface the
paint program has access to a set of
input/output registers containi ng data for
defining one pixel value: <R, G, B, row, col,
control>. By writing to these registers, the

Graphics Interface '83

program has random read/write access to the
frame buffer, one pixel at a time. Im most
operating systems it is necessary to grant
access privileges to the paint program to permit
direct I/O commands from the program.
Functionally, there is great similarity between
this architecture and one in which the RGB pixel
memories are actually in the address space of
the processor (described in 4.1). The
read/modify/write cycle is entirely programmed
either in the paint process itself or as a
separate spawned process.

4.3 A Frame Buffer On A DHA Channel

The third approach uses a conventional DMA
channel between the host and the frame buffer.
Data transfers between the host and the frame
buffer are uni-directional at anyone instant
(half duplex). There is usually an overhead
exceeding 2ms to set up each data transfer.
Typically data blocks being transferred can be
of arbitrary length and the transfer rate is up
to 1 Mbyte/sec. At the very least there should
be commands for transferring pixel rows.
Preferably one would like to have a READ/WRITE
PATTERN command as on Norpak VDPl [Wein79],
permitting the definition of an arbitrary
relative set of pixels called a neighbourhood.
This pixel pattern may be written, or read, by
merely transmitting a reference x,Y. A series
of (RGB) values is then transmitted, one for
each pixel in the pattern. Such a higher level
command construct reduces the number of
individual read requests necessitating reversal
of the direction of transfer, as well it reduces
the amount of positional data communicated.

4.4 Frame Buffer On A DMA Channel
Memory Used As A Cache.

Internal

This approach is a variant of the third
one, described in 4.3, in that the hardware is a
DMA channel interface. However, the entire
master RGB pixel image is kept in' the host
memory so that the painting process operates
entirely in the internal memory. Every 50ms, a
process wakes up and detects where the brush has
been in the last 50-ms period and transmits a
convex hull rectangle about the track (or
alternately an arbitrary set of modified pixels
determined in some other way) as a DMA block,
from host to the frame buffer.

This technique has many advantages. Since
a copy of the frame buffer is kept in host
memory, the pixel blending process does not
require reading pixel values back to the host.

- 178 -

Secondly, the display frame-buffer memory has
much less stringent speed and depth requirements
than would be the case without the host buffer.
For example one could conceivably have 3 bits
for each of red, blue and green in the display
memory, while retaining the full 8 bits for each
colour required for pixel blending in the less
expensive host buffer.

4.5 Frame Buffer On A Special Bus Interface
With Host Memory

With the changing price trade-offs for
memory integrated circuits, a memory can be
designed that is particularly suited to the
requirements of a paint station. The main
requirement is, as mentioned above, a rapid
read/modify/write cycle. Our system design for
such a paint station is a hardware
implementation of the approach just described in
4.4. The paint program runs in the host using
main host memory for the RGB pixel data (as
above). However, the main memory is used as a
hardware "write-through" cache memory. An
associative memory controller detects memory
write cycles into that portion of the main
memory which contains the RGB data and arranges
the update of the external RGB frame buffer
through a memory-to-memory transfer. To the
extent that the analogy to a cache is valid, it
is a perfect cache, with a hit ratio of unity.
As with a cache, the access time to the external
memory is longer than to the internal one.
Typically, there is a latency time until a frame
buffer write cycle is available, so that the
associative controller mantains a queue of
transfer cycles which are executed as frame
buffer cycles become available.

There is an alternative way to describe the
achitecture. There are two memories: the image
memory (frame buffer) controlling the screen and
the host memory containing the same (or perhaps
more complete) pixel data. The image memory is
overlaid on the host memory, such that every
address in the frame buffer memory also exists
in the host memory. In microcomputer
architectures, such an arrangement is often
referred as shadow memory, where ROM and RAM are
overlaid.

The proposed system is shown in more detail
in Figure 9. The cache controller monitors the
traffic on the system bus and performs an
address comparison and a translation from
process virtual addresses to physical addresses.
An address of a write cycle falling within the
RGB arrays is identified and decoded into the
primitive components <bank, row, column, pixel >.
While the normal write cycle to host memory is

Graphics Interface '83

executed the corresponding write request with
the decoded information is placed into the
request queue. The latency time to the frame
buffer depends on the detailed design of the
frame buffer. If the access to the frame buffer
is only during the horizontal retrace interval,
that delay could be up to SO microseconds. The
existence of the cache makes it possible to
simplify the frame buffer design and to limit
the access to only the retrace intervals without
jeopardizing performance.

The proposed architecture results in a
redundancy of information: All image data that
exist in the frame buffer memory are replicated
in the host memory. Therefore, pixel reads are
local to the host memory and so are very rapid.
The read/modify/write cycle is rapid as the only
access to the frame buffer is to write the
result. Even this process is placed in a
hardware queue, so as not to introduce host wait
states.

Figure 9. Frame buffer with host memory acting
as a cache.

The technique described here allows the
memory in the f rame buffer to be limited to
perhaps 9 or 12 bits per pixel, while the full
description of the image, with perhaps 24, 32 or
even 48 bits per pixel is available in the host
memory at a considerably l ower cost. Additional
bits i n pixel depth are useful for various paint
techni ques.

- 179 -

5.0 SUMMARY

This paper describes three mechanisms to
improve on currently existing computer paint
stations. Two are techniques, one being a
better tool for colour selection, the other for
applying smooth subtle effects to the canvas.
The third topic is a design for tailoring a
controller/frame-buffer memory system to the
requirements and constraints of a paint ' station.

The paper is very much a working paper in
that it points the way to more work to be done.
Although the two tools have been implemented,
they have not yet been tried out by artists
within the frame-work of a full paint station.
We have yet to see how these tools will
complement other paint system tools once they
are in the "hands" of the artists. The memory
architecture design is just that, a design. We
look forward to its being implemented.

Paint stations present the designer with a
fascinating test bed to tryout new ideas and
techniques. The authors expect to see
considerable development over the next few
years.

1.

2.

References

[Blin76]
Texture
generated
Oct. 1976.

Blinn J.F., Newell M.E.
and reflection in computer

images. CACM 19(10) ,

[Blin78] Blinn J .F.
wrinkled surfaces.
12(3), Aug. 1978.

Simulation of
Computer Graph i cs

3. [Blin80] Blinn J.F. et al. Voyager 2.
JPL Film, available on Siggraph Video
Review I, May 1980.

4. [Blin81] Blinn J .F. et a1. Saturn.
JPL Film, available on Siggraph Video
Review 2, Aug. 1981.

5. [Blin82] Blinn J.F. et aI.

6.

7.

Mlmas/Voyager2. JPL Film, available on
Siggraph Video Review 6, Oct. 1982.

[Garn701 Garner W.R. Felfoldy G. L.
Integra ity of stimuius dimensions in
various types of information
processing. Cognitive Psychology I ,
225-241, 1970.

[Garn82] Garner W.R. The
unanalyzed perceptions.

anal ysis of
in ~c_eptu~~

Graphlc8 Interface '83

8.

9.

10.

11.

Organization, ed . Kubovy & Pomerantz
~frlbawi~sociates), 1982.

[Goet82] Goetz S.M., Beatty J.C.,
Rasquinha D.J. Colour principles and
experience for computer graphics.
Proc. GI'82, 313-322.

[Hurv82] Hurvich L.M. Color Vision
published by Sinauer: ~underland,
Massachusetts, 1982.

[Myer68] Myer T.H., Sutherland I.B. On
the design of display processors. CACM
11(6), 410-414, June 1968.

[Smit78a]
Technical

Smith A.R.
Memo 7,

Paint.
J~y

NYIT
1978.

- 180 -

12.

13.

Reprinted in Two-dimensional Computer
Animation Tutorial, Siggraph '82, pg
44-68, July 1982. Also reprinted in
Tutorial: Computer Graphics (Beatty
J.C~Booth K.S. eds) IEEE -EH0194-1,
PG 501-515, 1982.

[Smit78b] Smith
transform pairs.
12(3), Aug. 1978.

A.R. Color gamut
Computer Graphics

[Wein79] Wein M., Burtnyk N, Davis
W.A., Norton J. A raster display
system for computer graphics and image
processing. 6th Man-Computer
Communications Conference, May 1979.

Graph~s Interlace'83

