
- 11 -

A Parallel Scan Conversion AlI!orithm with Anti-Aliasing
for a General-Purpose '01tracomputer:

Preliminary Report

Eugene Fiume1

Alain Fournier l

Larry Rudolph8

ABSTRACT

Popular approaches to speeding up scan conversion often employ parallel pro
cessing. Recently, several special-purpose parallel architectures have been sug
gested. We propose an alternative to these systems: the general-purpose ultra
computer, a parallel processor with many autonomous processing elements and a
shared memory. The "serial semantics/parallel execution" feature of this archi
tecture is exploited in the formulation of a scan conversion algorithm. Hidden
surfaces are removed using a single scanline, z-buffer algorithm. Since exact
anti-aliasing is inherently slow, a novel parallel anti-aliasing algorithm is
presented in which subpixel coverage by edges is approximated using a look-up
table. The ultimate intensity of a pixel is a weighted average of the intensity con
tribution of the closest edge and that of the "losing" edges. The algorithm is fast
and accurate, it is attractive even in a serial environment, and it avoids several
artifacts that commonly occur in animated sequences.

This paper is a preliminary report and predecessor of [FiFRB3].

RESUME

L'approche la plus courante pour acc~l~rer la conversion en balayage des objets
graphiques employe le traitement en parall~le . Plusieurs architectures d~di~es a.
ce but ont ~t~ propos~es r~cem.ment. Nous pr~sentons ici une autre solution,
l 'ultraordinateur a usage general, form~ de nombreux processeurs travaillant en
parall~le, et d'une memoire partag~e. La principale charact~ristique de ce
syst~me: "semantique en s~rie/execution en parall~le", est exploit~e par la for
mulation d'un algorithme de conversion en balayage. Les surfaces cachees sont
~liminees par un algorithme a memoire de profondeur par ligne de balayage.
Corrune une solution exacte au probl~mes de l'aliasing est assez longue a cal
culer, un nouvel algorithme est pr~sente qui utilise des tables precalcul~es pour
determiner le recouvrement des sous-pixels pour chaque ligne de balayage.
L' intensit~ finale d 'une sous-pixel est la moyenne pond~ree de la contribution du
polygone "gagnant" et de celle des "perdants". Cette technique est rapide et
pr~cise , et pr~sente des avantages meme utilisee avec un seul processeur. Elle
permet aussi d'~viter la plupart des probl~mes rencontr~s en animation.

Ce papier est un rapport preliminaire, est sera deveioppe plus avant dans
[FiFRB3].

KEYWORDS: anti-aliasing, parallel algorithms, ultracomputers, scan conversion,
de pth-buffer, h idden- surface r emoval. c omputational complexity.

1. Computer Systems Research Group, Department of Computer Science, University of Toronto.
Toronto. Omario. M5S IA4. USENET: ut zoo!u t csrgv!elf. u:zoolut csrgv!alain.

2. Carnegie-Me]Jon University. Pittsburgh. PA.

Graphics Interface '83

1. Introduction
The performance of a raster graphics system is
strongly influenced by the inefficiency of scan
conversion. Consequently. the issue of scan conver
sion speed-up has received considerable attention.
Recent papers have proposed high-performance sys
tems containing special-purpose hardware and utilis
ing parallel processing. Parallelism has been realised
in various ways. some of which are:

(1) "Intelligent" VLSI-based memory. This includes
systems such as PIXEL-PLANES. by Fuchs et al. .
[FuPoB1. FPPBB2], the smart memory architec
ture by Gupta et al. . [GuSSB1], and the Rectangu
lar Area Filling Display System Architecture by
Whelan [WheIB2].

(2) Hardware enhancements and graphics engines.
Clark's geometry engine, although not a scan
conversion system. illustrates the latter [ClarB2].
and Whitted's enhanced frame buffer is an exam
ple of t he former [WhitB1]. The proposed systems
of Fussell and Rathi [FuRaB2], and Weinberg
[WeinBl]. are graphics engines.

(3) Special-purpose, multiple-processor proposals.
These systems incorporate special-purpose
hardware to broadcast image descriptions to the
processors. Image memory is often partitioned to
enhance parallelism. Examples are Fuch's central
broadcast c ontroller [Fuch77]. P arke's splitter
tree, and Parke 's splitter tree/ broadcast con
troller hybrid [ParkBO].

Obviously, any parallel-processing scheme should
demonstrably hasten scan conversion. The above pro
posals are no exception. Several issues remain to be
considered. however. First, few proposals address the
a liasing problem. Indeed, anti-aliasing is difficult to
perform on the systems of Fuchs et a.l .. Fussell and
Rathi. Whelan, Fuchs, and Parke. Second, a desirable
goal is t hat display systems exploiting parallelism
s hould a lways exhibit subserial behaviour. Third. it is
not clear that a special-purpose system is t he best
approach if similar computational power is required
for other tasks. It is likely t hat the feasibility of
large- s cale display processors with special-purpose
hardware will coincide with t hat of general-purpose
parallel processors . The ultracomputer. de scribed
b e low, is one such processor. We wi s h to demonstrate
t hat the ultracompute r c a n be a ve r y e ffect ive
"g r aphics e ngine " in its ow n right. Thi s is illustra te d
by pTese n t ing a parallel scan c onvers io n algor ithm
including anti-aliasing . The worst case 'u~ ilaviour or
t he algorithm is subserial. Moreover. i t will be seen
t hat the ultracomputer is useful in solving other com
p utationally intensive tasks .

- 12 -

Not all problems necessarily have faster parallel
implementations. Problems such as scan conversion,
which naturally decompose into a large set of some
what independent subproblems, are good candidates
for parallel processing. The objective of a general
purpose parallel processor design is to maximise the
degree of sub problem independence over a wide class
of tasks. Otherwise. the major advantage of such a
processor over special-purpose systems is lost. In
our ultracomputer model. subproblem independence
is facilitated by a small set of powerful concurrent
operations on shared memory. To each processing
element (PE) of the ultracomputer, a concurrent
operation appears to execute indivisibly. In fact, an
intelligenl, mUlti-stage network cleverly connecls the
PEs to shared memory, and combines all operations
simultaneously directed at a variable inlo one opera
tion. Parallel algorithms are simply expressed, unlike
the often more complicated techniques required to
optimise compulations on vector or pipeline proces
sors. Since the implementation of these operations is
in the connection network, the algorithms below may
be realised on any parallel processor capable of simu
lating the concurrent operations, although the result
ing programs may run more slowly.

Section 2 outlines the basic ultracomputer archi
tecture. A scan conversion algorithm that utilises
this parallel processing model is presented in Section
3. A novel parallel anti-aliasing algorithm is given as
an integral part of scan conversion. Lastly, the major
advantage of an ultracomputer, its generality, is illus
trated by noting other problems to which it can be
applied. This is discussed in Section 4, as are topics
for future research.

2. Ultracomputer Architecture
An ultracomputer is a pa rallel processor composed
of many processing e lements (PEs), which have
multiple-cycle access t o shared memory. Ultracom
puters are a g ood theoretical model of parallel com
putation. Schwartz has made an extensive survey of
this field, summarising various upper and lower
bounds for parallel sorting algorithms, set operations,
matrix mUltiplication, etc. [SchwBO]. However. ultra
c omputers are more t han just a t heoretical model.
Indee d, our ultracomput e r mode l is based on the NYU
Ultracompute r, for w.hi c h a 4096 PE s ystem is
schedul e d fo r compl e ti on by 1990. and va rious
sm L111e r sys t c m s s om c wba t car li e r [GGKM B1]. Our
mOdtl i s Cl vel'y s lig ht extensI on of the NYU model.
incorporating additional concurrent instructions. We
now outline t he featur es of t his system.

An NYU Ultracomputer is composed of N = 2D
autonomous PEs and connected to N shared memory

Graphics Interface '83

modules. Local memory for each PE is provided by
means of a partitioned memory cache. PEs access
shared memory via aD =log 2N -stage connection net
work composed of an NxD array of "intelligent" 2-
input. 2-output switches3• Switch interconnection is
based on Lawries's omega-network [Lawr75]. illus
trated in Figure 1.

'"

III

lOO

1---"'000

001

010

011

100

101

110

P5cure 1. Rrru.ti.ng~" an omega.-nat1uori: for 8 PEA. Connec
tions between PEs. switches. and MlU are by means of a $huffl.-
8%Ch.4nge: IUl object numbered d Id I ••• dD in binary is connected
to the object numbered Q. B • • • Q.o d I in the next stage o! the net
work. If PEs are numbered PO . .. l' I and MMs are numbered
mo ... m I. then a message trlUlsmitted from PO . .. PI to
mo ... m I uses output port,.".. when leaving the i th switch.
Similarly for travelling from MM to PE. The route from PE 5 (1012)

t o MM 2 (0102) is indicated.

The novelty of the NYU design rests in the intelligent
switches. which implement concurrent access to vari
ables in shared memory. For instance. the network
easily realises concurrent fetch or store operations.
The network can also support other more powerful
concurrent operations. Presently. one such instruc
tion is supported: the replace-ad.d., which creates the
illusion of indivisibly adding a value to a shared vari
able. and returning the sum to the requesting PE.
Specifically. the format of the operation is
RepAdd(V.e). where V denotes a shared (integer) vari
able and e is an integer expression. Let V have value
v . Suppose Pe. issues the command
Si =RepAdd(V.et). and PEf issues the command
Sj =RepAdd(V,e;) simUltaneoUsly. Then. assumil1g V
is not simultaneously updated by another PE. either

3.
The entire architecture CIUl b e easily genere1ised t o
N = k 0 PEs and a D = IO!lJ> N -stage network using k
input. k-output switches.

- 13 -

or

Si = v + e,
Si =v+e(+ef.

Si=v+ej+e,;
Sj = v + ef .

and in either case. the new value of V is v+e, +e f .
Note that RepAdd(V.O) is a fetch instruction.

When operations on the same cell in shared
memory meet at a switch. they are synthesised into a
single instruction. This is sen,t to the next stage in the
network within one cycle. Instruction combining can
occur at any stage in the network. Hence of all the
operations simultaneously directed at a single vari
able. V. only one cumulative operation actually
"reaches" V. Thus memory traffic is reduced and net
work bandwidth is increased. Moreover. the proces
sor has the following surprising property: it is partic
ularly efficient when many operations are con
currently issued on a small set of variables. Indeed.
simultaneous update of the same variable by all N PEs
is resolved in O(log N) time. compared to O(N) time
for typical parallel processors using semaphore-like
mutual exclusion. This is a useful property which is
often exploited. For example. RepAdd makes an
effective synchronisation primitive. Moreover. data
structures allowing parallel access are conveniently
implemented using RepAdd. A polygon display list is
nicely represented as a parallel queue. Suppose the
index NextPolygon is used as a subscript into a
polygon list. Then every PE executing
RepAdd(NextPolygon.l) is guaranteed to get a unique
value for N extPolygon.

The standard NYU ultracomputer model supports
the three concurrent instructions described above:
fetch, store. and RepAdd. To realise these operations.
a switch only needs a small amount of memory, and
an adder. Implementation details. together with a
network performance analysis. is found in [GGKM81].
Although these instructions have proved useful for
constructing good paralle l solutions to scientific and
operating system problems. we believe a concurrent.
flexible comparison instruction is needed. Hence we
propose a new concurrent instruction. replace
minimum, or RepMin. It is easily realised by adding a
comparator to each switch. Note that a more general
comparison instruction, although not required for our
purposes. is clearly possible. RepMin is very useful
for scan conversion. Its semantics is defined as fol
lows. Let V denote a cell of shared memory having
value v, and let e be an expression such that both v
and e are pairs (intensity, depth) of values· . Then

4. To make the replace-minimum instruction quite general ,
the extent of the intensity and depth subwor ds could be
controlled by a modifiab le bit-mask stored in each
swit ch. Clearly, the names of the subwords , "intensity"
and "dep"h", are illustrative . In practice . the subwords
could be known by arbitrary n ames.

Graphlc8 Interface '83

RepIlin(V,e,return) causes all of V to be replaced by e
iff e.depth < v .depth. The flag return indicates the
result that should be returned by the operation:
"ReturnNothing", which reduces memory traffic and
increases PE asynchrony, and "ReturnLoser" and
"ReturnWinner". which we shall discuss shortly. The
utility of RepAdd in scan conversion is obvious. Con
sider the following parallelised version of the z-buffer
algorithm found in [NeSp79]. Here, the entire z
buffer is assumed to be addressable as an nxm array
of shared memory. Each PE executes the following.

while polygons remain do becin
S.et P from polygon list (use RepAdd)
Vpixels (x,y) e: P do becin

i := Polygonlntensity(P,x,y)
z := PolygonDepth(P,x,y)
RepIliD((x,y), (i,z), ReturnNothing)

<mod
f!IIIl

Let us now discuss the effect of the return flags
"ReturnWinner" and "ReturnLoser". We only consider
the case where n PEs (O~~N) simultaneously issue a
RepMin for cell V, all with identical return flags.
Informally, a ReturnWinner (ReturnLoser) says "of all
the RepMin's simultaneously directed at V, return a
value that has won (lost) in at least one comparison
with another value". Moreover, in the case of Return
Loser. any value sent by a particular PE is returned
exactly once. Perhaps surprisingly. this is achievable
in the switches. and can be shown by induction on n .

The NYU ultracomputer also presently lacks con
current logical bit operations. The scan conversion
algorithm below makes use of another concurrent
instruction. the RepAnd. This operation has the same
format as the RepAdd. but performs a logical and. of
the arguments instead of an addition. Note that in
principle. only a few Nand gates in each switch would
be required to realise all 16 boolean operations as
concurrent instructions. In general, an instruction
supported by the connection network must be associ
ative. Thus concurrent floating point operations can
not be properly realised5• The serialisation princi
ple is a necessary property of the connection net
work. The network ensures that the effect of simul
taneous operations by the PEs is equivalent to some
serialisation of the operations.

5. In most computers, «IO"-IOCl)+I)" (10"+(-10"+1», for a
large a .

- 14 -

3. A Fast Parallel Scan Conversion Algorithm

3.1. Preliminaries

Our definition of scan conversion is the traditional
one (e.g. [NeSp79]). Given a scene represented by P
simple polygons. determine the set of pixels and their
intensities that best approximates the scene. The
solution. based on the conventional single-scanline z
buffer algorithm. performs hidden-surface removal
and anti-aliasing. Serial scanline algorithms typically
require a YX-sort of polygon spans intersecting with a
given scanline [SuSS74]. However, RepMin allows us
to drop the X sort. The shared memory storing ulti
mate scanline intensities is assumed to be available
to a video controller, by dual-ported memory. for
instance.

3.2. The Algorithm

First we briefly outline the major steps performed by
each PE. As in traditional scanline algorithms. a Y
scanline bucket is employed to determine polygon
segments that enter the scene at scanline y.

(1) Remove bacldacins polygons.

(2) Convert remaining polygons into sets of spcm-4nCU, J .e. tra
pezoidal or triangular regions. Insert each span-area into the
Y-bucket corresponding to its largest y-value. An alternative
to this scheme is to triangulate all polygons. once and for all, as
in (Whit81, FuRa82] (see below).

(3) Scan convert span-areas:
for y := ymin to ymu do

(a) The span-areas from bucket y are inserted into the cu:tiw
span lwt (ASL).

(b) Process active spans for scanline y. Each PE takes a span
from the ASL. f1 the span is large, only a fraction of it is
t aken at a time, thus permitting parallel processing of t he
span. For each pixel in its portion of a span, t he PE com
putes intensity and depth values, and performs a table
look-up to approximate the portion of the pixel covered by
t he span. The left and right endpoints o! the span are then
updated. f1 the span-area is exhausted, it is removed from
t he ASL.

(c) Anti-aliasing. For each non-empty pixel. an approximate
anti-aliasing procedure is performed by determining the
intensity contribution o! the cloaest span, and adding in
the average contribution of t he "losers". The coverage
information computed in step (b) is used in these calcula
tions.

3.2.1. Data Structures

Fbr clarity, we only use static !itorage in shared
memory. Assume there are P input polygons found in
the array InputList. In what follows, let l'< be the
number of vertices in input polygon Pi ' and let V be
the largest such Vi, Assume the PEs are programmed

Graphics Interface '83

in a high-level language such as Pascal or Euclid
which allows programmer-defined data types. Note
that arrays in shar~d memory are possible, since
their starting addresses can be stored in the local
memory for each PE. The names assigned to variables
in shared memory begin with an upper case letter.

(Polygon display list I
InputList: array 1..P of Polygon
Ngon: array l .. P of Polygon
- each polygon P, contains an arTay 1.. V. of (x,y,z).

f Y bucket. Yp gives next available pOsition for scanline y I
Y: matriz yminooymax looPV of SpanArea
Yp : arTay yminooymax of OooP

f Active Span List. S reflects the number of spans. l
ASL: arTay l..PV of SpanArea
S: 1. .PV:= 0

f Some indices l
PolyIn, PolyOut, CUl'l'entSpan: Iutepr

f Locks for synchronisation. Assume they are initialised to 0 I
Lockl, Lock2: OooP := 0

SpanArea: type
record of

yt f top y l
dy f height of span-area I
xl f CUl'l'ent LHS I
xr f current RHS I
xm f IRultiplicity-see below; initially xm=xl-Ml
dxl f A: of LHS I .

dxr f ~ ofRHS l

dyl f ~ of LHS !

dyr f ~ofRHS l
Az

Depthlnfo
Intensitylnfo

eDd

3.2.2. Synchronisation. Initialisation. and Bacldacing
Polygon RemoTal

Since the code in this section is familiar, it is a good
place to illustrate some principles of synchronisation
and initialisation. Assume each PE has access to a
unique identifier in the manifest constant PEid, which
takes on a value between 1 and N. Local variables
begin with a lower case letter. The following code ini
tialises PolyIn and PolyOut, performs synchronisa
tion, and removes backfacing polygons as in [NeSp79,
Appendix Ill]. We assume the poiyguns iu the inpUt lisl
have undergone perspective transformation. The
reader may wish to verify that two locks are neces
sary to have fully reusable locks for synchronisation.

- 15 -

i , j , p : intqer
InputList, Ngon. Lockl, Lock2, PulyIn. PoIyOut: shared.

f The first PE in initialises PolyIn, PolyOut l
if RepAdd(Lockl,l) = I thenPolyIn:= PolyOut:= Lock2;: 0
.bile Lockl < N do (nothingl

f The last PE out resets Lockl for future use!
if Lock2 = N-I then Lock I := 0
RepAdd(Lock2,1)
.bile Lock2 < N do fnothing!

p := RepAdd(PolyOut,I)
.bile p ~ P do bqin

for p~lygon InputList(p], calculate c

c := f; (V[i].x-VU]·x)Mi]·y+VU]·y)
I ~I
",here j=i+l if i<V" ; otherwise j=l

if c so 0 then fthe polygon faces us, add it to Ngonl
Ngon[RepAdd(PolyIn, I)] := InputList(p]

p := RepAdd(PolyOut,l)
eDd

In the average case, each PE processes about PI N
polygons. This algorithm assumes that N <p, since
otherwise those PEs with identifiers greater than P do
no work. The amount of memory traffic this algo
rithm would cause is suboptimal, since polygon defin
itions are moved around, rather than their pointers.
Again, this was done in the interests of clarity.

3.2.3. Decomposition of Polygons into Span-areas

As presented in this paper, the scan conversion algo
rithm presumes the input polygon list has been
decomposed into span-areas: trapezoidal or triangu
lar regions. This idea is not new (see [Lee81, Wein81,
WhWe81]). Unlike polygons, span-areas have a
bounded, concise specification in terms of left and
right edges (e.g. the SpanArea data type above). Thus
span-areas are useful in scanline-oriented algo
rithms. However, desirable properties of trapezoids
such as planarity are not necessarily preserved after
geometric transformations. Consequently, the input
polygon list is preprocessed for each frame . This
additional computation can be circumvented if
polygons are triangulated once and for all, since tri
angles are maintained after geometric transforma
tions (see [FuRa82, Whit81]). The scan conversion
algorithm easily adapts to triangles. but since span
areas are so simple to work with, the algorithm is
presented using span-areas. Both triangles and
span-areas can lead to fragmentation of very small
(pixel-sized) polygons, making anti-aliasing critical.

A maximum of V-I span-areas are generated for
a polygon of V vertices. An O(V 10gV) serial algorithm

Graphics Interface '83

to decompose a s imple polygon into span-areas was
r ecently published [Lee8l] . A straightforward.
polygon-per-PE parallelisation of this a lgorithm

would yield an O(~ log V) average-case running

time. As each span-area is generated. it is inserted
into the Y-bucket corresponding to the largest y value
of the span-area. This can be determined on-the-fly
with no change in the order statistic.

3 .2.4. Scan Conversion
Each PE performs the following scan conversion loop.

for y:=yrnin to ymu do be&in
UpdateASL(y)
lnitialiseScanLine
ScanConvert(y)
<synchronise>

end for

UpdateASL places the contents of bucket Y[y] into the
active span list. All PEs synchronise at the comple
tion of scan conversion for each scanline. This is not
necessary. If sufficient memory is available. the algo
rithm easily generalises to k-scanlines. k ~ 1. We now
consider the scan conversion process in more detail.

proeedure lnit.iaJiseScanLine
lnitialiseXBucket
CurrentSpan := 1

end lnitialiseScanLine

proeedure ScanConvert (y: ymin .. ymax)
span: SpanArea
spanArea: Boolean
X: shared.

GetSpan(span.spanslett)
.. bile spansLeft do begin

V x E: span calculate pixelln!o:
intensity. depth. and coverage mask
Update?ixel (x. pixellnfo)

GetSpan(span,spensLett)
end .. bile
AntiAliasScanline(y)

end ScanConvert

The X bucket contains all required scanline informa
tion. It will be discussed shortly, as will the routines
UpdatePixel and AntiAliasScanline.

GetSpan does the obvious: it returns an unpro
ces sed span t o the scan converter. However. the rou
ti ne is complicated by the fact that we wis h t o get a
subseria l wors t case behaviour. In particular, larg e
spans should receive pcu'all t:! Lrecitr'ilCnt. ~vr other
wise all PEs c ould wait for one PE to complete a long
span. Assume there is a constant M which denotes the
maximum number of pixels in a span that a PE is

- 16 -

allowed to process at a time. This value may be
empirically or theoretically determined, and
represents a good balance between the overhead in
GetSpan and the increased efficiency in parallel pro
c essing of large spans. Multiple copies of a span may
be returned: the index xm is used to indicate the left
most point of the unprocessed portion of the spans.
The following is one possible implementation of
GetSpan. It is somewhat tricky since synchronisation
is required in the unlikely event that two PEs simul
taneously try to get an exhausted span.

procedure GetSpan(flIr span: SpanArea;
YIlr spansLett: Boolean)

gotSpan: Boolean
ASL, CurrentSpan: shared.
M: CoDlltaDt.
newLHS: Integer

spansLeft := true
gotSpan := faboe
.. bile -gotSpan and spansLeft do be&in

span := AS L[Current Spanj
withASL[CurrentSpan) do begin

! calculate new LHS of span, and see if LHS>RHS !
newLHS := RepAdd(xm,M)
gotSpan := newLHS < xr
if -gotSpan then

! if span is exhausted, the first PE edvances CurrentSpllIl !
ifnewLHS-xr < M then RepAdd(CurrentSpan,l)

spansLeft := CurrentSpan SS
end withI..,hile

if gotSpan then span.xm := newLHS
end Get.Span

3.2.5. Anti-aliasing

The aliasing problem is immediately apparent to any
one who has seen synthesised raster images. Various
aliasing a rtifacts are possible in both still and moving
images. An abundant literature describes the prob
lem and some of its solutions. See [Crow?? Crow8l]
for a start. It is thus of prime importance to examine
whether anti-aliasing can be incorporated into our
algorithm. Since we currently compute the pic t ure
scanline by scanline without backtracking over scan
lines . we cannot use any scheme where the va lue at
one pixel depends on t he value of some of its neigh
bours. unless we a rbitrarily privil ege the z di rec
tion?

6. See t he definition of t'Je Sl'anArea data t ype above.
7. The idea is not t otally without merit, since as seen on

:'r ~3..:!'::.::z~ :.c!.:o.-::;;' :.:u. ~ ~ pr.:,du~cs d ecent irn.ages. Nute,
moreover , that a k-scanline version (k > 1) of the algo
r ithm would permit a multiple-pixel anti-aliasing
scheme.

Graphics Interface '83

The best solution under the circumstances is
what we can call the Exact Area Sampling solution.

where the intensity for the pixel is I = t~4 At· At
\

and 4 are the areas ap.d intensities of the visible sur
faces within the pixel. and A is the total area of the
pixeL If colour is used. this formula is used for the
three primaries. As pointed out in [Catm7B]. and
implemented there and in [FuBar79]. this requires a
hidden surface algorithm at the pixelleveL

We can establish a more formal lower bound. by
showing that any algorithm that computes the EAS
can be used to determine the order in a list of n non
negative integers. The reduction is as follows. Given a
list N I.N 2' ... • N .. of numbers. construct a scene with
n rectangles of depth Nt • with the left. top and bot
tom edges coincident with the pixel left. top and bot
tom. and the right edge of rectangle i at Nt . Without
loss of generality. assume that the pixel right edge is
at max (Nt) . The intensity I;. of each rectangle is
D;' - I where D is greater than max(N;.)-min(N,).

The answer to the EAS problem is then:
H x~4 (Nt -Np) where H is the height of the pixel.

\

and Np is the predecessor of Ni in the sorted order.
The predecessor of min(Ni) is O. This transformation
can be done in 0 (n) time. It is clear that the answer.
when expressed as a base D number. contains N, -Np
in the i th digit (from the least significant) . and that
therefore in 0 (n) t ime one can find. for every
number. its predecessor in t he sorted order. Comput
ing the answer to the EAS problem allows sorting with
a 0 (n) t ime transformation. and therefore takes at
least 0 (nlogn) . While this does not prove that i t is
necessary to solve t he hidden surface problem to
solve the EAS problem. this shows that nothing easier
than sorting will do i t. For other results about the
EAS, see [FoFuB3].

In view of this result. we will aim for an approxi
mate solution. Our approach will be to limit the
amount of computation and to utilise parallelism as
m uch a s poss ible .

We subdivide the p ixel into n xn subpixels. It is
c onven ient t o have n a power of 2, for example
n = 23 =8. Fo r each line which intersects a pixel . the
two in t e r section po in t s along the boundaries of the
p ixe l are used as an index into a lookup table, whose
entr ies give t he subpixels covered by t he halfplane
de fi ned by this line. We will call this entry the mask
for t h is halfplane. In our example, t h e mask would be

- 17 -

a 64 bit number. Each intersection with the boun
daries of the pixel is computed with k bits of fraction
(that is 2A: intervals. since 1 is 0 on the next pixel) . It
is convenient, though not required. to have 2A: =n , so
we will assume le =3 in our example. Thus each inter
section can be fully described as a le +2 bit number, 2
bits to identify the boundary, and k bits to give the
position along the boundary (see Figure 2). The total
entry for a line is then a 2(le +2) bit number, in our
example a 10 bit number. This g ives a 1Kx64 bit
table, which is small enough to allow a copy for each
PE. Alternatively. a small number of PEs could
directly share a table . since it is read-only.

t 11 /
ill', \' \ \\~~ :v~

01

r

b la

Code- 1110100011,"'-'"''-'

t 5 1 3

liukw FBFOmaJ80000000
x

The order of the intersections is relevant. since
the line should be oriented. We can adopt a conven
tion that the inside is to the right when going from the
first intersection to the second. The size of the table
can be reduced by making it into a triangular array.
and using an extra bit to indicate the d irection. which
will tell whether to complement the mask or not. The
t.able is of course precomputed, and each bit is on if
the subpixel corresponding to i t is more than half
covered by the halfplane described by t he index.

Of t he four e dg es of a normal span-area, t wo are
horizonta l. anci. are r e lev ant only at t he s tar t and a t
t h e e n d of the ir scanning. For t hese . a small special
lookup t able c an b e used. with the y frac tion used as
th~ ~~~;:A (:..:; tu~!!j" th(: m v3t si.gnifi c ant 3 bits in cur
example). For the other two edges. updating t he
intersection information from pixel t o pixel is fairly
s imple. and requires only a dditions and subt ractions .

Graphics Interface '83

From the definition of the mask • it can be shown
that the mask for a span-area is the and of the masks
of its edges. Thus we get an accurate representation
of the subpixels covered by a given span-area. It is
also easily seen that the mask for the background
(indicating the subpixels where the background is
seen) is the complement of the or of all the span
area masks for this pixel. It is unfortunately impossi
ble to go much farther without making some approxi
mations. The problem is that we do not want to com
pute the Z values at the subpixel resolution. since it
would be tantamount to going to a higher resolution.
Each span-area is then associated with only one Z
value. namely its Z at the centre of the pixel. Given
that. we cannot guarantee that the depth comparison
allows the visible areas to be determined. unless the
planes of support of the span-areas do not intersect
within the pixel (see Figure 3). We will give two
approximation algorithms. and discuss where they
succeed. and where they fail . Let weight (mask) be
the fraction of the pixel covered by a mask (this can
be easily computed by counting the number of one
bits in the mask) . The span-area with the smallest Z
value is called the winner; the others are called
losers .

There are two ways to compute the final pixel
intensity. One way necessitates t he use of an X
bucket to hold pixel information for each span-area
intersecting with the current scanline; a pass over
the content of this bucket would be performed at the
end of the scanline. since the final intensity cannot be
computed until the winner is known. The other
approximation can be computed on-the-fly. and is
almost as accurate as the first. The two methods cal
culate intensities 11 and 12 , respectively. as follows.

I I = fl'imuorCbmp + l.oS8rCbmp I + B:&ckyroWl.dCbmp
12 = Il'imuorComp + l.oS8rCbmp 2 + B:&ckyrounctCbmp

Il'inncrComp = intv, XUlCight (mas.c.., 2-
Ba.ckgrounctCbmp .. Int, XW8ight (AAlIMaslc:r) __
I.oserComp I = Cornct IX)' Int/ XW8ight (maskl Amask,.,)

.tr/ _ "
u,serComp 2 = Corr8ct zX'UlCight (mask,.,)x t:.. /ntj XW8ight (mcuA:1)

-- -- <Ill I
Correct 1 = W8ight (mask& A mask,.,)

2: W8ight (mask/ AmasA:,.,)
all I

Co t w8ight (~6 A~)
rrec 2 =

~ w8ight (maskl)
all I

The subscripts w.l. and b. stand for "winner".
"loser". and "background". respectively. The correc
tion factors are the ratios of the actual coverage by
the losers over the sum of their individual coverage

- 18 -

as computed by each algorithm. Therefore the
correction factors give a measure of the amount of
overlap of the losers, hence of the possible error.

3.2.5.1. F1rst approximate anti-aHasing algorithm.
This solution requires an X bucket. For each pixel,
several additional pieces of information are kept: the
current winner. background data, the losers' inten
sity. and their sum of coverage-mask weights. The
following data structures are used.

I X bucket. Xp contains list of number of span-areas per pisel I
X: matrix xmin •. zmu l .. PV of PizelInfo
Xp: arrayxmin .. zmaz ofO .. PV:= 0

I Additional pisel information I
Pize1s: array zmin .. zmaz of

Winner. Back: PiselInfo
LoeerInt. SumOfWeights: IDtepr

Pi%elInfo: type record of
Depth
Intensity
Mask I coverage mask I

eDd PizelInfo

The ScanConvert routine above executes the following
version of UpdatePixel and AntiAliasScanline. Recall
that each PE executes ScanConvert.

proc:edure UpdatePi%el(%; xmin .. zm.az. pis; Pi%elInfo)
I Add pisel !rom this span into bucket I
XIz.RepAdd(Xp[z).l)) ;= pi%
I pis may be a "winner" I
RepIliD(Pize!s[z).Winner.pi%.ReturnNothins)
I Determine how much of the backsround is covered by pis I
RepADd(Pi%els[z).Back.Mask. pi%.Yask)

eDd UpdatePizel

Graphics Interface '83

proeedure AntiAliasScanline(y; ymin .. ymax)
l[; fnte&er
winner,pa; Pinllnfo

[nitialise Cl[to l[min
while Cl[S %max do bqJiD

f Many PEs work on each pael (i.e. X bucket) I
x ;= RepAdd(Xp[Cx],-1) + 1 ! get pil[ellnfo for span I
winner ;= Pixels[Cx].Winner
while x > 0 do bqJiD

pix;= X[Cx,x]
if pa pt winner then bqm

f pix is a loser, calculate its contribution I
nell'Mask ;= pa.Mask /\ winner . Mask
nell'Intensity;= Weight(newMask) X pix.Intensity
RepAdd(Pil[els[Cxj.LoserInt, newIntensity)
RepAdd(Paels[Cx].SumOfWeights, Weight(newMask»

eDdif
x;= RepAdd(Xp[Cx], -1) + 1

end while
if l[= 0 tJum bqin

f PE that has X=O adds background and losers' contribution I
for Pil[els(Cl[], compute;
c ;= Weight(Back.Mask" W;;;l:-·nn-e-r'.M;-as-;-k')/ SumOfWeights
RepAdd(Winner.Intensity, cXLoserInt + BackIntensity)
RepAdd(Cx,1)

eJ.e sYnchronise fall other PEs waitl
end if

endwhUe
end AntiAliasScanline

3_2.5.2. Second appro%imate anti-aliasing algorithm
No X bucket is required in this solution, We only keep
four pieces of information for each pixel, Winner,
Back. SumOfWeights, and Losers. Winner, Back. and
SumOfWeights are as in the first solution; Losers is
used to keep track of the losers' coverage and inten
sity contributions on-the-fly. The "ReturnLoser" flag
in RepMin is essential.

procedure UpdatePil[el (x; xmin .. %mB][, pil[; Pixellnfo)
loser; Pixellnfo

loser ;= RepIliD(Paels[x],Winner, pix, ReturnLoser)
intensityContrib ;= loser,Int ensity X Weight(1oser,Mask)
RepAdd(Pixels[x].Losers.Intensity, intensityContrib)
RepAncl(Pixels[xj ,BackMask, loser,Mask)
RepAdd(Pixels[l[],SumOfWeights, Weight(pix. Mask»

end UpdatePixel

- 19 -

proceclure AntiAliasScanline(y; ymin .. ymB%)
! each PE handles a pixel, so if N > X, some PEs are idle I
x ;= PEid + xmin - 1
while x < xmax do besin

pa ;= Pixels[xj
! compute background and losers' intensity contribution I
backIntensity ;= Fa.Back.Intensity x Weight(pa.Back,Mask)
c ;= Weight(pa.BackMask/pix.Winner.Mask)/ ~ix .SumOfWeights
loserIntensity ;= pil[,Losers.Intensity x Weight(pil[,Winner.mask) X c
RepAdd(Paels[x].Winner.Intensity, backIntensity+loserIntensity)
x ;=x +N

end while
end AntiAliasScanline

3.2.5.3. Analysis of the appro%imations
These approximations. and indeed all approximations
of this kind. should be characterised in three ways:
when they are right (here right is to be understood
exact within the subpixel resolution). when they are
wrong and how wrong they can be, and when they are
consistently wrong. The last is important. since
aliasing is particularly noticeable in motion. by
cra.wling. scintilla.tion and other annoying
artifacts. If an algorithm computes a wrong shade.
but is consistent as the polygons move. then these
artifacts will be avoided.

Both solutions will be right when there is only
one span-area within the pixel. whether it covers the
whole pixel or not. As long as a span-area covers at
least one subpixel (1 / 64 of a pixel in our example). it
will contribute to the total intensity of the pixel. Both
solutions are also right when none of the span-areas
overlap. This is especially important. since we might
have cut a polygon into numerous small span-areas.
Fortunately we will not have to pay too heavy a price
in aliasing problems. That also means that the prob
lems. if any. will be at the silhouette edges of the
objects. and not against the background, but against
each other. The first solution has the additional
advantage of being right when the winner overlaps
the losers. but the losers do not overlap each other.
The second algorithm will be right in case of overlap
by the winner if the loser coverage ratio is sensibly
the same under the winner than in the rest of the
pixel.

Figures 3 and 4 give examples of wrong cases.
and the errors made by each algorithm. Figure 3
shows the worst case for both algorithms, where the
amount of overlap of the losers and the area they
cover is maximal. Figure 4 shows a case where the
first algorithm is right and the second is wrong .

A gross estimate of the extent of the errors, for

Graphlca Interface '83

Figure 3. Th. worst cas. Jar both algorithms.

ZI<Z2<Z3

Correct Answer ~ 12

12 + 13
Computed Answer = 2

la - 13
Error = -=---::..

2

Figure •. A bad CCU8 Jar a.l.gorith.m 2 only.

Z I<Z2<Z3

11 + la
Correct Answer " 2

11 + la

1

Algorithm 1 " 2

12+13
1 1+-2--

Algorithm 2 " ----2~-

2

103 polygons. covering an average of 103 pixels each,
and with 102 boundary pixels each. on a screen with
106 p ixels. shows that less than 5% of the pixels would
have an error. and that for these the average error
would be less than 10% of the shade of the pixel.

As the polygons move with respect to each other.
we avoid the numerous problems of point sampling.
Since t he wrong cases are computed from averages.
the errors made will not exhibit large discontinuities.
but will be consistent from frame to frame . In the
example of Figure 3, as polygon 3 moves out of the
pixel, its contribution to the pixel intensiLy will go

smoothly

right}.

I
from ?;.~ (which is wrong), to 0 (which is

- 20 -

3.2.6. Discussion

A simulation of this algorithm is plannedB, to demon
strate that the approach works. and to demonstrate a
possible implementation in a pseudo-concurrent
language. The simulation will be written in Con
current Euclid, a language based on Euclid which sup
ports processes and monitors. Scenes for which the
algorithm performs well and poorly will be classified.

The algorithm above has several desirable pro
perties. It is independent of N, the number of PEs in
the ultracomputer. Indeed, the speed of the algo
rithm is inversely proportional to N, up to a lower

bound constant when N ~ -;:. A good serial algorithm

is obtained when N= 1. We emphasise the fact that the
anti-aliasing techniques presented here easily
transfer to serial environments. Another property of
the algorithm is that although it scan converts
polygons, the general approach adapts to other scene
representations (e.g. scanline methods for
parametric surfaces as in [BCLWBO]).

4. Other Ultracomputer Applications and Future
Research
As the plethora of published parallel algorithms
shows [SchwBO]. the ultracomputer is truly a power
ful. general-purpose tool. Fast parallel algorithms
exist for matrix multiplication, sorting, linear pro
gramming, fluid dynamics, etc. We hope to have
demonstrated that the ultracomputer has great
potential in the computer graphics field. Other appli
cations would also significantly benefit from ultra
computer implementation. For instance. a parallel
queue could be exploited to parallelise ray-t.racing
algorithms [WhitBO]. Since the processing of one ray
is a somewhat independent t ask, we believe signifi
cant speed-up in ray-tracing can be achieved on an
ultracomputer. Similarly, we believe many problems
in image processing, signal processing, and artificial
intelligence are likely to benefit.

Several improvements crJllld be made to the
parallel scan conversion algorithm. An issue deserv
ing of attention is space complexity and memory
traffic . By USing dynamically allocated shated
m emory a nd pointe r ~, t h e ctmount of :' to r ag e r equired
would be drastically reduced: moreover, memory
traffic would decrease, since pointers would be

B. See [FiFRB3] for details.

Graphics Interface '83

travelling through shared memory. rather than the
actual values. However. indirect shared memory
references would require two passes through the con
nection network. A solution is to make greater use of
the cache memory local to each PE. A copy of the
static pointers may be placed in the local memory for
each PE. thus saving the O(log N) connection network
cycle time.

5 . Acknowledgements

We wish to thank Johnny Amanatides and Peter
Schoeler for their suggestions. which have improved
the clarity of this paper. The first two authors grate
fully acknowledge the financial support of the Natural
Sciences and Engineering Research Council of Canada.

References

BCLWBO Blinn. J.F .• L.C. Carpenter, J,M, Lane. and T. Whitted, "Scan
line methods for displaying parametrically defined sur
faces", Cbmm. ACM23. 1 (Jan, 1960), 23-34.

Catm78 Catmull. E.. "A Hidden-Surface Algorithm with Anti
Aliasing" , Cbmput8T Graphics (ACM), 12,3. (Aug. 78).6-11.

CJarB2 Clark. J.H" "The geometry engine: a VLSI geometry system
for graphics", Cbmput..r Graphics (ACM) 16.3 (July 1982).
127-134.

Crow77 Crow, F.C" "The Aliasing Problem in Computer-Generated
Shaded Images", Cbmm. ACM20. 11 (Nov. 1977), 799-80:5.

Crori1 Crow. F.C., "A Comparison of Antialiasing Techniques".
IEEE Cbmput8r Graphics and AppLications, I , 1 (Jan. 81),
40-49.

FPPBB2 Fuchs, H .• J. Poulton. A. Paeth, and A. Bell. "Developing
PIXEL-PLANES, a smart memory-based r aster graphics
system", 1982 Cbnf8T8nc8 on Actvanc8ct RIls8arch in VLSI.
MIT, January 1982, 137-146.

FiFRB3 Fiume. E .• A. FoUl"llier, and L. Rudolph, "A parellel scan
conversion algorithm with anti-aliasing for a general
purpose ultracomputer", t o appear in Cbmput8r Graphics
(ACM) 17, 3 (July 1983).

FoFu83 Fournier, A. 8Jld D. Fussell, "On the Power of the Frame
Buffer",

Fu&r79 Fuchs. H. and J. Barros. "Efficient Generation of Smooth
Line Drawings on Video Displays", Cbmput8r Graphics, 13,
2, (Aug. 79), 260-269.

FuPo81 Fuchs. H., and J . Poulton, "PIXEL-PLANES: a VLSI-oriented
design for 3-D ras ter graphics", CMCCS Cbnfer8nc.
Proceectings, (June 1981),343-348.

- 21 -

FuRa82 Fussell. D., and B.D. Rathi, "A VLSI-oriented architecture
for real-time raster display of shaded polygons", Graphics
lnt8rfac8 '82. May 1982, 373-380.

Fueh77 Fuchs. H., "Distributing a visible surface algorithm over
multiple processors", Procnctings of ACM 1977, Seattl e
(Oct. 1977). 449-451.

GGKII81 Gottlieb, A" R. Grishman, C.P Kruskal. K.P . McAuliffe, L.
Rudolph. and M. Snir, "The NYU Ultracomputer-a
general-purpose parallel processor", Technical Report No.
040. Courant Institute, Computer Science Department,
New York University, 1981. t o appear.

CuSSe1 Gupta. S ., R.F. Sproull, and I.E. Sutherland, "A VSLI archi
tecture for updating r aster scan displays" , Cbmput8r
Graphics (ACM) 15,3 (Aug. 1981).71-78.

Lawr75 Lawrie, D.H., "Access and alignment of data in an array
processor", IEEE Tr~a.ctions on Cbmput8rs. C-24. 12
(Dec. 1975). 114:>-1155.

LeeS 1 Lee. D.T., "Shading of regions on vector display devices" ,
Cbmput8r Graphics (ACM) 15,3 (Aug. 1981),37-44.

HeSp79 Newman, W.M., and R.F. Sproull. PrincipL8s of lntaractiv8
Comput8r Graphics, Second Edition, McGraw-Hill, New
York. 1979.

Park80 Parke. F.r., "Simulation and expected performance of
multiple processor z-buffer systems", Cbmput8r Graph
ics (ACM) 14,3 (July 1980),46-56.

Sc:1nr80 Schwartz. J.T., "Ultracom-cuters", Transactions on Pro
gramming LanguagllS anct-SySt8ms (ACM) 2, 4 (Oct. 1980).
484-522.

SuSS74 Sutherland. I.E., R.F . Sproull, and R.A. Schumacker, "A
characterization of t en hidden-surface algorithms", Cbm
puting .9urwys (ACM) 6. 1 (March 1974), 1-55.

W'ein.81 Weinberg , R., "Parallel processing image synthesis and
anti-a1iasing" , Cbmput8r Graphics (ACM) 15, 3 (Aug. 1981),
53-62.

1fhW'e81 Whitted, T., and D.M. Weimer, "A software test-bed for the
develop ment of 3-D raster graphics systems", Comput8r
Graphics (ACM) 15,3 (Aug. 1981),271-277.

1fheI82 Whelan, D.S ., "A rectangular area filling display system
architecture", Cbmputer Gra.phics (ACM) 16,3 (Juiy 1982),
147-153.

Wlrit80 Whitted, T., "An improved illumination model for shaded
display" , Cbmm. ACM 23,8 (June 1980),343-349.

Wlrit81 Whitted, T., "Hardware enhanced 3-D raster display sys
~e'lls", CMCCS Cbnf8renc8 Procnctings , (June 1981), 349-
356.

Graphics Interface '83

