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ABSTRACT 

Popular approaches to speeding up scan conversion often employ parallel pro
cessing. Recently, several special-purpose parallel architectures have been sug
gested. We propose an alternative to these systems: the general-purpose ultra
computer, a parallel processor with many autonomous processing elements and a 
shared memory. The "serial semantics/parallel execution" feature of this archi
tecture is exploited in the formulation of a scan conversion algorithm. Hidden 
surfaces are removed using a single scanline, z-buffer algorithm. Since exact 
anti-aliasing is inherently slow, a novel parallel anti-aliasing algorithm is 
presented in which subpixel coverage by edges is approximated using a look-up 
table. The ultimate intensity of a pixel is a weighted average of the intensity con
tribution of the closest edge and that of the "losing" edges. The algorithm is fast 
and accurate, it is attractive even in a serial environment, and it avoids several 
artifacts that commonly occur in animated sequences. 

This paper is a preliminary report and predecessor of [FiFRB3]. 

RESUME 

L'approche la plus courante pour acc~l~rer la conversion en balayage des objets 
graphiques employe le traitement en parall~le . Plusieurs architectures d~di~es a. 
ce but ont ~t~ propos~es r~cem.ment. Nous pr~sentons ici une autre solution, 
l 'ultraordinateur a usage general, form~ de nombreux processeurs travaillant en 
parall~le, et d'une memoire partag~e. La principale charact~ristique de ce 
syst~me: "semantique en s~rie/execution en parall~le", est exploit~e par la for
mulation d'un algorithme de conversion en balayage. Les surfaces cachees sont 
~liminees par un algorithme a memoire de profondeur par ligne de balayage. 
Corrune une solution exacte au probl~mes de l'aliasing est assez longue a cal
culer, un nouvel algorithme est pr~sente qui utilise des tables precalcul~es pour 
determiner le recouvrement des sous-pixels pour chaque ligne de balayage. 
L' intensit~ finale d 'une sous-pixel est la moyenne pond~ree de la contribution du 
polygone "gagnant" et de celle des "perdants". Cette technique est rapide et 
pr~cise , et pr~sente des avantages meme utilisee avec un seul processeur. Elle 
permet aussi d'~viter la plupart des probl~mes rencontr~s en animation. 

Ce papier est un rapport preliminaire, est sera deveioppe plus avant dans 
[FiFRB3]. 

KEYWORDS: anti-aliasing, parallel algorithms, ultracomputers, scan conversion, 
de pth-buffer, h idden- surface r emoval. c omputational complexity. 
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1. Introduction 
The performance of a raster graphics system is 
strongly influenced by the inefficiency of scan 
conversion. Consequently. the issue of scan conver
sion speed-up has received considerable attention. 
Recent papers have proposed high-performance sys
tems containing special-purpose hardware and utilis
ing parallel processing. Parallelism has been realised 
in various ways. some of which are: 

(1) "Intelligent" VLSI-based memory. This includes 
systems such as PIXEL-PLANES. by Fuchs et al. . 
[FuPoB1. FPPBB2], the smart memory architec
ture by Gupta et al. . [GuSSB1], and the Rectangu
lar Area Filling Display System Architecture by 
Whelan [WheIB2]. 

(2) Hardware enhancements and graphics engines. 
Clark's geometry engine, although not a scan 
conversion system. illustrates the latter [ClarB2]. 
and Whitted's enhanced frame buffer is an exam
ple of t he former [WhitB1]. The proposed systems 
of Fussell and Rathi [FuRaB2], and Weinberg 
[WeinBl]. are graphics engines. 

(3) Special-purpose, multiple-processor proposals. 
These systems incorporate special-purpose 
hardware to broadcast image descriptions to the 
processors. Image memory is often partitioned to 
enhance parallelism. Examples are Fuch's central 
broadcast c ontroller [Fuch77]. P arke's splitter 
tree, and Parke 's splitter tree/ broadcast con
troller hybrid [ParkBO]. 

Obviously, any parallel-processing scheme should 
demonstrably hasten scan conversion. The above pro
posals are no exception. Several issues remain to be 
considered. however. First, few proposals address the 
a liasing problem. Indeed, anti-aliasing is difficult to 
perform on the systems of Fuchs et a.l .. Fussell and 
Rathi. Whelan, Fuchs, and Parke. Second, a desirable 
goal is t hat display systems exploiting parallelism 
s hould a lways exhibit subserial behaviour. Third. it is 
not clear that a special-purpose system is t he best 
approach if similar computational power is required 
for other tasks. It is likely t hat the feasibility of 
large- s cale display processors with special-purpose 
hardware will coincide with t hat of general-purpose 
parallel processors . The ultracomputer. de scribed 
b e low, is one such processor. We wi s h to demonstrate 
t hat the ultracompute r c a n be a ve r y e ffect ive 
"g r aphics e ngine " in its ow n right. Thi s is illustra te d 
by pTese n t ing a parallel scan c onvers io n algor ithm 
including anti-aliasing . The worst case 'u~ ilaviour or 
t he algorithm is subserial. Moreover. i t will be seen 
t hat the ultracomputer is useful in solving other com
p utationally intensive tasks . 
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Not all problems necessarily have faster parallel 
implementations. Problems such as scan conversion, 
which naturally decompose into a large set of some
what independent subproblems, are good candidates 
for parallel processing. The objective of a general
purpose parallel processor design is to maximise the 
degree of sub problem independence over a wide class 
of tasks. Otherwise. the major advantage of such a 
processor over special-purpose systems is lost. In 
our ultracomputer model. subproblem independence 
is facilitated by a small set of powerful concurrent 
operations on shared memory. To each processing 
element (PE) of the ultracomputer, a concurrent 
operation appears to execute indivisibly. In fact, an 
intelligenl, mUlti-stage network cleverly connecls the 
PEs to shared memory, and combines all operations 
simultaneously directed at a variable inlo one opera
tion. Parallel algorithms are simply expressed, unlike 
the often more complicated techniques required to 
optimise compulations on vector or pipeline proces
sors. Since the implementation of these operations is 
in the connection network, the algorithms below may 
be realised on any parallel processor capable of simu
lating the concurrent operations, although the result
ing programs may run more slowly. 

Section 2 outlines the basic ultracomputer archi
tecture. A scan conversion algorithm that utilises 
this parallel processing model is presented in Section 
3. A novel parallel anti-aliasing algorithm is given as 
an integral part of scan conversion. Lastly, the major 
advantage of an ultracomputer, its generality, is illus
trated by noting other problems to which it can be 
applied. This is discussed in Section 4, as are topics 
for future research. 

2. Ultracomputer Architecture 
An ultracomputer is a pa rallel processor composed 
of many processing e lements (PEs), which have 
multiple-cycle access t o shared memory. Ultracom
puters are a g ood theoretical model of parallel com
putation. Schwartz has made an extensive survey of 
this field, summarising various upper and lower 
bounds for parallel sorting algorithms, set operations, 
matrix mUltiplication, etc. [SchwBO]. However. ultra
c omputers are more t han just a t heoretical model. 
Indee d, our ultracomput e r mode l is based on the NYU 
Ultracompute r, for w.hi c h a 4096 PE s ystem is 
schedul e d fo r compl e ti on by 1990. and va rious 
sm L111e r sys t c m s s om c wba t car li e r [ GGKM B1]. Our 
mOdtl i s Cl vel'y s lig ht extensI on of the NYU model. 
incorporating additional concurrent instructions. We 
now outline t he featur es of t his system. 

An NYU Ultracomputer is composed of N = 2D 
autonomous PEs and connected to N shared memory 
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modules. Local memory for each PE is provided by 
means of a partitioned memory cache. PEs access 
shared memory via aD =log 2N -stage connection net
work composed of an NxD array of "intelligent" 2-
input. 2-output switches3• Switch interconnection is 
based on Lawries's omega-network [Lawr75]. illus
trated in Figure 1. 
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P5cure 1. Rrru.ti.ng~" an omega.-nat1uori: for 8 PEA. Connec
tions between PEs. switches. and MlU are by means of a $huffl.-
8%Ch.4nge: IUl object numbered d Id I ••• dD in binary is connected 
to the object numbered Q. B • • • Q.o d I in the next stage o! the net
work. If PEs are numbered PO . .. l' I and MMs are numbered 
mo ... m I. then a message trlUlsmitted from PO . .. PI to 
mo ... m I uses output port,.".. when leaving the i th switch. 
Similarly for travelling from MM to PE. The route from PE 5 (1012) 

t o MM 2 (0102) is indicated. 

The novelty of the NYU design rests in the intelligent 
switches. which implement concurrent access to vari
ables in shared memory. For instance. the network 
easily realises concurrent fetch or store operations. 
The network can also support other more powerful 
concurrent operations. Presently. one such instruc
tion is supported: the replace-ad.d., which creates the 
illusion of indivisibly adding a value to a shared vari
able. and returning the sum to the requesting PE. 
Specifically. the format of the operation is 
RepAdd(V.e). where V denotes a shared (integer) vari
able and e is an integer expression. Let V have value 
v . Suppose Pe. issues the command 
Si =RepAdd(V.et). and PEf issues the command 
Sj =RepAdd(V,e;) simUltaneoUsly. Then. assumil1g V 
is not simultaneously updated by another PE. either 

3. 
The entire architecture CIUl b e easily genere1ised t o 
N = k 0 PEs and a D = IO!lJ> N -stage network using k
input. k-output switches. 
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or 

Si = v + e, 
Si =v+e( +ef. 

Si=v+ej+e,; 
Sj = v + ef . 

and in either case. the new value of V is v+e, +e f . 
Note that RepAdd(V.O) is a fetch instruction. 

When operations on the same cell in shared 
memory meet at a switch. they are synthesised into a 
single instruction. This is sen,t to the next stage in the 
network within one cycle. Instruction combining can 
occur at any stage in the network. Hence of all the 
operations simultaneously directed at a single vari
able. V. only one cumulative operation actually 
"reaches" V. Thus memory traffic is reduced and net
work bandwidth is increased. Moreover. the proces
sor has the following surprising property: it is partic
ularly efficient when many operations are con
currently issued on a small set of variables. Indeed. 
simultaneous update of the same variable by all N PEs 
is resolved in O(log N) time. compared to O(N) time 
for typical parallel processors using semaphore-like 
mutual exclusion. This is a useful property which is 
often exploited. For example. RepAdd makes an 
effective synchronisation primitive. Moreover. data 
structures allowing parallel access are conveniently 
implemented using RepAdd. A polygon display list is 
nicely represented as a parallel queue. Suppose the 
index NextPolygon is used as a subscript into a 
polygon list. Then every PE executing 
RepAdd(NextPolygon.l) is guaranteed to get a unique 
value for N extPolygon. 

The standard NYU ultracomputer model supports 
the three concurrent instructions described above: 
fetch, store. and RepAdd. To realise these operations. 
a switch only needs a small amount of memory, and 
an adder. Implementation details. together with a 
network performance analysis. is found in [GGKM81]. 
Although these instructions have proved useful for 
constructing good paralle l solutions to scientific and 
operating system problems. we believe a concurrent. 
flexible comparison instruction is needed. Hence we 
propose a new concurrent instruction. replace
minimum, or RepMin. It is easily realised by adding a 
comparator to each switch. Note that a more general 
comparison instruction, although not required for our 
purposes. is clearly possible. RepMin is very useful 
for scan conversion. Its semantics is defined as fol
lows. Let V denote a cell of shared memory having 
value v, and let e be an expression such that both v 
and e are pairs (intensity, depth) of values· . Then 

4. To make the replace-minimum instruction quite general , 
the extent of the intensity and depth subwor ds could be 
controlled by a modifiab le bit-mask stored in each 
swit ch. Clearly, the names of the subwords , "intensity" 
and "dep"h", are illustrative . In practice . the subwords 
could be known by arbitrary n ames. 
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RepIlin(V,e,return ) causes all of V to be replaced by e 
iff e.depth < v .depth. The flag return indicates the 
result that should be returned by the operation: 
"ReturnNothing", which reduces memory traffic and 
increases PE asynchrony, and "ReturnLoser" and 
"ReturnWinner". which we shall discuss shortly. The 
utility of RepAdd in scan conversion is obvious. Con
sider the following parallelised version of the z-buffer 
algorithm found in [NeSp79]. Here, the entire z
buffer is assumed to be addressable as an nxm array 
of shared memory. Each PE executes the following. 

while polygons remain do becin 
S.et P from polygon list (use RepAdd) 
Vpixels (x,y) e: P do becin 

i := Polygonlntensity(P,x,y) 
z := PolygonDepth(P,x,y) 
RepIliD( (x,y), (i,z), ReturnNothing ) 

<mod 
f!IIIl 

Let us now discuss the effect of the return flags 
"ReturnWinner" and "ReturnLoser". We only consider 
the case where n PEs (O~~N) simultaneously issue a 
RepMin for cell V, all with identical return flags. 
Informally, a ReturnWinner (ReturnLoser) says "of all 
the RepMin's simultaneously directed at V, return a 
value that has won (lost) in at least one comparison 
with another value". Moreover, in the case of Return
Loser. any value sent by a particular PE is returned 
exactly once. Perhaps surprisingly. this is achievable 
in the switches. and can be shown by induction on n . 

The NYU ultracomputer also presently lacks con
current logical bit operations. The scan conversion 
algorithm below makes use of another concurrent 
instruction. the RepAnd. This operation has the same 
format as the RepAdd. but performs a logical and. of 
the arguments instead of an addition. Note that in 
principle. only a few Nand gates in each switch would 
be required to realise all 16 boolean operations as 
concurrent instructions. In general, an instruction 
supported by the connection network must be associ
ative. Thus concurrent floating point operations can
not be properly realised5• The serialisation princi
ple is a necessary property of the connection net
work. The network ensures that the effect of simul
taneous operations by the PEs is equivalent to some 
serialisation of the operations. 

5. In most computers, «IO"-IOCl)+I)" (10"+(-10"+1», for a 
large a . 

- 14 -

3. A Fast Parallel Scan Conversion Algorithm 

3.1. Preliminaries 

Our definition of scan conversion is the traditional 
one (e.g. [NeSp79]). Given a scene represented by P 
simple polygons. determine the set of pixels and their 
intensities that best approximates the scene. The 
solution. based on the conventional single-scanline z
buffer algorithm. performs hidden-surface removal 
and anti-aliasing. Serial scanline algorithms typically 
require a YX-sort of polygon spans intersecting with a 
given scanline [SuSS74]. However, RepMin allows us 
to drop the X sort. The shared memory storing ulti
mate scanline intensities is assumed to be available 
to a video controller, by dual-ported memory. for 
instance. 

3.2. The Algorithm 

First we briefly outline the major steps performed by 
each PE. As in traditional scanline algorithms. a Y
scanline bucket is employed to determine polygon 
segments that enter the scene at scanline y. 

(1) Remove bacldacins polygons. 

(2) Convert remaining polygons into sets of spcm-4nCU, J .e. tra
pezoidal or triangular regions. Insert each span-area into the 
Y-bucket corresponding to its largest y-value. An alternative 
to this scheme is to triangulate all polygons. once and for all, as 
in (Whit81, FuRa82] (see below). 

(3) Scan convert span-areas: 
for y := ymin to ymu do 

(a) The span-areas from bucket y are inserted into the cu:tiw 
span lwt (ASL). 

(b) Process active spans for scanline y. Each PE takes a span 
from the ASL. f1 the span is large, only a fraction of it is 
t aken at a time, thus permitting parallel processing of t he 
span. For each pixel in its portion of a span, t he PE com
putes intensity and depth values, and performs a table 
look-up to approximate the portion of the pixel covered by 
t he span. The left and right endpoints o! the span are then 
updated. f1 the span-area is exhausted, it is removed from 
t he ASL. 

(c) Anti-aliasing. For each non-empty pixel. an approximate 
anti-aliasing procedure is performed by determining the 
intensity contribution o! the cloaest span, and adding in 
the average contribution of t he "losers". The coverage 
information computed in step (b) is used in these calcula
tions. 

3.2.1. Data Structures 

Fbr clarity, we only use static !itorage in shared 
memory. Assume there are P input polygons found in 
the array InputList. In what follows, let l'< be the 
number of vertices in input polygon Pi ' and let V be 
the largest such Vi, Assume the PEs are programmed 
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in a high-level language such as Pascal or Euclid 
which allows programmer-defined data types. Note 
that arrays in shar~d memory are possible, since 
their starting addresses can be stored in the local 
memory for each PE. The names assigned to variables 
in shared memory begin with an upper case letter. 

( Polygon display list I 
InputList: array 1..P of Polygon 
Ngon: array l .. P of Polygon 
- each polygon P, contains an arTay 1.. V. of (x,y,z). 

f Y bucket. Yp gives next available pOsition for scanline y I 
Y: matriz yminooymax looPV of SpanArea 
Yp : arTay yminooymax of OooP 

f Active Span List. S reflects the number of spans. l 
ASL: arTay l..PV of SpanArea 
S: 1. .PV:= 0 

f Some indices l 
PolyIn, PolyOut, CUl'l'entSpan: Iutepr 

f Locks for synchronisation. Assume they are initialised to 0 I 
Lockl, Lock2: OooP := 0 

SpanArea: type 
record of 

yt f top y l 
dy f height of span-area I 
xl f CUl'l'ent LHS I 
xr f current RHS I 
xm f IRultiplicity-see below; initially xm=xl-Ml 
dxl f A: of LHS I . 

dxr f ~ ofRHS l 

dyl f ~ of LHS ! 

dyr f ~ofRHS l 
Az 

Depthlnfo 
Intensitylnfo 

eDd 

3.2.2. Synchronisation. Initialisation. and Bacldacing 
Polygon RemoTal 

Since the code in this section is familiar, it is a good 
place to illustrate some principles of synchronisation 
and initialisation. Assume each PE has access to a 
unique identifier in the manifest constant PEid, which 
takes on a value between 1 and N. Local variables 
begin with a lower case letter. The following code ini
tialises PolyIn and PolyOut, performs synchronisa
tion, and removes backfacing polygons as in [NeSp79, 
Appendix Ill]. We assume the poiyguns iu the inpUt lisl 
have undergone perspective transformation. The 
reader may wish to verify that two locks are neces
sary to have fully reusable locks for synchronisation. 
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i , j , p : intqer 
InputList, Ngon. Lockl, Lock2, PulyIn. PoIyOut: shared. 

f The first PE in initialises PolyIn, PolyOut l 
if RepAdd(Lockl,l) = I thenPolyIn:= PolyOut:= Lock2;: 0 
.bile Lockl < N do (nothingl 

f The last PE out resets Lockl for future use! 
if Lock2 = N-I then Lock I := 0 
RepAdd(Lock2,1) 
.bile Lock2 < N do fnothing! 

p := RepAdd(PolyOut,I) 
.bile p ~ P do bqin 

for p~lygon InputList(p], calculate c 

c := f; (V[i].x-VU]·x)Mi]·y+VU]·y) 
I ~I 
",here j=i+l if i<V" ; otherwise j=l 

if c so 0 then fthe polygon faces us, add it to Ngonl 
Ngon[RepAdd(PolyIn, I)] := InputList(p] 

p := RepAdd(PolyOut,l) 
eDd 

In the average case, each PE processes about PI N 
polygons. This algorithm assumes that N <p, since 
otherwise those PEs with identifiers greater than P do 
no work. The amount of memory traffic this algo
rithm would cause is suboptimal, since polygon defin
itions are moved around, rather than their pointers. 
Again, this was done in the interests of clarity. 

3.2.3. Decomposition of Polygons into Span-areas 

As presented in this paper, the scan conversion algo
rithm presumes the input polygon list has been 
decomposed into span-areas: trapezoidal or triangu
lar regions. This idea is not new (see [Lee81, Wein81, 
WhWe81]). Unlike polygons, span-areas have a 
bounded, concise specification in terms of left and 
right edges (e.g. the SpanArea data type above). Thus 
span-areas are useful in scanline-oriented algo
rithms. However, desirable properties of trapezoids 
such as planarity are not necessarily preserved after 
geometric transformations. Consequently, the input 
polygon list is preprocessed for each frame . This 
additional computation can be circumvented if 
polygons are triangulated once and for all, since tri
angles are maintained after geometric transforma
tions (see [FuRa82, Whit81]). The scan conversion 
algorithm easily adapts to triangles. but since span
areas are so simple to work with, the algorithm is 
presented using span-areas. Both triangles and 
span-areas can lead to fragmentation of very small 
(pixel-sized) polygons, making anti-aliasing critical. 

A maximum of V-I span-areas are generated for 
a polygon of V vertices. An O(V 10gV) serial algorithm 
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to decompose a s imple polygon into span-areas was 
r ecently published [Lee8l] . A straightforward. 
polygon-per-PE parallelisation of this a lgorithm 

would yield an O( ~ log V) average-case running 

time. As each span-area is generated. it is inserted 
into the Y-bucket corresponding to the largest y value 
of the span-area. This can be determined on-the-fly 
with no change in the order statistic. 

3 .2.4. Scan Conversion 
Each PE performs the following scan conversion loop. 

for y:=yrnin to ymu do be&in 
UpdateASL(y) 
lnitialiseScanLine 
ScanConvert(y) 
<synchronise> 

end for 

UpdateASL places the contents of bucket Y[y] into the 
active span list. All PEs synchronise at the comple
tion of scan conversion for each scanline. This is not 
necessary. If sufficient memory is available. the algo
rithm easily generalises to k-scanlines. k ~ 1. We now 
consider the scan conversion process in more detail. 

proeedure lnit.iaJiseScanLine 
lnitialiseXBucket 
CurrentSpan := 1 

end lnitialiseScanLine 

proeedure ScanConvert (y: ymin .. ymax) 
span: SpanArea 
spanArea: Boolean 
X: shared. 

GetSpan(span.spanslett) 
.. bile spansLeft do begin 

V x E: span calculate pixelln!o: 
intensity. depth. and coverage mask 
Update?ixel (x. pixellnfo) 

GetSpan(span,spensLett) 
end .. bile 
AntiAliasScanline(y) 

end ScanConvert 

The X bucket contains all required scanline informa
tion. It will be discussed shortly, as will the routines 
UpdatePixel and AntiAliasScanline. 

GetSpan does the obvious: it returns an unpro
ces sed span t o the scan converter. However. the rou
ti ne is complicated by the fact that we wis h t o get a 
subseria l wors t case behaviour. In particular, larg e 
spans should receive pcu'all t:! Lrecitr'ilCnt. ~vr other
wise all PEs c ould wait for one PE to complete a long 
span. Assume there is a constant M which denotes the 
maximum number of pixels in a span that a PE is 
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allowed to process at a time. This value may be 
empirically or theoretically determined, and 
represents a good balance between the overhead in 
GetSpan and the increased efficiency in parallel pro
c essing of large spans. Multiple copies of a span may 
be returned: the index xm is used to indicate the left
most point of the unprocessed portion of the spans. 
The following is one possible implementation of 
GetSpan. It is somewhat tricky since synchronisation 
is required in the unlikely event that two PEs simul
taneously try to get an exhausted span. 

procedure GetSpan(flIr span: SpanArea; 
YIlr spansLett: Boolean) 

gotSpan: Boolean 
ASL, CurrentSpan: shared. 
M: CoDlltaDt. 
newLHS: Integer 

spansLeft := true 
gotSpan := faboe 
.. bile -gotSpan and spansLeft do be&in 

span := AS L[Current Spanj 
withASL[CurrentSpan) do begin 

! calculate new LHS of span, and see if LHS>RHS ! 
newLHS := RepAdd(xm,M) 
gotSpan := newLHS < xr 
if -gotSpan then 

! if span is exhausted, the first PE edvances CurrentSpllIl ! 
ifnewLHS-xr < M then RepAdd(CurrentSpan,l) 

spansLeft := CurrentSpan SS 
end withI..,hile 

if gotSpan then span.xm := newLHS 
end Get.Span 

3.2.5. Anti-aliasing 

The aliasing problem is immediately apparent to any
one who has seen synthesised raster images. Various 
aliasing a rtifacts are possible in both still and moving 
images. An abundant literature describes the prob
lem and some of its solutions. See [Crow?? Crow8l] 
for a start. It is thus of prime importance to examine 
whether anti-aliasing can be incorporated into our 
algorithm. Since we currently compute the pic t ure 
scanline by scanline without backtracking over scan
lines . we cannot use any scheme where the va lue at 
one pixel depends on t he value of some of its neigh
bours. unless we a rbitrarily privil ege the z di rec
tion? 

6. See t he definition of t'Je Sl'anArea data t ype above. 
7. The idea is not t otally without merit, since as seen on 

:'r ~3..:!'::.::z~ :.c!.:o.-::;;' :.:u. ~ ~ pr.:,du~cs d ecent irn.ages. Nute, 
moreover , that a k-scanline version (k > 1) of the algo
r ithm would permit a multiple-pixel anti-aliasing 
scheme. 
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The best solution under the circumstances is 
what we can call the Exact Area Sampling solution. 

where the intensity for the pixel is I = t~4 At· At 
\ 

and 4 are the areas ap.d intensities of the visible sur
faces within the pixel. and A is the total area of the 
pixeL If colour is used. this formula is used for the 
three primaries. As pointed out in [Catm7B]. and 
implemented there and in [FuBar79]. this requires a 
hidden surface algorithm at the pixelleveL 

We can establish a more formal lower bound. by 
showing that any algorithm that computes the EAS 
can be used to determine the order in a list of n non
negative integers. The reduction is as follows. Given a 
list N I.N 2' ... • N .. of numbers. construct a scene with 
n rectangles of depth Nt • with the left. top and bot
tom edges coincident with the pixel left. top and bot
tom. and the right edge of rectangle i at Nt . Without 
loss of generality. assume that the pixel right edge is 
at max ( Nt ) . The intensity I;. of each rectangle is 
D;' - I where D is greater than max(N;. )-min(N, ). 

The answer to the EAS problem is then: 
H x~4 (Nt -Np ) where H is the height of the pixel. 

\ 

and Np is the predecessor of Ni in the sorted order. 
The predecessor of min(Ni ) is O. This transformation 
can be done in 0 (n ) time. It is clear that the answer. 
when expressed as a base D number. contains N, -Np 
in the i th digit (from the least significant) . and that 
therefore in 0 (n) t ime one can find. for every 
number. its predecessor in t he sorted order. Comput
ing the answer to the EAS problem allows sorting with 
a 0 (n ) t ime transformation. and therefore takes at 
least 0 (nlogn ) . While this does not prove that i t is 
necessary to solve t he hidden surface problem to 
solve the EAS problem. this shows that nothing easier 
than sorting will do i t. For other results about the 
EAS, see [FoFuB3]. 

In view of this result. we will aim for an approxi
mate solution. Our approach will be to limit the 
amount of computation and to utilise parallelism as 
m uch a s poss ible . 

We subdivide the p ixel into n xn subpixels. It is 
c onven ient t o have n a power of 2, for example 
n = 23 =8. Fo r each line which intersects a pixel . the 
two in t e r section po in t s along the boundaries of the 
p ixe l are used as an index into a lookup table, whose 
entr ies give t he subpixels covered by t he halfplane 
de fi ned by this line. We will call this entry the mask 
for t h is halfplane. In our example, t h e mask would be 
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a 64 bit number. Each intersection with the boun
daries of the pixel is computed with k bits of fraction 
(that is 2A: intervals. since 1 is 0 on the next pixel) . It 
is convenient, though not required. to have 2A: =n , so 
we will assume le =3 in our example. Thus each inter
section can be fully described as a le +2 bit number, 2 
bits to identify the boundary, and k bits to give the 
position along the boundary (see Figure 2). The total 
entry for a line is then a 2(le +2) bit number, in our 
example a 10 bit number. This g ives a 1Kx64 bit 
table, which is small enough to allow a copy for each 
PE. Alternatively. a small number of PEs could 
directly share a table . since it is read-only. 

t 11 / 
ill', \' \ \\~~ :v~ 

01 

r 

b la 

Code- 1110100011 ....... ......,"'-'"''-' 

t 5 1 3 

liukw FBFOmaJ80000000 
x 

The order of the intersections is relevant. since 
the line should be oriented. We can adopt a conven
tion that the inside is to the right when going from the 
first intersection to the second. The size of the table 
can be reduced by making it into a triangular array. 
and using an extra bit to indicate the d irection. which 
will tell whether to complement the mask or not. The 
t.able is of course precomputed, and each bit is on if 
the subpixel corresponding to i t is more than half
covered by the halfplane described by t he index. 

Of t he four e dg es of a normal span-area, t wo are 
horizonta l. anci. are r e lev ant only at t he s tar t and a t 
t h e e n d of the ir scanning. For t hese . a small special 
lookup t able c an b e used. with the y frac tion used as 
th~ ~~~;:A (:..:; tu~!!j" th(: m v3t si.gnifi c ant 3 bits in cur 
example). For the other two edges. updating t he 
intersection information from pixel t o pixel is fairly 
s imple. and requires only a dditions and subt ractions . 
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From the definition of the mask • it can be shown 
that the mask for a span-area is the and of the masks 
of its edges. Thus we get an accurate representation 
of the subpixels covered by a given span-area. It is 
also easily seen that the mask for the background 
(indicating the subpixels where the background is 
seen) is the complement of the or of all the span
area masks for this pixel. It is unfortunately impossi
ble to go much farther without making some approxi
mations. The problem is that we do not want to com
pute the Z values at the subpixel resolution. since it 
would be tantamount to going to a higher resolution. 
Each span-area is then associated with only one Z 
value. namely its Z at the centre of the pixel. Given 
that. we cannot guarantee that the depth comparison 
allows the visible areas to be determined. unless the 
planes of support of the span-areas do not intersect 
within the pixel (see Figure 3). We will give two 
approximation algorithms. and discuss where they 
succeed. and where they fail . Let weight (mask) be 
the fraction of the pixel covered by a mask (this can 
be easily computed by counting the number of one 
bits in the mask) . The span-area with the smallest Z 
value is called the winner; the others are called 
losers . 

There are two ways to compute the final pixel 
intensity. One way necessitates t he use of an X
bucket to hold pixel information for each span-area 
intersecting with the current scanline; a pass over 
the content of this bucket would be performed at the 
end of the scanline. since the final intensity cannot be 
computed until the winner is known. The other 
approximation can be computed on-the-fly. and is 
almost as accurate as the first. The two methods cal
culate intensities 11 and 12 , respectively. as follows. 

I I = fl'imuorCbmp + l.oS8rCbmp I + B:&ckyroWl.dCbmp 
12 = Il'imuorComp + l.oS8rCbmp 2 + B:&ckyrounctCbmp 

Il'inncrComp = intv, XUlCight (mas.c.., 2-
Ba.ckgrounctCbmp .. Int, XW8ight (AAlIMaslc:r ) __ 
I.oserComp I = Cornct IX )' Int/ XW8ight (maskl Amask,., ) 

.tr/ _ " 
u,serComp 2 = Corr8ct zX'UlCight (mask,.,)x t:.. /ntj XW8ight (mcuA:1 ) 

-- -- <Ill I 
Correct 1 = W8ight (mask& A mask,., ) 

2: W8ight (mask/ AmasA:,.,) 
all I 

Co t w8ight (~6 A~ ) 
rrec 2 = 

~ w8ight (maskl ) 
all I 

The subscripts w.l. and b. stand for "winner". 
"loser". and "background". respectively. The correc
tion factors are the ratios of the actual coverage by 
the losers over the sum of their individual coverage 

- 18 -

as computed by each algorithm. Therefore the 
correction factors give a measure of the amount of 
overlap of the losers, hence of the possible error. 

3.2.5.1. F1rst approximate anti-aHasing algorithm. 
This solution requires an X bucket. For each pixel, 
several additional pieces of information are kept: the 
current winner. background data, the losers' inten
sity. and their sum of coverage-mask weights. The 
following data structures are used. 

I X bucket. Xp contains list of number of span-areas per pisel I 
X: matrix xmin •. zmu l .. PV of PizelInfo 
Xp: arrayxmin .. zmaz ofO .. PV:= 0 

I Additional pisel information I 
Pize1s: array zmin .. zmaz of 

Winner. Back: PiselInfo 
LoeerInt. SumOfWeights: IDtepr 

Pi%elInfo: type record of 
Depth 
Intensity 
Mask I coverage mask I 

eDd PizelInfo 

The ScanConvert routine above executes the following 
version of UpdatePixel and AntiAliasScanline. Recall 
that each PE executes ScanConvert. 

proc:edure UpdatePi%el(%; xmin .. zm.az. pis; Pi%elInfo) 
I Add pisel !rom this span into bucket I 
XIz.RepAdd(Xp[z).l)) ;= pi% 
I pis may be a "winner" I 
RepIliD(Pize!s[z).Winner.pi%.ReturnNothins) 
I Determine how much of the backsround is covered by pis I 
RepADd(Pi%els[z).Back.Mask. pi%.Yask) 

eDd UpdatePizel 
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proeedure AntiAliasScanline(y; ymin .. ymax) 
l[; fnte&er 
winner,pa; Pinllnfo 

[nitialise Cl[ to l[min 
while Cl[ S %max do bqJiD 

f Many PEs work on each pael (i.e. X bucket) I 
x ;= RepAdd(Xp[Cx],-1) + 1 ! get pil[ellnfo for span I 
winner ;= Pixels[Cx].Winner 
while x > 0 do bqJiD 

pix;= X[Cx,x] 
if pa pt winner then bqm 

f pix is a loser, calculate its contribution I 
nell'Mask ;= pa.Mask /\ winner . Mask 
nell'Intensity;= Weight(newMask) X pix.Intensity 
RepAdd(Pil[els[Cxj.LoserInt, newIntensity) 
RepAdd(Paels[Cx].SumOfWeights, Weight(newMask» 

eDdif 
x;= RepAdd(Xp[Cx], -1) + 1 

end while 
if l[ = 0 tJum bqin 

f PE that has X=O adds background and losers' contribution I 
for Pil[els(Cl[], compute; 
c ;= Weight(Back.Mask" W;;;l:-·nn-e-r'.M;-as-;-k')/ SumOfWeights 
RepAdd(Winner.Intensity, cXLoserInt + BackIntensity) 
RepAdd(Cx,1) 

eJ.e sYnchronise fall other PEs waitl 
end if 

endwhUe 
end AntiAliasScanline 

3_2.5.2. Second appro%imate anti-aliasing algorithm 
No X bucket is required in this solution, We only keep 
four pieces of information for each pixel, Winner, 
Back. SumOfWeights, and Losers. Winner, Back. and 
SumOfWeights are as in the first solution; Losers is 
used to keep track of the losers' coverage and inten
sity contributions on-the-fly. The "ReturnLoser" flag 
in RepMin is essential. 

procedure UpdatePil[el (x; xmin .. %mB][, pil[; Pixellnfo) 
loser; Pixellnfo 

loser ;= RepIliD(Paels[x],Winner, pix, ReturnLoser) 
intensityContrib ;= loser,Int ensity X Weight(1oser,Mask) 
RepAdd(Pixels[x].Losers.Intensity, intensityContrib) 
RepAncl(Pixels[xj ,BackMask, loser,Mask) 
RepAdd(Pixels[l[ ],SumOfWeights, Weight(pix. Mask» 

end UpdatePixel 
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proceclure AntiAliasScanline(y; ymin .. ymB%) 
! each PE handles a pixel, so if N > X, some PEs are idle I 
x ;= PEid + xmin - 1 
while x < xmax do besin 

pa ;= Pixels[xj 
! compute background and losers' intensity contribution I 
backIntensity ;= Fa.Back.Intensity x Weight(pa.Back,Mask) 
c ;= Weight(pa.BackMask/pix.Winner.Mask)/ ~ix .SumOfWeights 
loserIntensity ;= pil[,Losers.Intensity x Weight(pil[,Winner.mask) X c 
RepAdd(Paels[x].Winner.Intensity, backIntensity+loserIntensity) 
x ;=x +N 

end while 
end AntiAliasScanline 

3.2.5.3. Analysis of the appro%imations 
These approximations. and indeed all approximations 
of this kind. should be characterised in three ways: 
when they are right (here right is to be understood 
exact within the subpixel resolution). when they are 
wrong and how wrong they can be, and when they are 
consistently wrong. The last is important. since 
aliasing is particularly noticeable in motion. by 
cra.wling. scintilla.tion and other annoying 
artifacts. If an algorithm computes a wrong shade. 
but is consistent as the polygons move. then these 
artifacts will be avoided. 

Both solutions will be right when there is only 
one span-area within the pixel. whether it covers the 
whole pixel or not. As long as a span-area covers at 
least one subpixel (1 / 64 of a pixel in our example). it 
will contribute to the total intensity of the pixel. Both 
solutions are also right when none of the span-areas 
overlap. This is especially important. since we might 
have cut a polygon into numerous small span-areas. 
Fortunately we will not have to pay too heavy a price 
in aliasing problems. That also means that the prob
lems. if any. will be at the silhouette edges of the 
objects. and not against the background, but against 
each other. The first solution has the additional 
advantage of being right when the winner overlaps 
the losers. but the losers do not overlap each other. 
The second algorithm will be right in case of overlap 
by the winner if the loser coverage ratio is sensibly 
the same under the winner than in the rest of the 
pixel. 

Figures 3 and 4 give examples of wrong cases. 
and the errors made by each algorithm. Figure 3 
shows the worst case for both algorithms, where the 
amount of overlap of the losers and the area they 
cover is maximal. Figure 4 shows a case where the 
first algorithm is right and the second is wrong . 

A gross estimate of the extent of the errors, for 
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Figure 3. Th. worst cas. Jar both algorithms. 

ZI<Z2<Z3 

Correct Answer ~ 12 

12 + 13 
Computed Answer = 2 

la - 13 
Error = -=---::.. 

2 

Figure •. A bad CCU8 Jar a.l.gorith.m 2 only. 

Z I<Z2<Z3 

11 + la 
Correct Answer " 2 

11 + la 

1 

Algorithm 1 " 2 ... ... .... ... .... ...... ...... 

12+13 
1 1+-2--

Algorithm 2 " ----2~-

2 

103 polygons. covering an average of 103 pixels each, 
and with 102 boundary pixels each. on a screen with 
106 p ixels. shows that less than 5% of the pixels would 
have an error. and that for these the average error 
would be less than 10% of the shade of the pixel. 

As the polygons move with respect to each other. 
we avoid the numerous problems of point sampling. 
Since t he wrong cases are computed from averages. 
the errors made will not exhibit large discontinuities. 
but will be consistent from frame to frame . In the 
example of Figure 3, as polygon 3 moves out of the 
pixel, its contribution to the pixel intensiLy will go 

smoothly 

right}. 

I 
from ?;.~ (which is wrong), to 0 (which is 
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3.2.6. Discussion 

A simulation of this algorithm is plannedB, to demon
strate that the approach works. and to demonstrate a 
possible implementation in a pseudo-concurrent 
language. The simulation will be written in Con
current Euclid, a language based on Euclid which sup
ports processes and monitors. Scenes for which the 
algorithm performs well and poorly will be classified. 

The algorithm above has several desirable pro
perties. It is independent of N, the number of PEs in 
the ultracomputer. Indeed, the speed of the algo
rithm is inversely proportional to N, up to a lower 

bound constant when N ~ -;:. A good serial algorithm 

is obtained when N= 1. We emphasise the fact that the 
anti-aliasing techniques presented here easily 
transfer to serial environments. Another property of 
the algorithm is that although it scan converts 
polygons, the general approach adapts to other scene 
representations (e.g. scanline methods for 
parametric surfaces as in [BCLWBO]). 

4. Other Ultracomputer Applications and Future 
Research 
As the plethora of published parallel algorithms 
shows [SchwBO]. the ultracomputer is truly a power
ful. general-purpose tool. Fast parallel algorithms 
exist for matrix multiplication, sorting, linear pro
gramming, fluid dynamics, etc. We hope to have 
demonstrated that the ultracomputer has great 
potential in the computer graphics field. Other appli
cations would also significantly benefit from ultra
computer implementation. For instance. a parallel 
queue could be exploited to parallelise ray-t.racing 
algorithms [WhitBO]. Since the processing of one ray 
is a somewhat independent t ask, we believe signifi
cant speed-up in ray-tracing can be achieved on an 
ultracomputer. Similarly, we believe many problems 
in image processing, signal processing, and artificial 
intelligence are likely to benefit. 

Several improvements crJllld be made to the 
parallel scan conversion algorithm. An issue deserv
ing of attention is space complexity and memory 
traffic . By USing dynamically allocated shated 
m emory a nd pointe r ~, t h e ctmount of :' to r ag e r equired 
would be drastically reduced: moreover, memory 
traffic would decrease, since pointers would be 

B. See [FiFRB3] for details. 
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travelling through shared memory. rather than the 
actual values. However. indirect shared memory 
references would require two passes through the con
nection network. A solution is to make greater use of 
the cache memory local to each PE. A copy of the 
static pointers may be placed in the local memory for 
each PE. thus saving the O(log N) connection network 
cycle time. 
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