- 11 -

A Parallel Scan Conversion Algorithm with Anti-Aliasing
for a General-Purpose Ultracomputer:
Preliminary Report

Eugene Fiume!
Alain Fournier!
Larry Rudolph?

ABSTRACT

Popular approaches to speeding up scan conversion often employ parallel pro-
cessing. Recently, several special-purpose parallel architectures have been sug-
gested. We propose an alternative to these systems: the general-purpose ultra-
computer, a parallel processor with many autonomous processing elements and a
shared memory. The "serial semantics/parallel execution” feature of this archi-
tecture is exploited in the formulation of a scan conversion algorithm. Hidden
surfaces are removed using a single scanline, z-buffer algorithm. Since exact
anti-aliasing is inherently slow, a novel parallel anti-aliasing algorithm is
presented in which subpixel coverage by edges is approximated using a look-up
table. The ultimate intensity of a pixel is a weighted average of the intensity con-
tribution of the closest edge and that of the "losing” edges. The algorithm is fast
and accurate, it is attractive even in a serial environment, and it avoids several
artifacts that commonly occur in animated sequences.

This paper is a preliminary report and predecessor of [FiFR83].

RESUME

L’approche la plus courante pour accélérer la conversion en balayage des objets
graphiques employe le traitement en paralléle. Plusieurs architectures dédiées a
ce but ont été proposées récemment. Nous présentons ici une autre solution,
l'ultraordinateur 4 usage général, formé de nombreux processeurs travaillant en
paralléle, et d'une mémoire partagée. La principale charactéristique de ce
systéme: "sémantique en série/exécution en paralléle"”, est exploitée par la for-
mulation d'un algorithme de conversion en balayage. Les surfaces cachées sont
éliminées par un algorithme a mémoire de profondeur par ligne de balayage.
Comme une solution exacte au problémes de l'aliasing est assez longue a cal-
culer, un nouvel algorithme est présenté qui utilise des tables précalculées pour
déterminer le recouvrement des sous-pixels pour chaque ligne de balayage.
L'intensité finale d’'une sous-pixel est la moyenne pondérée de la contribution du
polygone "gagnant”" et de celle des "“perdants”. Cette technique est rapide et
précise, et présente des avantages meme utilisée avec un seul processeur. Elle
permet aussi d'éviter la plupart des problémes rencontrés en animation.

Ce papier est un rapport préliminaire, est sera développé plus avant dans
[FiFR83].

KEYWORDS: anti-aliasing, parallel algorithms, ultracomputers, scan conversion,
depth-buffer, hidden-surface removal, computational complexity.

1. Computer Systems Research Group, Department of Computer Science, University of Toronto,

Toronto, Ontario, M58 1A4. USENET: utzootutesrgv'elf, utzootutesrgv!alain.
2. Carnegie-Mellon University, Pittsburgh, PA.

Graphics Interface '83

1. Introduction

The performance of a raster graphics system is
strongly influenced by the inefficiency of scan
conversion. Consequently, the issue of scan conver-
sion speed-up has received considerable attention.
Recent papers have proposed high-performance sys-
tems containing special-purpose hardware and utilis-
ing parallel processing. Parallelism has been realised
in various ways, some of which are:

(1) "Intelligent" VLSI-based memory. This includes
systems such as PIXEL-PLANES, by Fuchs et al.
[FuPo81, FPPB82], the smart memory architec-
ture by Gupta et al. [GuSS81], and the Rectangu-
lar Area Filling Display System Architecture by
Whelan [Whel82].

(2) Hardware enhancements and graphics engines.
Clark’s geometry engine, although not a scan
conversion system, illustrates the latter [Clar82],
and Whitted’s enhanced frame buffer is an exam-
ple of the former [Whit81]. The proposed systems
of Fussell and Rathi [FuRa82], and Weinberg
[Wein81], are graphics engines.

(3) Special-purpose, multiple-processor proposals.
These systems incorporate special-purpose
hardware to broadcast image descriptions to the
processors. Image memory is often partitioned to
enhance parallelism. Examples are Fuch’s central
broadcast controller [Fuch?77], Parke's splitter
tree, and Parke’s splitter tree/broadcast con-
troller hybrid [Park80].

Obviously, any parallel-processing scheme should
demonstrably hasten scan conversion. The above pro-
posals are no exception. Several issues remain to be
considered, however. First, few proposals address the
aliasing problem. Indeed, anti-aliasing is difficult to
perform on the systems of Fuchs et al., Fussell and
Rathi, Whelan, Fuchs, and Parke. Second, a desirable
goal is that display systems exploiting parallelism
should always exhibit subserial behaviour. Third, it is
not clear that a special-purpose system is the best
approach if similar computational power is required
for other tasks. It is likely that the feasibility of
large-scale display processors with special-purpose
hardware will coincide with that of general-purpose
parallel processors. The ultracomputer, described
below, is one such processor. We wish to demonstrate
that the ultracomputer can be a very effective
"graphics engine” in its own right. This is illustrated
by presenting a parallel scan conversion algorithm
including anti-aliasing. The worst case benaviour of
the algorithm is subserial. Moreover, it will be seen
that the ultracomputer is useful in solving other com-
putationally intensive tasks.

- 12 =

Not all problems necessarily have faster parallel
implementations. Problems such as scan conversion,
which naturally decompose into a large set of some-
what independent subproblems, are good candidates
for parallel processing. The objective of a general-
purpose parallel processor design is to maximise the
degree of subproblem independence over a wide class
of tasks. Otherwise, the major advantage of such a
processor over special-purpose systems is lost. In
our ultracomputer model, subprobiem independence
is facilitated by a small set of powerful concurrent
operations on shared memory. To each processing
element (PE) of the ultracomputer, a concurrent
operation appears to execute indivisibly. In fact, an
intelligent, multi-stage network cleverly connects the
PEs to shared memory, and combines all operations
simultaneously directed at a variable into one opera-
tion. Parallel algorithms are simply expressed, unlike
the often more complicated techniques required to
optimise computations on vector or pipeline proces-
sors. Since the implementation of these operations is
in the connection network, the algorithms below may
be realised on any parallel processor capable of simu-
lating the concurrent operations, although the result-
ing programs may run more slowly.

Section 2 outlines the basic ultracomputer archi-
tecture. A scan conversion algorithm that utilises
this parallel processing model is presented in Section
3. A novel parallel anti-aliasing algorithm is given as
an integral part of scan conversion. Lastly, the major
advantage of an ultracomputer, its generality, is illus-
trated by noting other problems to which it can be
applied. This is discussed in Section 4, as are topics
for future research.

2. Ultracomputer Architecture

An ultracomputer is a parallel processor composed
of many processing elements (PEs), which have
multiple-cycle access to shared memory. Ultracom-
puters are a good theoretical model of parallel com-
putation. Schwartz has made an extensive survey of
this field, summarising various upper and lower
bounds for parallel sorting algorithms, set operations,
matrix multiplication, etc. [Schw80]. However, ultra-
computers are more than just a theoretical model.
Indeed, our ultracomputer model is based on the NYU
Ultracomputer, for which a 4096 PE system is
scheduled for completion by 1990, and various
smaller systems somewhat carlier [GGKM81]. Our
miodel 15 4 very slight extension of the NYU model,
incorporating additional concurrent instructions. We
now outline the features of this system.

An NYU Ultracomputer is composed of N =27
autonomous PEs and connected to N shared memory

Graphics Interface ’'83

modules. Local memory for each PE is provided by
means of a partitioned memory cache. PEs access
shared memory via a D =log ;N -stage connection net-
work composed of an NxD array of "intelligent” 2-
input, 2-output switches3. Switch interconnection is
based on Lawries's omega-network [Lawr75], illus-
trated in Figure 1.
PE STAGE ST:Gl STAGE MM

0000

0010

010e
(DL

1000
1010==

1100
1110

Figure 1. Routing through an omega-network for 8 PEs. Connec-
tions between PEs, switches, and MMs are by means of a shuffle-
ezchange: an object numbered d 1d g - - - dp in binary is connected
to the object numbered dg: - dpd; in the next stage of the net-
work. If PEs are numbered pp ' -p1 and MMs are numbered
mp --+my, then a message transmitted from pp:--p1 to
mp -+ m, uses output port ™M; when leaving the it switch.
Similarly for travelling from MM to PE. The route from PE 5 (101z)

to MM 2 (010g) is indicated.

The novelty of the NYU design rests in the intelligent
switches, which implement concurrent access to vari-
ables in shared memory. For instance, the network
easily realises concurrent fetch or store operations.
The network can also support other more powerful
concurrent operations. Presently, one such instruc-
tion is supported: the replace-add, which creates the
illusion of indivisibly adding a value to a shared vari-
able, and returning the sum to the requesting PE.
Specifically, the format of the operation is
RepAdd(V,e), where V denotes a shared (integer) vari-
able and e is an integer expression. Let V have value
V. Suppose PE; issues the command
S; =RepAdd(V.e;), and PE; issues the command
S; =RepAdd(V.e;) simiiltaneously. Then, assuming V
is not simultaneously updated by another PE, either

3.
The entire architecture can be easily generalised to
N =k? PEs and a D =loge N-stage network using k-
input, k-output switches.

- 13 -

S =v+e;

S; =v+e +ey,
or

S =vte; +e;

S; =v+ey,
and in either case, the new value of V is v+e; +e;.
Note that RepAdd(V,0) is a fetch instruction.

When operations on the same cell in shared
memory meet at a switch, they are synthesised into a
single instruction. This is sent to the next stage in the
network within one cycle. Instruction combining can
occur at any stage in the network. Hence of all the
operations simultaneously directed at a single vari-
able, V, only one cumulative operation actually
"reaches” V. Thus memory traffic is reduced and net-
work bandwidth is increased. Moreover, the proces-
sor has the following surprising property: it is partic-
ularly efficient when many operations are con-
currently issued on a small set of variables. Indeed,
simultaneous update of the same variable by all N PEs
is resolved in O(log N) time, compared to O(N) time
for typical parallel processors using semaphore-like
mutual exclusion. This is a useful property which is
often exploited. For example, RepAdd makes an
effective synchronisation primitive. Moreover, data
structures allowing parallel access are conveniently
implemented using RepAdd. A polygon display list is
nicely represented as a parallel queue. Suppose the
index NextPolygon is used as a subscript into a
polygon list. Then every PE executing
RepAdd(NextPolygon,1) is guaranteed to get a unique
value for NextPolygon. .

The standard NYU ultracomputer model supports
the three concurrent instructions described above:
fetch, store, and RepAdd. To realise these operations,
a switch only needs a small amount of memory, and
an adder. Implementation details, together with a
network performance analysis, is found in [GGKMB1].
Although these instructions have proved useful for
constructing good parallel solutions to scientific and
operating system problems, we believe a concurrent,
flexible comparison instruction is needed. Hence we
propose a new concurrent instruction, replace-
minimum, or RepMin. It is easily realised by adding a
comparator to each switch. Note that a more general
comparison instruction, although not required for our
purposes, is clearly possible. RepMin is very useful
for scan conversion. Its semantics is defined as fol-
lows. Let V denote a cell of shared memory having
value v, and let e be an expression such that both v
and e are pairs (intensity,depth) of valuest Then

4. To make the replace-minimum instruction quite general,
the extent of the intensity and depth subwords could be
controlled by a modifiable bit-mask stored in each
switch. Clearly, the names of the subwords, “intensity”
and "depth”, are illustrative. In practice, the subwords
could be known by arbitrary names.

Graphics Interface '83

RepMin(V,e,refurn) causes all of V to be replaced by e
iff e.depth < v.depth. The flag return indicates the
result that should be returned by the operation:
"ReturnNothing"”, which reduces memory traffic and
increases PE asynchrony, and "ReturnLoser” and
"ReturnWinner”, which we shall discuss shortly. The
utility of RepAdd in scan conversion is obvious. Con-
sider the following parallelised version of the z-buffer
algorithm found in [NeSp79]. Here, the entire z-
buffer is assumed to be addressable as an nxm array
of shared memory. Each PE executes the following.
while polygons remain do begin
6et P from polygon list (use RepAdd)
pixels (x,y) € P do begin
i := Polygonintensity(P,x,y)
2z := PolygonDepth(P,x,y)
RepMin((x,y), (i,z), ReturnNothing)
end

end

Let us now discuss the effect of the return flags
"ReturnWinner” and "ReturnLoser’. We only consider
the case where n PEs (0<n<N) simultaneously issue a
RepMin for cell V, all with identical return flags.
Informally, a ReturnWinner (ReturnLoser) says "of all
the RepMin's simultaneously directed at V, return a
value that has won (lost) in at least one comparison
with another value”. Moreover, in the case of Return-
Loser, any value sent by a particular PE is returned
exactly once. Perhaps surprisingly, this is achievable
in the switches, and can be shown by induction on n.

The NYU ultracomputer also presently lacks con-
current logical bit operations. The scan conversion
algorithm below makes use of another concurrent
instruction, the RepAnd. This operation has the same
format as the RepAdd, but performs a logical and of
the arguments instead of an addition. Note that in
principle, only a few Nand gates in each switch would
be required to realise all 18 boolean operations as
concurrent instructions. In general, an instruction
supported by the connection network must be associ-
ative. Thus concurrent floating point operations can-
not be properly realiseds. The serialisation princi-
ple is a necessary property of the connection net-
work. The network ensures that the effect of simul-
taneous operations by the PEs is equivalent to some
serialisation of the operations.

5. In most computers, ((102-10%)+1) # (10%+(=10%+1)), for a
large a.

- 14 -

3. AFast Parallel Scan Conversion Algorithm

3.1. Preliminaries

Our definition of scan conversion is the traditional
one (e.g. [NeSp79]). Given a scene represented by P
simple polygons, determine the set of pixels and their
intensities that best approximates the scene. The
solution, based on the conventional single-scanline z-
buffer algorithm, performs hidden-surface removal
and anti-aliasing. Serial scanline algorithms typically
require a YX-sort of polygon spans intersecting with a
given scanline [SuSS74]. However, RepMin allows us
to drop the X sort. The shared memory storing ulti-
mate scanline intensities is assumed to be available
to a video controller, by dual-ported memory, for
instance.

3.2. The Algorithm

First we briefly outline the major steps performed by
each PE. As in traditional scanline algorithms, a Y-
scanline bucket is employed to determine polygon
segments that enter the scene at scanline y.

(1) Remove beckfacing polygons.

(2) Convert remaining polygons into sets of span-areas, i.e. tra-
pezoidel or triangular regions. Insert each span-area into the
Y-bucket corresponding to its largest y-value. An alternative
to this scheme is to triangulate all polygons, once and for all, as
in [Whit81, FuRa82] (see below).

(3) Scan convert span-areas:

for y := ymin to ymax do

(a) The span-areas from bucket y are inserted into the active
span list (ASL).

(b) Process active spans for scanline y. Each PE takes a span
from the ASL. If the span is large, only a fraction of it is
taken at a time, thus permitting parallel processing of the
span. For each pixel in its portion of a span, the PE com-
putes intensity and depth values, and performs a table
look-up to approximate the portion of the pixel covered by
the span. The left and right endpoints of the span are then
updated. If the span-area is exhausted, it is removed from
the ASL.

Anti-aliesing. For each non-empty pixel, an approximate
anti-aliasing procedure is performed by determining the
intensity contribution of the closest span, and adding in
the average contribution of the "losers”. The coverage
information computed in step (b) is used in these calcula-
tions.

~

(c

3.2.1. Data Structures

For clarity, we only use static §torage in shared
memory. Assume there are P input polygons found in
the array InputList. In what follows, let ¥; be the
number of vertices in input polygon Z;, and let V be
the largest such ¥; . Assume the PEs are programmed

Graphics Interface '83

in a high-level language such as Pascal or Euclid
which allows programmer-defined data types. Note
that arrays in shared memory are possible, since
their starting addresses can be stored in the local
memory for each PE. The names assigned to variables
in shared memory begin with an upper case letter.

{ Polygon display list |
InputlList: array 1..P of Polygon
Ngon: array 1..P of Polygon
- each polygon P; contains an array 1.. V; of (x,3.2).

{ Y bucket. Yp gives next available position for scanline y |
Y: matrix ymin..ymax 1..PV of SpanArea
Yp: array ymin..ymax of 0..P

{ Active Span List. S reflects the number of spans. |
ASL: array 1..PV of SpanArea
S:1.PV:=0

{ Some indices |
Polyin, PolyQut, CurrentSpan: Integer

{ Locks for synchronisation. Assume they are initialised to 0§
Lock1, Lock2: 0..P := 0

SpanArea: type

record of
yt ftopy]
dy | height of span-area |
xl { current LHS |
xr { current RHS |
xm | zgultiph'city-see below; initially xm=x1-M]
dxl

Z

AyofLHS]
Az

dxr iAyofRHS!
Ay

dyl [! of LHS |

Ay
dyr | gL of RHS}

DepthInfo
Intensitylnfo
end

3.2.2. Synchronisation, Initialisation, and Backfacing
Polygon Removal

Since the code in this section is familiar, it is a good
place to illustrate some principles of synchronisation
and initialisation. Assume each PE has access to a
unique identifier in the manifest constant PEid, which
takes on a value between 1 and N. Local variables
begin with a lower case letter. The following code ini-
tialises Polyln and PolyOut, performs synchronisa-
tion, and removes backfacing polygons as in [NeSp79,
Appendix I1I]. We assume the poliygons in the inputi list
have undergone perspective transformation. The
reader may wish to verify that two locks are neces-
sary to have fully reusable locks for synchronisation.

- 15 =

i, j, p: integer
[nputList, Ngon, Lock1, Lock2, Polyln, PolyOut: shared

{ The first PE in initialises PolyIn, PolyOut |
if RepAdd(Lock1,1) = 1 then Polyln := PolyOut := Lock2:= 0
while Lock1 < N do {nothingj

{ The last PE out resets Lock1 for future use |
if Lock?2 = N-1 then Lock1 := 0
RepAdd(Lock?2,1)
while Lock2 < N do {nothing]j

p := RepAdd(PolyOut,1)

while p < P do begin
for pglygon Inputlist[p], calculate ¢
= 3 V1V VT)

where j=i+1if i<V} ; otherwise j=1
if ¢ < 0 then {the polygon faces us, add it to Ngon{
Ngon[RepAdd(PolyIn,1)] := InputList[p]
p := RepAdd(PolyOut,1)
end

In the average case, each PE processes about P/N
polygons. This algorithm assumes that N<P, since
otherwise those PEs with identifiers greater than P do
no work. The amount of memory traffic this algo-
rithm would cause is suboptimal, since polygon defin-
itions are moved around, rather than their pointers.
Again, this was done in the interests of clarity.

3.2.3. Decomposition of Polygons into Span-areas

As presented in this paper, the scan conversion algo-
rithm presumes the input polygon list has been
decomposed into span-areas: trapezoidal or triangu-
lar regions. This idea is not new (see [Lee81, Wein81,
WhWe81]). Unlike polygons, span-areas have a
bounded, concise specification in terms of left and
right edges (e.g. the SpanArea data type above). Thus
span-areas are useful in scanline-oriented algo-
rithms. However, desirable properties of trapezoids
such as planarity are not necessarily preserved after
geometric transformations. Consequently, the input
polygon list is preprocessed for each frame. This
additional computation can be circumvented if
polygons are triangulated once and for all, since tri-
angles are maintained after geometric transforma-
tions (see [FuRa82, Whit81]). The scan conversion
algorithm easily adapts to triangles, but since span-
areas are so simple to work with, the algorithm is
presented using span-areas. Both triangles and
span-areas can lead to fragmentation of very small
(pixel-sized) polygons, making anti-aliasing critical.

A maximum of V-1 span-areas are generated for
a polygon of V vertices. An O(V logV) serial algorithm

Graphics Interface 83

to decompose a simple polygon into span-areas was
recently published [Lee81]. A straightforward,
polygon-per-PE parallelisation of this algorithm
Fidd
N
time. As each span-area is generated, it is inserted
into the Y-bucket corresponding to the largest y value
of the span-area. This can be determined on-the-fly
with no change in the order statistic.

would yield an O(log V) average-case running

3.2.4. Scan Conversion
Each PE performs the following scan conversion loop.

for y:=ymin to ymax do begin
UpdateASL(y)
[nitialiseScanLine
ScanConvert(y)
<synchronise>

end for

UpdateASL places the contents of bucket Y[y] into the
active span list. All PEs synchronise at the comple-
tion of scan conversion for each scanline. This is not
necessary. If sufficient memory is available, the algo-
rithm easily generalises to k-scanlines, k > 1. We now
consider the scan conversion process in more detail.
procedure [nitialiseScanLine
[nitialiseXBucket

CurrentSpan :=1
end [nitialiseScanline

procedure ScanConvert(y: ymin..ymax)
span: SpanArea
spanArea: Boolean
X: shared

GetSpan(span,spansieft)
while spansLeft do begin
Vx € span calculate pixellnfo:
intensity, depth, and coverage mask
UpdatePixel(x, pixellnfo)
GetSpan(span,spansLeft)
end while
AntiAliasScanline(y)
end ScanConvert

The X bucket contains all required scanline informa-
tion. It will be discussed shortly, as will the routines
UpdatePixel and AntiAliasScanline.

GetSpan does the obvious: it returns an unpro-
cessed span to the scan converter. However, the rou-
tine is complicated by the fact that we wish to get a
subserial worst case behaviour. In particular, large
spans should receive parailel ireatnicnt, f{or cther-
wise all PEs could wait for one PE to complete a long
span. Assume there is a constant M which denotes the
maximum number of pixels in a span that a PE is

- 16 =

allowed to process at a time. This value may be
empirically or theoretically determined, and
represents a good balance between the overhead in
GetSpan and the increased efficiency in parallel pro-
cessing of large spans. Multiple copies of a span may
be returned; the index xm is used to indicate the left-
most point of the unprocessed portion of the spans.
The following is one possible implementation of
GetSpan. It is somewhat tricky since synchronisation
is required in the unlikely event that two PEs simul-
taneously try to get an exhausted span.
procedure GetSpan(var span: SpanArea;
var spansLeft: Boolean)
gotSpan: Boolean
ASL, CurrentSpan: shared
M: Constant
newLHS: Integer
spansleft := true
gotSpan := false
while ~gotSpan and spansLeft do begin
span := ASL[CurrentSpan]
with ASL[CurrentSpan] do begin
{ calculate new LHS of span, and see if LHS>RHS |
newLHS := RepAdd(xm,M)
gotSpan := newLHS < xr
if ~gotSpan then
{ if span is exhausted, the first PE advances CurrentSpan |
if newLHS-xr < M then RepAdd(CurrentSpan,1)
spansleft := CurrentSpan < S
end with/while
if gotSpan then span.xm := newLHS
end GetSpan

3.2.5. Anti-aliasing

The aliasing problem is immediately apparent to any-
one who has seen synthesised raster images. Various
aliasing artifacts are possible in both still and moving
images. An abundant literature describes the prob-
lem and some of its solutions. See [Crow?77, Crow81]
for a start. It is thus of prime importance to examine
whether anti-aliasing can be incorporated into our
algorithm. Since we currently compute the picture
scanline by scanline without backtracking over scan-
lines, we cannot use any scheme where the value at
one pixel depends on the value of some of its neigh-
bours, unless we arbitrarily privilege the z direc-
tion?. .

8. See the definition of the SpanArea data type above.

7. The idea is not totally without rnerit, since as seen on
btreadeast iclevision it produces decent images. Note,
moreover, that a k-scanline version (k > 1) of the algo-
rithm would permit a multiple-pixel anti-aliasing
scheme.

Graphics Interface '83

The best solution under the circumstances is
what we can call the Exact Area Sampling solution,

where the intensity for the pixel is]=%21‘~Ai A4
1

and [are the areas and intensities of the visible sur-
faces within the pixel, and A is the total area of the
pixel. If colour is used, this formula is used for the
three primaries. As pointed out in [Catm78], and
implemented there and in [FuBar79], this requires a
hidden surface algorithm at the pixel level.

We can establish a more formal lower bound, by
showing that any algorithm that computes the EAS
can be used to determine the order in a list of » non-
negative integers. The reduction is as follows. Given a
list N,Ng, - -+ N, of numbers, construct a scene with
n rectangles of depth N, with the left, top and bot-
tom edges coincident with the pixel left, top and bot-
tom, and the right edge of rectangle i at N;. Without
loss of generality, assume that the pixel right edge is
at max (N;). The intensity 4 of each rectangle is
D*-1where D is greater than max(¥;)—min(;).

The answer to the EAS problem is then:
HxY L, (N, =N,) where H is the height of the pixel,

T

and N, is the predecessor of N; in the sorted order.
The predecessor of min(»;) is 0. This transformation
can be done in O (n) time. It is clear that the answer,
when expressed as a base J number, contains N; =N,
in the 4 th digit (from the least significant), and that
therefore in O{(n) time one can find, for every
number, its predecessor in the sorted order. Comput-
ing the answer to the EAS problem allows sorting with
a O0(n) time transformation, and therefore takes at
least O (nlogn). While this does not prove that it is
necessary to solve the hidden surface problem to
solve the EAS problem, this shows that nothing easier
than sorting will do it. For other results about the
EAS, see [FoFu83].

In view of this result, we will aim for an approxi-
mate solution. Our approach will be to limit the
amount of computation and to utilise parallelism as
much as possible.

We subdivide the pixel into n xn subpixels. It is
convenient to have n a power of 2, for example
n =23=8. For each line which intersects a pixel, the
two intersection points along the boundaries of the
pixel are used as an index into a lookup table, whose
entries give the subpixels covered by the halfplane
defined by this line. We will call this entry the mask
for this halfplane. In our example, the mask would be

- 17 =

a 64 bit number. Each intersection witl: the boun-
daries of the pixel is computed with k& bits of fraction
(that is 2% intervals, since 1 is O on the next pixel). It
is convenient, though not required, to have 2% =n , so
we will assume k =3 in our example. Thus each inter-
section can be fully described as a k£ +2 bit number, 2
bits to identify the boundary, and k£ bits to give the
position along the boundary (see Figure 2). The total
entry for a line is then a 2(k +2) bit number, in our
example a 10 bit number. This gives a 1K x64 bit
table, which is small enough to allow a copy for each
PE. Alternatively, a small number of PEs could
directly share a table, since it is read-only.

Code= 1110100011
LD
t 513

Maske= FSFOEDCDS0000000
x

Figure 2. Pizel-line intsrsection encoding.

The order of the intersections is relevant, since
the line should be oriented. We can adopt a conven-
tion that the inside is to the right when going from the
first intersection to the second. The size of the table
can be reduced by making it into a triangular array,
and using an extra bit to indicate the direction, which
will tell whether to complement the mask or not. The
table is of course precomputed, and each bit is on if
the subpixel corresponding to it is more than half-
covered by the halfplane described by the index.

Of the four edges of a normal span-area, two are
horizontal, ana are relevant only at the start and at
the end of their scanning. For these, a small special
lookup table can be used, with the y fraction used as

example). For the other two edges, updating the
intersection information from pixel to pixel is fairly
simple, and requires only additions and subtractions.

Graphics Interface '83

From the definition of the mask , it can be shown
that the mask for a span-area is the and of the masks
of its edges. Thus we get an accurate representation
of the subpixels covered by a given span-area. It is
also easily seen that the mask for the background
(indicating the subpixels where the background is
seen) is the complement of the or of all the span-
area masks for this pixel. It is unfortunately impossi-
ble to go much farther without making some approxi-
mations. The problem is that we do not want to com-
pute the Z values at the subpixel resolution, since it
would be tantamount to going to a higher resolution.
Each span-area is then associated with only one Z
value, namely its Z at the centre of the pixel. Given
that, we cannot guarantee that the depth comparison
allows the visible areas to be determined, unless the
planes of support of the span-areas do not intersect
within the pixel (see Figure 3). We will give two
approximation algorithms, and discuss where they
succeed, and where they fail. Let weight (mask) be
the fraction of the pixel covered by a mask (this can
be easily computed by counting the number of one
bits in the mask). The span-area with the smallest Z
value is called the winner; the others are called
losers.

There are two ways to compute the final pixel
intensity. One way necessitates the use of an X-
bucket to hold pixel information for each span-area
intersecting with the current scanline; a pass over
the content of this bucket would be performed at the
end of the scanline, since the final intensity cannot be
computed until the winner is known. The other
approximation can be computed on-the-fly, and is
almost as accurate as the first. The two methods cal-
culate intensities 7, and /,, respectively, as follows.

Iy = WinnerComp + LoserComp i + BackgroundComp
[2 = WinnerComp + lLoserComp z + BackgroundComp

WinnerComp = Ity xweight (masky

BackgroundComp = Ity xweight (A AllMasks)

LoserComp 1 = Correct 1X Int; xweight (mask; Amasky)

Loser Comp 2 = Correct zxwught (mu.sk.,)x 2 Int; xweight (mask;)
weight (masks A maskw) alt

u; ‘wught (mask; Amasky)

Correct =

weight (masks Amaskw)
2 weight (mask;)

Correctz =

The subscripts w,, and b, stand for "winner”

"loser", and "background’, respectively. The correc-
tion factors are the ratios of the actual coverage by
the losers over the sum of their individual coverage

- 18 -

as computed by each algorithm. Therefore the
correction factors give a measure of the amount of
overlap of the losers, hence of the possible error.

3.2.5.1. First approximate anti-aliasing algorithm

This solution requires an X bucket. For each pixel,
several additional pieces of information are kept: the
current winner, background data, the losers’ inten-
sity, and their sum of coverage-mask weights. The
following data structures are used.

{ X bucket. Xp contains list of number of span-areas per pixel |
X: matrix xmin..xmax 1..FV of Pixellnfo
Xp: array xmin..xmax of 0..PV := 0

{ Additional pixel information |
Pixels: array xmin..xmax of
Winner, Back: Pixellnfo
Loserint, SumOfWeights: Integer

Pixellnfo: type record of

Depth

Intensity

Mask [coverage mask |
end Pixellnfo

The ScanConvert routine above executes the following
version of UpdatePixel and AntiAliasScanline. Recall
that each PE executes ScanConvert.

procedure UpdatePixel(x: xmin..xmax, pix: Pixellnfo)
{ Add pixel from this span into bucket |
X[x,RepAdd(Xp(x],1)] := pix
{ pix may be a "winner” |
RepMin(Pixels(x]. Winner,pix,ReturnNothing)
{ Determine how much of the background is covered by pix |
RepAnd(Pixels(x].Back.Mask, pix.Mask)

end UpdatePixel

Graphics Interface ’'83

procedure AntiAliasScanline(y: ymin..ymax)
x:
winner,pix: Pixellnfo

[nitialise Cx to xmin
while Cx < xmax do begin
{ Many PEs work on each pixel (i.e. X bucket)]
x := RepAdd(Xp[Cx],-1) + 1 { get pixel info for span |
winner := Pixels[Cx].Winner
while x > 0 do begin
pix :=X[Cx,x]
if pix # winner then begin
{ pix is a loser, calculate its contribution |
newMask := pix.Mask A\ winner.Mask
newlntensity := Weight(newMask) X pix.Intensity
RepAdd(Pixels[Cx].LoserInt, newIntensity)
RepAdd(Pixels[Cx].SumOfWeights, Weight(newMask))
end if
x := RepAdd(Xp[Cx], -1) + 1
end while
if x = 0 then begin
{ PE that has x=0 adds background and losers' contribution {
for Pixels(Cx], compute:
¢ := Weight(Back.Mask/\ Winner.Mask)/ SumOfWeights
RepAdd(Winner.Intensity, cXLoserInt + Back.[ntensity)
RepAdd(Cx,1)
else synchronise {all other PEs wait]
end if
end while
end AntiAliasScanline

3.2.5.2. Second approximate anti-aliasing algorithm

No X bucket is required in this solution. We only keep
four pieces of information for each pixel, Winner,
Back, SumOfWeights, and Losers. Winner, Back, and
SumOfWeights are as in the first solution; Losers is
used to keep track of the losers’ coverage and inten-
sity contributions on-the-fly. The "Returnloser” flag
in RepMin is essential.

procedure UpdatePixel(x: xmin..xmax, pix: Pixellnfo)
loser: Pixellnfo

loser := RepMin(Pixels[x].Winner, pix, ReturnLoser)
intensityContrib := loser.Intensity X Weight(loser.Mask)
RepAdd(Pixels[x].Losers.Intensity, intensityContrib)
RepAnd(Pixels[x].Back.Mask, loser.Mask)
RepAdd(Pixels[x].SumOfWeights, Weight(pix.Mask))

end UpdatePixel

- 19 -

procedure AntiAliasScenline(y: ymin..ymax)

§ each PE handles a pixel, so if N > X, some PEs are idle |

x:=PEid + xmin - 1

while x < xmax do begin
pix := Pixels[x]
{ compute background and losers’ intensity contribution |
backIntensity := pix.Back.Intensity X Weight(pix.Back.Mask)
¢ := Weight(pix.Back.Mask/\ pix.Winner.Mask)/ pix.SumOfWeights

loserIntensity := pix.Losers.Intensity X Weight(pix.Winner.mask) X ¢

RepAdd(Pixels[x]. Winner.Intensity, backIntensity+loserintensity)
x:=x+N
end while
end AntiAliasScanline

3.2.5.3. Analysis of the approximations

These approximations, and indeed all approximations
of this kind, should be characterised in three ways:
when they are right (here right is to be understood
exact within the subpixel resolution), when they are
wrong and how wrong they can be, and when they are
consistently wrong. The last is important, since
aliasing is particularly noticeable in motion, by
crawling , scintillation and other annoying
artifacts. If an algorithm computes a wrong shade,
but is consistent as the polygons move, then these
artifacts will be avoided.

Both solutions will be right when there is only
one span-area within the pixel, whether it covers the
whole pixel or not. As long as a span-area covers at
least one subpixel (1/64 of a pixel in our example), it
will contribute to the total intensity of the pixel. Both
solutions are also right when none of the span-areas
overlap. This is especially important, since we might
have cut a polygon into numerous small span-areas.
Fortunately we will not have to pay too heavy a price
in aliasing problems. That also means that the prob-
lems, if any, will be at the silhouette edges of the
objects, and not against the background, but against
each other. The first solution has the additional
advantage of being right when the winner overlaps
the losers, but the losers do not overlap each other.
The second algorithm will be right in case of overlap
by the winner if the loser coverage ratio is sensibly
the same under the winner than in the rest of the
pixel.

Figures 3 and 4 give examples of wrong cases,
and the errors made by each algorithm. Figure 3
shows the worst case for both algorithms, where the
amount of overlap of the losers and the area they
cover is maximal. Figure 4 shows a case where the
first algorithm is right and the second is wrong.

A gross estimate of the extent of the errors, for

Graphics Interface ’83

Figure 3. The worst case for both algorithms.

Zl<Zg<Zg 1

Correct Answer ~ /,

Io+ I : s

Computed Answer = _@__2_.1 E 2i3:
fp = &y : :
s 2 SRR SR SRR :

Figure 4. A bad case for algorithm 2 only.

2442 2T

Iy + 1 : .
Correct Answer = - 1 ;‘3:.
F# I :
2
Ia+1g
2
2

Algorithm 1 =

I+
Algorithm 2 =

Iz =13
4

.

Error2 =

103 polygons, covering an average of 103 pixels each,
and with 10? boundary pixels each, on a screen with
108 pixels, shows that less than 5% of the pixels would
have an error, and that for these the average error
would be less than 10% of the shade of the pixel.

As the polygons move with respect to each other,
we avoid the numerous problems of point sampling.
Since the wrong cases are computed from averages,
the errors made will not exhibit large discontinuities,
but will be consistent from frame to frame. In the
example of Figure 3, as polygon 3 moves out of the
pixel, its contribution to the pixel intensity will go

7
smoothly from —:-;— (which is wrong), to O (which is

right).

- 20 -

3.2.6. Discussion

A simulation of this algorithm is planned?, to demon-
strate that the approach works, and to demonstrate a
possible implementation in a pseudo-concurrent
language. The simulation will be written in Con-
current Euclid, a language based on Euclid which sup-
ports processes and monitors. Scenes for which the
algorithm performs well and poorly will be classified.

The algorithm above has several desirable pro-
perties. It is independent of N, the number of PEs in
the ultracomputer. Indeed, the speed of the algo-
rithm is inversely proportional to N, up to a lower

bound constant when N 2%. A good serial algorithm

is obtained when N=1. We emphasise the fact that the
anti-aliasing techniques presented here easily
transfer to serial environments. Another property of
the algorithm is that although it scan converts
polygons, the general approach adapts to other scene
representations (e.g. scanline methods for
parametric surfaces as in [BCLW80]).

4. Other Ultracomputer Applications and Future
Research

As the plethora of published parallel algorithms
shows [Schw80], the ultracomputer is truly a power-
ful, general-purpose tool. Fast parallel algorithms
exist for matrix multiplication, sorting, linear pro-
gramming, fluid dynamics, etc. We hope to have
demonstrated that the ultracomputer has great
potential in the computer graphics field. Other appli-
cations would also significantly benefit from ultra-
computer implementation. For instance, a parallel
queue could be exploited to parallelise ray-tracing
algorithms [Whit80]. Since the processing of one ray
is a somewhat independent task, we believe signifi-
cant speed-up in ray-tracing can be achieved on an
ultracomputer. Similarly, we believe many problems
in image processing, signal processing, and artificial
intelligence are likely to benefit.

Several improvements cnuld be made to the
parallel scan conversion algorithm. An issue deserv-
ing of attention is space complexity and memory
traffic. By using dynamically allocated shared
mecmory and pointers, the amount of =torage required
would be drastically reduced; moreover, memiory
traffic would decrease, since pointers would be

B. See [FiFR83] for details.

Graphics Interface '83

travelling through shared memory, rather than the
actual values. However, indirect shared memory
references would require two passes through the con-
nection network. A solution is to make greater use of
the cache memory local to each PE. A copy of the
static pointers may be placed in the local memory for
each PE, thus saving the O(log N) connection network
cycle time.

5. Acknowledgements

We wish to thank Johnny Amanatides and Peter
Schoeler for their suggestions, which have improved
the clarity of this paper. The first two authors grate-
fully acknowledge the financial support of the Natural
Sciences and Engineering Research Council of Canada.

References

BCLWBO Blinn, J.F., L.C. Carpenter, J.M. Lane, and T. Whitted, "Scan
line methods for displaying parametrically defined sur-
faces”, Comm. ACM 23, 1 (Jan. 1880), 23-34,

Catmull, E., "A Hidden-Surface Algorithm with Anti-
Aliasing”, Computer Graphics (ACM), 12, 3, (Aug. 78), 8-11.

Clark, J.H., "The geometry engine: a VL3I geometry system
for graphics”, Computer Graphics (ACM) 16, 3 (July 1882),
127-134.

Crow, F.C., "The Aliasing Problem in Computer-Generated
Shaded Images”, Comm. ACM 20, 11 (Nov. 1977), 796-805.

Crow, F.C., "A Comparison of Antialiasing Techniques”,
IEEE Computer Graphics and Applications, I, 1 (Jan. 81),
40-49.

Fuchs, H., J. Poulton, A. Paeth, and A. Bell, "Developing
PIXEL-PLANES, a smart memory-based raster graphics
system"”, 1882 Conference on Advanced Research in VLS],
MIT, January 1982, 137-1486.

FPPB82

Fiume, E., A. Fournier, and L. Rudolph, "A parallel scan
conversion algorithm with anti-aliasing for a general-
purpose ultracomputer”, to appear in Computer Graphics
(ACHM) 17, 3 (July 1983).

Fournier, A. and D. Fussell, "On the Power of the Frame
Buffer”,

FoFuB3

FuBar79 Fuchs, H. and J. Barros, "Efficient Generation of Smooth
Line Drawings on Video Displays”, Computer Graphics, 13,
2, (Aug. 79), 260-2869.

FuPo81 Fuchs, H., and J. Poulton, "PIXEL-PLANES: a VLSI-oriented
design for 3-D raster graphics”, CMCCS Conference
Proceedings, (June 1981), 343-348.

- 21

Fuch77

GuSS81

Lawr75

Lee81

NeSp79

Park80

Schw80

SuSS74

WeinB1

WhWe81

Fussell, D., and B.D. Rathi, "A VLSI[-oriented architecture
for real-time raster display of shaded polygons”, Graphics
Interface ‘62, May 1982, 373-380.

Fuchs, H., "Distributing a visible surface algorithm over
multiple processors”, Proceedings of ACM 1977, Seattle
(Oct. 1877), 449-451.

Gottlieb, A., R. Grishman, C.P Kruskal, K.P. McAuliffe, L.
Rudolph, and M. Snir, “The NYU Ultracomputer--a
general-purpose parallel processor”, Technical Report No.
040, Courant Institute, Computer Science Department,
New York University, 1881, to appear.

Gupta, S., R.F. Sproull, and L.E. Sutherland, "A VSLI archi-
tecture for updating raster scan displays”, Computer
Gruphics (ACH) 15, 3 (Aug. 1681), 71-78.

Lawrie, D.H., "Access and alignment of data in an array
processor”, [EEE Transactions on Computers, C-24, 12
(Dec. 1975), 1145-1155.

Lee, D.T., "Shading of regions on vector display devices”,
Computer Graphics (ACM) 15, 3 (Aug. 1981), 37-44.

Newman, W.M., and R.F. Sproull, Principles of /nteractive
Computer Graphics, Second Edition, McGraw-Hill, New
York, 1979.

Parke, F.I, "Simulation and expected performance of
multiple processor z-buffer systems”, Computer Graph-
ics (ACM) 14, 3 (July 1980), 48-586.

Schwartz, J.T., "Ultracomputers”, Transactions on Pro-
gramming Languages and Systems (ACM) 2, 4 (Oct. 1980),
484-522.

Sutherland, LE., R.F. Sproull, and R.A. Schumacker, “A
characterization of ten hidden-surface algorithms", Com-
puting Surveys (ACM) 6, 1 (March 1974), 1-55.

Weinberg, R., "Parallel processing image synthesis and
anti-aliasing”, Computer Graphics (ACM) 15, 3 (Aug. 1881),
53-62.

Whitted, T., and D.M. Weimer, "A software test-bed for the
development of 3-D raster graphics systems”, Computer
Graphics (ACH) 15, 3 (Aug. 1881), 271-277.

Whelan, D.S., "A rectangular area filling display system
architecture”, Computer Graphics (ACM) 16, 3 (July 1982),
147-153.

Whitted, T., "An improved illumination model for shaded
display”, Comm. ACM 23, 8 (June 1980), 343-349.

Whitted, T., "Hardware enhanced 3-D raster display sys-
temns", CMCCS Conference Proceedings, (June 1981), 348-
358.

Graphics Interface '83

