
- 191 -

CONTINUOUS HAND-GESTURE DRIVEN INPUT

Wilflam Buxton
Eugene Fiume

Ra/ph Hili
Alison Lee

Carson Woo

Computer Systems Research Group
Department of Computer Science

University of Toronto
Toronto, Ontario

M5S 1A4

ABSTRACT

We are Interested in the use of physical gesture in dialogues between humans and com
puters. A case study of an Implementation of a simple sketch editor Is presented. In the
current study we explore the use of sketching hand gestures to Input a type of graphi
cal "short-hand." The command interpreter Is, consequently, a type of character recog
nizer.

The Implementation is restricted to using a vector-drawing display for output, and a
graphics tablet with a 4-button puck for Input. The basic hypothesis was that, with
appropriate feedback, the richness of tablet-based input could be further exploited. No
formal experiments were run. Rather, a simple system is presented whose fluency of
dialogue structure argues for the need of increased attention to such Input techniques.

A sketch editor was chosen for the case study because it forced one important Issue:
that of self-similarity. The interesting thing about the system Is that everything
expressed by the user -- commands, scope, arguments, and sketch data -- is articu
lated using the same sketching techniques. To extend this point to the extreme by way
of example, a sketched circle may invoke the command to delete all of the sketches of
circles within the scope of an enclosing sketched circle. The system demonstrates that
that which Is confusing in words, can be effective and natural in gesture. Furthermore,
It demonstrates that the problems of ambiguities (such as when is a circle a circle, com
mand, or scope?) can be resolved without resorting to overly complex syntax.

KEYWORDS: graphical input and interaction, user interface deSign, tablet-driven input,
character recognition, CAD, editing.

1. INTRODUCTION
In everyday life, physical gestures are a powerful

means of communication. A set of physical gestures

may constitute an entire language, as in sign

languages. They can economically convey a rich set of

facts and feelings. For example, waving one's hand

from side to side can mean anything from a "happy

goodbye" to "caution". Use of the full potential of phy
sical gesture is also something that most human

computer dialogues lack.

The need for improved techniques of graphical input

and interaction are becoming increaSingly recognized
[GIIT83]. In this study we explore the use of sketch

ing gestures on a graphics tablet to input command

statements in a type of "short-hand." Some effective

tablet-based techniques have already been catalo
gued in Evans, Tanner, and We in [EvTW81]. The con

cept of graphical shorthand interpreted by a

character-recognizer has also been seen in the litera

ture. Teitelman developed a trainable character

recognizer as early as 1964 [Teit64]. Coleman
developed a simple text editor that was driven by on

line hand-drawn proof-reader's symbols [Cole69]. In a

musical score editor developed by Buxton et al.
[BSRP79], hand-drawn curves were used to identify

the notes to be used as the scope of an operator.

Buxton also demonstrated how a simple shorthand

Graphics Interface '83

could be used to effectively select and position

shapes In graphical layout [Buxt82].

A major objective of the current paper is to re

examine systems driven by continuous hand gestures,

such as those cited above. Our purpose was to gain,

through actual experience, a better understanding of

how the potential benefits of such systems could be

realized in a practical sense using contemporary tech

nology. This Interest was prompted by a perceived

discrepancy between the apparent power of the

approach and its extremely low utilization in current

practice (such as in text editing and CAD). Our

approach, therefore, took the form of a case study in

which we implemented a simple sketch editor. We

believe that this study demonstrates the viability of

the approach using current technologies. Our experi

ence with the system also leads us to conclude that

for such systems to come Into common practice,

improved support tools must be provided to the appli

cations programmer. Part of our presentation, there

fore, discusses our recommendations concerning such

tools.

The gesture-based commands found in this editor are

common to virtually all editing and design environ

ments. Since all gestures are made on a graphics

tablet, we believe our study has implications for CAD

systems, text editors and personal workstatlons.

Some implications well-chosen gestures:

(1) reduce the apparent syntactic complexity of dialo
gues and the number of modes [TesI81] occurring
within a dialogue.

(2) enhance the performance and learning of tasks
that are difficult to verbalise.

(3) increase a system's ease of operation and the
user's ability to combine gestures into appropriate
tasks.

(4) may decrease the number of input devices
required, and may Increase the utilisation of
specific input devices.

(5) are likely to be difficult to implement using current
software tools .

The first four implications suggest that overall human

interaction is likely to be improved through the use of

gesture. Indeed, this is implied by the keystroke model

of Card, Moran , and Newell [CaMN80] when con

sidered in combination with point (4). As will be seen,
point (5) is a result of limitations in present day pro

gramming environments, which tlo not provide ade

quate tools for dealing with gesture recognition. An

objective of this paper , therefore, Is to use a demons

tration of the power of the approach as a means to

- , 92 -

stimulate the development of such tools.

2. DESIGN ISSUES AND SELF-IMPOSED CONSTRAINTS

2. 1. Environment

The environment in which the system was to run was

decided at the outset. While this approach Is Incon

sistent with a strict "levels of abstraction" design phi

losophy, it appears to be the only realistic way to

assess the feasibility of operations and gestures.

Also, it ensures that we would not design a system

that could not be realistically implemented on the tar

get environment, which consists of a POP 11/45 com

puter running the UNIX' operating system, to which a

fast line-drawing display and a graphics tablet, with a

four-button puck, are attached.

2.2. Sketch Editor Design

The sketch editor permits users to draw simple free
hand curves, and supports the following operations on

them:

(1) move part of a drawing to another location.

(2) copy part of a drawing to another location.

(3) save a drawing in a permanent store.

(4) restore a drawing from permanent store.

(5) quit.

2.3. Choice of Gestural Tokens

We began our work by cataloguing a list of observable

puck motions that could conceivably be understood as

gestures. The list included recognising shape, orienta

tion, size, proportion, velocity, and timing. This gave us

a great deal of flexibility in patterns for Individual

tokens. It was a flexibility that turned out to be

essential, because the different puck motions can be

recognised with varying degrees of accuracy on our

system, as will be discussed shortly.

Our basic gesture design criterion was to choose ges

tures that are analogous to those used by someone

doing pencil and paper sketches . Imagine a sheet of

paper w ith variclus obje c ts lJencilled on it. To draw

another object, you would simply draw it at the desired

location on the paper. In a subsequent version of the

drawing, you may decide that an object should be

moved elsewhere on the page; in this case, you might

draw a circle or other curve around the object and

then sweep the pencil across to the new iocatlon of
the object. If a copy is desired instead, you might

1. " UNIX" Is a trademark of Bell Laboratories.

Graphics Interface '83

similarly draw a curve around the object, make some

mark on the paper that a copy is to be made (as

opposed to a simple move), and again sweep the pencil

to the desired location. Notice that the gestures tend

to be fluid and continuous. The task is to develop ges

tures that closely resemble these, and which can be

reliably recognised by a simple program.

To demonstrate just how under-utilised input devices

often are, and to minimise the difficulties in locating

buttons on our (poorly designed) puck, we decided to

restrict ourselves to implementing all gestures using a

single button of the puck, together with the graphics

tablet. This decision also leaves the user free to use

a single button stylus, which may be a more natural

device for sketching and gesturing. We have

developed simple gestures that can be made with

these devices, which can be used for saving, restoring

and quitting; however, for this discussion, we will con

centrate on the four basic operations: draw, move,

copy and delete2 .

The commands implemented follow an Inflx format:

<scope> <operation> <target>

where the scope defines the domain of the operator.

The target field is used in the copy and move com

mands, where the new location must be specified. In

commands that require all three tokens to be specified
(move and copy), it is interesting to note how all three

flow together into a smooth gesture. This Is Important

since some designers avoid syntax in which there is

more than one argumt:!nt to an operator. This is evi

dent in the XEROX Star, for example, which requires

three distinct actions (copy, delete, copy) to carry out

a simple move command [SIKV82].

Drawing is indicated simpiy by doing it: move the puck

to where you wish to begin, depress the button, and
draw; drawing terminates when the button is released.

The move and copy commands are more complicated,

as it is necessary to specify the scope of the com

mand, the operator, and the target. This Is done by

enCirCling the desired curves, indicating the operation,
and then moving the puck (thereby dragging the indi

cated curves to the desired location). This is illus

trated for the move command in Figure 1. Thus, an
entire mov~ or copy operation is performed in one con

tinuous gesture.

2 . A vldeotape of our system Is available which demonstrates
the basic gestures and the general use of the system. See
[BFHL83] .

- 193 -

A - Original picture .

c - Tap, circle Is automati
cally closed.

. n · I

L~
B - Tap and draw circle
around box.

(
l i

o - Simply move away, box
follows.

E - Tap when box Is In
place.

Figure 1: MOVE Command Sequence

SCOPE: The beginning of a scoplng gesture is indicated

by a timing cue: a quick tap of the puck button. The

tracking symbol on the display then changes to an Icon

connoting the expectation of a scoplng gesture. The

user then either holds down the button to draw the
scope and subsequently releases the button to indi

cate scope completion, or, alternatively, draws the
scope with the button up and subsequently taps the

button to indicate scope completion. The system

draws a straigh t line from the last point of the scope

gesture to the starting pOint, to close tile scope, it

necessary. There i:; no restriction on the complexity

of the scope that may be drawn, although the meaning

of "'inside "' can become unintuitive for convoluted

Graphics Interface '83

scopes. On scope completion, the tracking symbol is
changed to an Icon which connotes the expectation of

a command gesture (which may be cancelled by the

user, by tapping once again).

COMMANDS: A move command is gestured simply by

moving to the desired location after completing the

scope. A copy command Is indicated by making a "e"
like gesture and then moving to the desired location.

Objects are deleted from the drawing by moving them

off the drawing area. While the user is making the

command gesture, the contents of the scope is calcu
lated and this object now becomes the tracking sym

bol. A final tap of the button anchors the object when
the desired location is reached.

We would like to stress two points about our design.
First, the complexity of a gesture is inversely propor

tional to its expected frequency of use. Thus, drawing

is assumed to be the most common command, followed
by moving and copying. Second, the gesture for a

copy command Is an obvious, and easily remembered

symbol. The gestures for save, restore, and quit also

involved the use of easily-drawn and remembered

characters. Auxiliary use of the keyboard or menu

selection is not required3 •

3. IMPLEMENTATION DIFFICUL TIES

The above discussion gives only part of the story

regarding the design and choice of gestures in our

sketch editor. As we suggested earlier, a variety of

possible puck motions can be recognised as gestures.

Unfortunately, all cannot be recognised with equal
fidelity in a time-sharing environment. In particular,

velocity-sensitive gestures and timing cues can be

difficult to interpret precisely.

Recognition problems result from the need for very
fine grained temporal analysis . The timing Information

at the level of granularity necessary for this analysis

is not available in a timesharing environment.

It can also be extremely difficult to quickly recognise
complex shapes, such as arbitrary characters. This

has been an active research problem in artificial intelli

gence and image processing for several years. Unless

one wishes to spend many human-months building an

extensive character recogniser, one must be very

modest in the selection of command gestures4 . The

3. Clearly a keyboard-Ilk.e device Is rsqulred to enter new file
names . Better schemes exIst !c!" ~ <! Ie~tl"~ A)(lsUng fUf!ll'I .
See [BSAP79]. for example .

4. In fact, recognition of the character .. c .. Is easy: three in
vis ible axes must be crossed in th e correct order. starting
from the upper right.

- 194 -

point we wish to make Is that gesture recognition can

be difficult both because of environmental restric

tions, and because the necessary gesture recognition

tools simply do not exist. Because of these restric

tions, and the lack of adequate tools, our system, like

most present-day interactive applications, had to be

built from scratch. It thus required greater Implemen

tation (and design) effort than should have been

necessary.

We found the lack of communicating, concurrent

processes In the UNIX environment to be a surmount

able but significant drawback. Since scope determina

tion requires considerable computation time, it should
be run in parallel with the user's selection of a move or

copy command. Currently, we compute scope con

tents after the command has been understood (which
is usually before the user th inks it has been under

stood). Fortunately, for scopes of moderate complex

ity, scope contents determination does not create an

annoying delay, as the user usually starts positioning
the (expected) contents as soon as the command ges

ture is given. During this time, the tracking symbol is a

Buddha, indicating that the contents will appear

shortly, and encouraging the user to be patient. This

simple concurrency (a symbol tracking the pointing
device independent of other processing), is provided

by our graphics package, GPAC [Reev80], and is a

major factor contributing to the usability of the sys

tem.

In spite of our difficulties, we believe we have demon

strated both the utility of gestures and the need for

good gesture recognition tools. Ultimately, such a

facility should be an Integral part of a programming

environment. There are at least two ways in which

this can be accomplished. One approach Involves

Integrating a catalogue of gestures Into a powerful

User Interface Management System (e.g. FLAIR

[WoRe82], and Menulay [BLSS83]). The extensibility

of such an approach must be carefully considered.

Indeed, the impact of gesture-driven input on UIMS's

remains to be assessed. An alternative approach is to

incorporate gesture-recognition tools into object
based programming environments such as Smalltalk

[lnga78] and ThingLab [Born81]. This is advocated in

[Fium83] . While this proposal likely to be more flexible

than the first, It Is equally likely that It will be more

resource-intensive. In any case, an implementation of

e ither approach will bp a significant improvement on

the current situation.

We believe that many t iming difficulties would be elim
Inated if our system were running on a stand-alone

Graphics Interface '83

system with a reasonably fast processor. Thus

gesture-based text-editors, VLSl-layout systems, and
other Interactive applications on personal computers

are certainly possible, and indeed desirable.

4. CONCLUSIONS

The need for more "natural" Interaction techniques has

been often stressed. This paper makes the modest
suggestion that gesture-based input is such a tech

nique. We have demonstrated Its effectiveness with
dialogues that are common to many Interactive appli

cations. Research Into the uses of gesture in human
computer Interaction is embryonic, and we hope to

have Inspired others to exercise their ingenuity in

developing effective gestures.

Experimentation with gestures and their composition is
essential. For this, powerful programming environ

ments are required. These environments do not

. currently exist, and consequently gesture-driven

dialogues can be unreasonably difficult to Implement.

Future programming environments must facilitate

experimentation with gesture-based dialogues with

the same simplicity and efficiency that pars er
generators currently permit with command languages,

and User Interface Management Systems permit with

menus.

5. REFERENCES

BFHL83 Buxton, W., Flume, E., Hili, R.. Lee, A.. and
Woo, C., "Etch: A system based on continu
ous hand-gesture driven input", vldeotape,
1983. Write to: W. Buxton, Department of
Computer SCience, University of Toronto,
Toronto, Ontario, MSS 1 A4.

BLSS83 Buxton, W., Lamb, M.A., Sherman, D., and
Smith , K.C., "Towards a comprehensive user
interface management system ", extended
abstract elsewhere In this issue, full paper
to appear in Computer Graphics 17, 3, (July
83).

Born81 Borning, A., "The programming language
aspects of ThingLab, a constraint-oriented
simulation laboratory", Transactions on Pro
gramming Languages and Systems 3, 4 (Oct.
1981), pp. 363-406.

BSRP79' Buxton, W., Sniderman, R., Reeves, W., Patel,
S., and Baecker, R., "The Evoulution of the
SSSP Score Editing Tools ", Computer Music
Journal 3 , 4, pp. 14-26.

- '95 -

Buxt82 Buxton, W., "An Informal Study of Selection
Positioning Tasks", Proceedings of Graphics
Interface '82, Toronto, May 1982, pp. 323-
328.

CaMN80 Card, S.K., Moran, T.P., and Newell, A., ''The
Keystroke-Level Model for user performance
time with Interactive systems " , Comm. ACM
23, 7 (July 1980), pp. 369-409.

Cole69 Coleman, M. L., "Text Editing on a Graphic
Display Device Using Hand-Drawn
Proofreader's Symbols", Proceedings of the
2nd UniverSity of Illinois Conference on
Computer Graphics, 1969.

EvTW81 Evans, K.B., Tanner, P.P., and Weln, M.,
"Tablet based valuators that provide one,
two, or three degrees of freedom", Computer
Graphics 16,3, (Aug. 81), pp. 91-98.

Flum83 Fiume, E.L., A Programming Environment for
Constructing Graphical User Interfaces: A
Proposal, M.Sc. Thesis, Department of Com
puter SCience, University of Toronto, Janu
ary 1983.

GIIT83 "Graphical Input Interaction Technique (GilT)
Workshop Summary", Computer Graphics 17,
1 (Jan. 1983), pp. 6-30.

l"ga78 Ingalls, D.H.H., "The Smalltalk-76 programming
system: design and Implementation ", Confer
ence Record of the Fifth Annual ACM Sympo
sIum on PrIncIples of Programmi ng
Languages, Jan. 23-26, 1978,pp.9-16.

Reev80 Reeves, W.T., GPAC Users' Manual (Fourth
Edition), Computer Systems Research
Group, University of Toronto, 1980.

SIKV82 Smith, D., Irby, C., Klmball , R. , Verplank, B., and
Harselm, E., "Designing the Star User Inter
face ", Byte 7, 4 (April 1982), pp. 242-283.

Teit64 Teitelman, W., "Real-Time Recognition of
Hand-Drawn Characters", Fall Joint Com
puter Conference 1964, Spartan Books, Bal
timore, Md., p. 559.

Tesl81 Tesler, L., "The Smalltalk Environment", Byte
6,8 (Aug. 1982),90-147.

WoRe82 Wong, P.C.S., and Reid, E.R., "FLAIR--User
interface design tool ", Graphics Interface
'82, May 1982, pp. 15-22.

Graphics Interface '83

