
- 203 -

ACTOR AND CAMERA DATA TYPES IN COMPUTER ANIMATION

Daniel Thalmann

Dept. D'I.R.O., Universite de Montreal

Montreal, Canada

Nadia Magnenat-Thalmann

Ecole des Hautes Etudes Commerciales

Montreal, Canada

ABSTRACT

New abstract graphical data types for computer animation are presented: animated basic types, actor
data types and camera data types. A new high level computer animation language has been based on these
concepts. This language, called CINEMlRA, also includes message switching, script subprograms and
scene control by a director. CINEMlRA is part of a complete 3D shaded animation system including a 3D
digitizing program, the 3D HORIZON graphics editor and the MUltiple Track ANimator system (MUTAN), an
interactive system for independently animating three-dimensional graphical objects.

KEYWORDS: 3D computer animation, abstract types, actor, camera.

RESUME

On presente ici de nouveaux types graphiques abstraits pour 1 'animation: les types de base an1mes,
les types acteurs et les types cameras. Un nouveau langage evolue pour l'animation par ordinateur a ete
base sur ces concepts . Ce langage, baptise CINEMlRA, permet aussi les echanges de messages, la defini­
tion de scripts sous forme de sous-programmes et le controle de scenes par un realisateur. CINEMlRA
fait partie d'un systeme d'animation tridimensionnelle avec realisme. Ce systeme est compose, entre
autres, d'un programme de digitalisation a trois dimensions, d'un editeur graphique a trois dimensions,
HORIZON et d'un systeme interactif multi-pistes (MUTAN) permettant d'animer de maniere independante des
objets a trois dimensions.

MOTS-CLES: animation par ordinateur 3D, t ypes abstraits, acteur, camera.

1. INTRODUCTION

Recent developments in the design of pro­
gramming languages have led to new concepts that
are fundamental to the control of motion and
temporal events. In particular, research in
structured programming and data structures has
allowed the design of high level languages such
as PASCAL [1], and SIMULA-67 [2] . Work on data
abstraction [3,4] is the basis of abstract data
types existing in a number of languages such as
ALPHARD [5], CLU [6] and ADA [7]. Abstract gra­
phical data types [8,9] have also an important
impact on computer graphics methodology. In the
abstract graphical t ype approach, the design of
an application programming system begins with its
specification as a set of complex abstract data

types. Then a refinement process is repeated
until the standard graphical types are obtained.

By introducing three-dimensional abstract
graphical types into PASCAL anb by providing the
means of defining any drawing with them, we ob­
tain the powerful structured graphic language
MlRA-3D (10]. MlRA-3D has been used for a cer­
tain number of applications, including the three­
dimensional computer animation film DREAM FLIGHT
[11,12].

For computer animation, other developments
in the design of programming languages are fun-

Graphlc8 Interlace '83

damental. Concepts of synchronisation and mes­
sage passing exist in SMALL TALK [13], CONCURRENT
PASCAL [14], MODULA [15] and ADA. Research has
also been done on actor systems like PLASMA [16,
17] and this has important implications for com­
puter animation.

This paper presents new abstract graphical
data types: animated basic types, actor data
types and camera data types. A new high level
computer animation language has been based on
these concepts. This language, called CINEMlRA,
also includes message switching, script subpro­
grams and scene control by a director.

2. MlRA-3D AND THE FILJ.'1 "DREAM FLIGHT"

Our film DREAM FLIGHT (Fig. 1-2) is a 3D
computer animated film of fiction which was com­
pletely produced by computer. The film has been
developed using the MlRA-3D programming language
to create the objects or motions . . MlRA-3D is a
powerful structured graphic language. It in­
cludes:

- three-dimensional vector arithmetic
- graphical statements
- image transformations
- viewing transformations: perspectives and

parallel projections
- standard procedures and functions.

The most important tool in this graphical
extension is the 3D abstract graphical type: the
figure type. The syntax is as follows:

<figure type>::= figure <formal parameter list>;
<block>

The formal parameter list and the block are
similar to the corresponding elements in a pro­
cedure. However, statements in the block mus t
build the graphical objet either by line drawing
specifications or surface specifications (for the
removal of hidden surfaces and shading).

To define a figure type, the following steps
must be carried out:

1) determine the characteristics of the
figure, which then become the parameters.

2) develop an algorithm which allows the
user to build the figure with the help
of the parameters.

Graphical variables are defined as variables
of graphical t ype . Four fundamental statements
allow the user to manipulate these variables :

- 204 -

1) create <f igure> «actual parameter list»
2) delete <figure>
3) draw < figure>
4) erase <figure>

The first operation creates the figure by
giving values to the corresponding type parame­
ters; the figure may then be drawn, erased or
deleted.

Although MlRA-3D is powerful, it took 14
months to produce the 13 minute film DREAM FLIGHT.
Abstract graphical types like figures are very
useful, but they don't have their own animation.
For this reason, we have designed animated basic
data types, actor data types and camera data
types.

3. ANIMATED BASIC DATA TYPES

Image transformations are defined by func­
tions depending on variables of three basic
t ypes: INTEGER, REAL and VECTOR. For example, a
translation is defined by a VECTOR translation,
and a rotation by a VECTOR (the center) and a
REAL number (the angle). Attributes like color,
intensity or source lights are also defined by
parameters of these types. Viewing transforma­
tions are also based on these types. For ex­
ample, a perspective projection is defined by its
center which is a vector. Animation of objects
(actors) and cameras can then be based on the
animation of basic parameters .

A good way of defining animation of these
parameters is to introduce animated basic t ypes.
This concept is a generalization of the Newton
concept defined in ASAS [18] . An animated basic
t yp e is a basic type defined in such a way that
each variable of this type (called an animated
basic variable) is animated. Three basic types
can be animated: INTEGER, REAL and VECTOR types.
An animated type is defined by giving the start­
ing and ending values of the number or the vec­
tor, the starting and ending times, and a func­
tion or law which describes how the va lue varies
with time. During the specified time interval,
variables of animated basic types are automati­
cally updated to the next value according to the
function. For example, suppose we wish to define
a vector that starts at time TSTART and moves
with a constant speed SPD from the point PT and
stops at time TEND. This is expressed follows:

~ TVEC=animated VECTOR (TSTART, TEND:
REAL; PT, SPD:
VECTOR);

val PT .. UNLIMITED;
time TSTART .. TEND;
law PT + SPD * (CLOCK - TSTART)
end;

Graphics Interface '83

- 205 -

Figure 1: A frame of DREAM FLIGHT film

Figure 2: A frame of DREAM FLIGHT fil:n

Graphics Interface '83

- 206 -

As the end position and the ending time are
mutually redundant values, they are not both re­
quired. It is possible to use UNLIMITED to avoid
specifying a value.

Expressions in the law can also involve
"CLOCK" that is the current time and "CURVAL"
that is the current value of the animated basic
variable.

Initialization of the animated basic varia­
bles are performed by the init statement. It is
at this stage that values of the parameters are
given.

e.g. init VEC (10, 13, «0,10,4»,
-- «3,0,0»)

Animated basic variables can be used wherev­
er a variable of the same basic type would be
used. For example, if A and B are two vector
variables, the following statement is possible:

A:=B cross VEC

4. ACTOR DATA TYPES

An ~ type is an animated abstract gra­
phical data type. The syntax is very similar to
the figure syntax, except that the life-time
limits of the actor have to be specified. Ani­
mated basic types and variables can be defined
within an actor type.

An actor can be constructed using figures
and these figures can be manipulated. The actor
block can contain any declaration except actor
and camera types, and any MIRA-3D stateme~
However, the viewing procedures cannot be in­
voked, because it is not the role of an actor to
manipulate visual parameters. The time interval
exactly defines when the actor exists. If the
actor type CAR is defined as:

~ CAR = ~ (TINIT: REAL);
time TINIT .. 20;

actors of CAR type will be on the scene between
the time TINIT and 20.

As in the case of animated variables, actor
variables are initialized by the init statement.
For example, two different variables of CAR
t ype can be initialized:

var CARl,CAR2: CAR;

init CARl(lO);
init CAR2(12);

It is also possible to use an actor type as
another PASCAL type. For example we can define:

~ CARS: array [1..20] of CAR

We now give an example of an actor type: we
define an actor that is a stone (of icosahedric
shape) that falls from a position P until it
arrives at the level O(Y=O), for example a water
surface. The actor type STONE is define in
Fig. 3. --

In many cases, it is difficult to decide in
advance when an actor must start moving. In our
example, suppose that the stone has to begin
moving when a person (another actor) drops it.
This can be performed by removing the TSTART pa­
rameter in the STONE actor and replacing the
lower time limit TSTART in the TVEC type by
SIGNAL. The PERSON actor type must contain a
start ROCK statement at the right time.

More generally, a start A statement has the
immediate effect of replacing all lower SIGNAL
time limits of the actor A by the current run­
time. It can make the actor appear and/or start
the motion of animated variables declared within
the ~ type. Similarly, a stop B statement
has the immediate effect of replacing all higher
SIGNAL time limits of the actor B by the current
time. It can make the actor disappear and/or
stop the motion of animated variables declared
within the actor type.

5 . CAMERA DATA TYPES

A camera type is also an animated abstract
type. Its syntax is exactly the same as the
syntax of an actor type, but the actor keyword
is replaced by t·he camera keyword-:---Time limits
have the same meaning as for an actor. Animated
basic types and variables can be defined within
a camera type, but no actor types or other camera
types can be used. The statements cannot mani­
pulate figures and actors because this is not the
role of a camera. The goal of a camera type is
to define the values of the visual parameters and
how they vary with time. Typically . statements
in a camera t ype are viewing procedure calls.
These can be those of the GSPC Core System [19]
and their parameters can of course be animated
variables. Fig. 4 shows an example of camera
type.

Some viewing procedures other t han the GSPC
procedures have also been predefined:

PARACAMERA (EYE, INTEREST, ZOOM)
PERCAMERA (EYE, INTEREST, ZOOM)

Graphlc8 Interface '83

- 207 -

type STONEaactor(P:VECTOR;TINIT,TSTART:REAL);
time TINIT •• UNLIMITEO;
type TVEC-animated VECTOR;

va 1 P.. < <P • X, ° , P • Z > > ;
time TSTART •• UNLIMITED;
law P-O.5*9.81*SQR(CLOCK-TSTART)

end;
var VEC:TVEC;

ICOSA:ICOSAHEDRON;
begin

init VEC;
create ICOSA (VEC,CFA,DIR);
include ICOSA

end;

Fi gure 3: The STONE a c tor t ype

type TCAM-camera(TINIT,TEND:REAL);
time TINIT .• TEND;
type TVEC-animated VECTOR(VSTART,VSTEP:VECTOR);

val VSTART •• UNLIMITED;
time TINIT •• TEND;
law CURVAL+VSTEP

end;
var Vl,V2:TVEC;

begin
init VI «<0,0,1»,«0,0.1,0»);
init V2 «<20,25,-20»,«0,1,-0.5»);
VIEWPORT«<O,O»,«I,I»);
WINDOW«<-20,-5»,«20,35»);
PLANENORMAL(Vl);
PERSPECTIV(V2)

end;

Fi gure 4 : A camera t ype

Figure 5: A 3D animation s ys tem

Graphics Interface '83

- 208 -

These two procedures allow the user to
easily define visual parameters for parallel and
perspective projections by giving the position of
the eye, an interest point and a zoom value.
Rectangular and polygonal clippings can also be
specified in a camera type. It is also possible
to clear or color a rectangular or polygonal
area. These capabilities unable special effects
to be created similar to those created with op­
tical printers. When several cameras are running
at the same time, cross-dissolves effects are
easily produced.

Camera types can be used just like other
PASCAL types.

e.g. var CAM: array [l .. 3J ££ TCAM;

The start and stop statements can also be
applied to camera variables.

6. CINEMlRA SCRIPTS

Animated basic t ypes, actor data types and
camera data types have been introduced in the
CINEMlRA language. This language is a high level
computer animation language based on script sub­
programs.

A ClNEMlRA script is a subprogram dedicated
to computer animation. A program can invoke
several scripts, but only one at the same time.
A script is under the control of a director which
is normally not apparent, but can communicate
with other entities of the system by messages.
A script has a name that is an identifier and can
have parameters like a procedure. A script block
is composed of declarations (constants, types,
variables and subprograms), statements and
scenes. The declaration part can include all
declarations allowed in MlRA-3D, animated basic
t ypes and figure types. Actor types and ~
types as described in previous sections of this
paper must be defined in scripts. A script is
a sequence of scenes. The scenes can be preceed­
ed by a sequence of statements to initialize ob­
jects that are common to several scenes. The
scene has a name and consists of a sequence of
statements that serve mainly to initialize
actors, cameras and decor. The decor is a col­
lection of graphical objects that do not move
or change during the entire scene. In CINEMlRA,
a decor is defined by the statement decor.

e.g. create TREE(...);
crea te SNOW(...);
create
decor

SKY;
TREE, SNOW, SKY

A shoot statement performs the shooting
phase. Decor, actors and cameras are automati­
cally placed during the shooting phase. The
shoot statement can therefore take a very simple
form:

shoot until <expression>

where the expression is the upper time limit of
the scene in seconds. The lower limit is the
upper limit of the previous scene (0 at the
beginning). It is also possible to include spe­
cific statements in the shoot statement by adding
a do clause like:

shoot until< expression> do< statement>

This feature can be useful for some special
effects, but it is usually to be avoided because
statements cannot manipulate actors and cameras,
but only figures.

A script can contain more than one scene.
Each scene can have initializations and must have
a shoot statement. Actors, cameras, decor and
animated basic variables can be activated for
several scenes or parts of scenes. In this case,
they have to be initialized before the first
scene and not within a scene.

Synchronization of actors and cameras can
sometimes be completely forecasted. This means
that synchronization mechanisms can be programmed
using only init, start and stop statements -
However, this kind of synchronization is insuf­
ficient, because of the lack of dialog between
actors and cameras. On of the best ways of im­
plementing this kind of synchronization is to use
the concept of message switching already existing
in PLASMA and ASAS. CINEMlRA allows actors and
cameras to switch messages by using the two
statements send and receive . A message can be
also sent (o;-received) within the body of a
scene. In this case, the sender (or the receiv­
er) is necessarily the director. The director
can take any message even if he was not the pre­
sumed receiver.

7. A 3D SHADED ANIMATION SYSTEM

CINEMlRA is part of a general computer ani­
mation system as shown in Fig. 5. Basic figures
can be created by using the HORIZON [20J graph­
ics editor or by using the MlRA-3D programming
language. They can also be created by using a
3D digitizing program. Fig. 6 shows an example
of car before it is shaded. MUTAN [21J is a
MUltiple Track ANimator system for motion syn­
chronization. It is an interactive system for
independently animating three-dimensional graph-

Graphics Interface '83

- 209 -

ical objects. It is also a good tool for syn­
chronizing motion with sound, music, light or
smell. To make this possible, MUTAN handles sev­
eral tracks at a time. All animation constraints
for a graphical object are recorded on each
track . A program in CINEMIRA will be able to
read and write MUTAN tracks.

ACKNOWLEDGEMENTS

This work is sponsored by the Natural
Sciences and Engineering Research Council, the
Government of Quebec (FCAC) and the Business
School of Montreal.

REFERENCES

(1] Jensen, K. and Wirth, N. "PASCAL-User
Manual and Report", Springer-Verlag, 1974.

(2] Dahl, 0., Myrhang and Nygoard, "The SIMULA
67 Common Base Language", Norwegian Comput­
ing Centre, Oslo, 1968.

(3] Liskov, B. and Zilles, S. "Programming
with Abstract Data Types, Proc. SIGPLAN
Symposium on Very High Level Languages,
March 1974.

(4] Guttag, J. "Abstract Data Types and the
Development of Data Structures", Comm.
ACM, Vol. 20, No 6, 1977.

(5] Wulf, W.A.; London, R. and Shaw, M. "Ab­
straction and Verification in ALPHARD",
Carnegie-Mellon Univ., Dept. Comp.Sc., 1976

(6] Liskov, B.; Snyder, A; Arninson, R. and
Schaffert, C. "Abstraction mechanism in
CLU", Comm. ACM, Vol. 8, 1977, pp. 565-576.

(7] U.S . Dept. Defense, "Reference Manual for
the Ada Programming Language", 1980, Gov.
Printing Office Order L008-000-00354-8.

(8] Thalmann, D. and Magnenat-Thalmann, N.
"Design and Implementation of Abstract
Graphical Data Types", Proc. COMPSAC' 79,
IEEE Press, pp. 519-524.

(9] Magnenat-Thalmann, N. and Thalmann, D.
"The Use of 3D Abstract Graphical Types in
Computer Graphics and Animation", Proc.
I NTERGRAPHICS'83, Tokyo.

(10] Magnenat-Thalmann, N. and Thalmann, D.
"MIRA-3D: A Three-Dimensional Graphical
Extension of PASCAL", Software-Practice
and Experience, 1983.

(11] Thalmann, D.; Magnenat-Thalmann, N. and
Bergeron, P. "Dream Flight: A Fictional
Film Produced by 3D Computer Animation",
Proc. Computer Graphics'82, London, Online
Conf., 1982, pp.352-367.

[12] Magnenat-Thalmann, N.; Bergeron, P. and
Thalmann, D. "Above Sea and Undersea Com­
puter Animation Scenes", Proc. 1983 Intern.
Computer Color Graphics Conf., Talahassee
Florida, 1983.

(13] Goldberg, A. and Kay. A. "SMALLTALK-72
Instruction Manual Learning Research Group,
XEROX, Palo Alto, 1976.

(14) Brinch Hansen, P. "The Programming Language
Concurrent PASCAL", IEEE Trans. on Software
Eng., vo1.1, n02, 1975, pp.199-207.

(15) Wirth, N. "MODULA: A Language for Modular
Multiprogramming", Software-Practice and
Experience, 7, I, 1977, pp.3-35.

[16] Greif, 1. and Hewitt C. "Actor Semantics of
PLANNER-73", Proc. ACM SIGPLAN-SIGACT Conf.
PALO ALTO, 1975.

(17) Hewitt C. and Atkinson, R. "Parallelism and
Synchronization in Actor System", ACM
Symposium on Principles of Programming
Languages, pp.267-280.

[18] Reynolds, C.W. "Computer Animation with
Scripts. and Actors", Proc. SIGGRAPH'82,
289-296.

[19] Status Report of the Graphic Standards
Planning Committee of ACM/SIGGRAPH, Computer
Graphics, vol. 19, no 3, 1979.

[20] Magnenat-Thalmann, N.; Larouche, A. and
Thalmann, D. "An Interactive and User­
Oriented Three-dimensional Graphics Editor",
Proc. Graphics Interface'83, Edmonton.

[21] Fortin, D.; Lamy, J.F. and Thalmann, D.
"A Multiple Track Animator System for Mo tion
Synchronisation", Proc. SIGGRAPH-SIGACT
Workshop on Motion, ACM, Toronto, 1983 .

Graphics Interface '83

~B! \ \ i
f1Ittt 1/ 11 /

rl/U1ff/IL
! !! if
!!7~"g

- 210 -

Figure 6: A CORVETTE (digitized by Nicolas Chourot)

Graphics Interface '83

