- =215 -

A STRUCTURED MOTION SPECIFICATION IN 3D COMPUTER ANIMATION

Philippe Bergeron

Département d’Informatique et de
Recherche Opérationnelle
Université de Montréal
Montréal , Québec

Invited paper

ABSTRACT

The main objective of this paper is to set out a structured approach to define the concepts,
terminology and notations inwolved in the description of choreography in a computer animation
sequence . Here the meaning of the word choreography should not be taken as in dance termino-
logy, since we are using the word as a way to describe ongoing dynamic processes in a scene.
This approach has been designed both for script based and interactive computer animation
systems . A new way to describe the analogy with the real world of director and actors is presen-
ted. Formal notations of the same concepts are described. The relationship between the director
and the actors is accomplished through the use of glebal and local lists of events. A structured
example as part of a theoretical scripted system is described in PASCAL . The techniques used to
describe choreography are completely independent from the display software. This is why we have
emphasized our work in motion specification rather than in the quality of the final image.

KEYWORDS : computer animation, motion specification, choreography.

INTRODUCTION

Over the past few years, computer animation
has become one of the most important branches of
computer graphics. This technique can provide
incredible, dazzling effects for the advertising
or entertainment industry. However, even if there
is a number of animation languages or interactive
systems available on the market, there is no
accepted standard method wused to describe
choreography . Here motion choreography has a more
general meaning than in dance terminology; it can
be defined as a way of describing ongoing dynamic
processes in a scene. It is not restricted to
human movements: motion specification of a cube,
a bird or a flying saucer can be part of the same
choreography. Terminology and notations inuvolved
in the description of computer animation choreo-
graphy are presented in this paper. The author
has designed this proposal during the making of
Dream F/ight [1,2,3], a story-telling short-
subject completely done in 3D computer animation.
The proposal was developed both for script based
(e.g. language-driven systems) and interactive 3D
computer animation systems. It is independent
from the base language of a scripted system.
Also, the techniques used to describe choreo-
graphy are completely independent from the dis-
play software. This is why we have emphasized our
work in motion specification rather than in the
quality of the final image. An analogy with the

Graphics

real world of motion pictures is described. The
concepts of director, and actors are presented in
computational notations. The relation between the
director and the actors 1s accomplished through
the use of global and local lists of events. The
director keeps the global list of events for him-
self , while sach actor has his own local list of
events.

THE DIRECTOR

In the real world, the director may direct
any number of actors in the performance, of cour-
se with sometimes more than one at the same
moment . Conceptually speaking, the director keeps
a list of all the aectors involved in the perfor-
mance. This list is called the glebal 1list of
events (the GLE). For each actor, the GLE provi-
des the time of his start (actor’'s birth) and the
length of his play (acter’s life). Then, adding
the acter’s life to his birth provides the time
of his death. Fig. | shows an example of a GLE.

It is evident that in real life there is no
such formal list kept by the director. Houwever,
since accuracy is necessary In computer ani-
mation, the GLE is perfect to create the analogy
between real and computer-generated environment.
The same GLE is presented in a schematic way in
fig. 2.

Interface '83

Each time a new frame is generated, the
director activates all the technicians that are
involved in the play (light technician, camera-
man, and so on. The notion of activating a tech-
nician means setting out parameters depending on
the frame number, such as the light and eye posi-
tions, that will later be used by the display
software. It will not be discussed further in
this paper). After, the director scans the GLE.
If an aetor is alive at the current moment, the
director activates his bedy. This is the only
message sent to acters besides the end. In fact,
in real world, on the day of the performance, the
director sends only two messages (or cues) to
each performer: the starting and the stopping
cues. The rest of the time, each actor is on his
own. He knows exactly what he has to do and when
to do it, without any intervention from the
director. The concept of acter will be explained
in the next section. In real life, activating the
actor’'s body simply means that the bedy is on
stage and (partially or not) visible to the
audience. In the computational process, it means
that the bedy is catalogued in a specific file
that will later be treated by the display sof twa-

- 216 -

3° Show each body of the active aeters
(* display softuware =)
4° Interface with the output (physical camera, film
recorder)
5° Update the moment value
end

THE ACTORS

In real life, once the director has sent the
starting cue, the actor knows exactly what he has
to do without any intervention. He then activates
his own chronometer (at least conceptually), so
that each of his future moves will depend on the
time he started, and not on that of the whole
performance. An acter is divided into two parts:
his mind and his bedy. Once he is on his own, the
actor’s mind dictates the moves his body must do,
and the audience will only see the result from
that process: the new position of the bedy. The
situation is similar with computer animation.

The concept of computerized actor was first
introduced by Carl Hewitt [4,5], and used in the
description of the ASAS language developed by
Craig Reynolds at the Massachusetts Institute of

Technology [6,7]. This concept suggests an ana-
logy with a theatrical performer. Let us present
more formally this concept in computational nota-
whii ie perfornance not over> dw tions, keeping the real world analogy. The style
begin of notation in this section was inspired by the

1° Activate the technicians paper of Mudur and Singh [B]. Here, the notations

8 i hat .
" Bgan Yhe GL.E‘ Y RCUINALE The weteEs Liat S0 are extended to the aector’s concept. An actor is
alive at this moment

re once the GLE has been completely scanned. Let
us give a formal interpretation of a director
using a loop (called the director’s loop):

0 120 160 270 320
Start B8irth of Birth of Death of Birth of
of M1 csird” ["waves on [“Bire" [“Spinning
performance the pond" cube"”
Life:150 Life:370 Life:180
500 510 530 650 650
Death of Birth of Death of Death of End
"Spinning - "Fish") “waves on ["Fish" 3 of
cube” the pond" performance
Life:140

a 100 200 300 400 500 600 700 800 900 1000
Absolute clock ¢ + ~+ + + -

Actor 1 F———l——4
2 A’)
Actor 2 — S —
Actor 3 —_—
A
Actor 4 T
where A.I : Bird

A2 : Waves on the pond

A3 : Spinning cube

A‘1 : Fish

Fig. 2

Graphics interface '83

an independent element (it could be a procedure
in a scripted system) responsible for a set of 3D
models in a sequence. These 3D models may suggest
the aector’s bedy.

Notatcon :The aetor’s bedy B is a set of 3D
models ™M,,...,M. logically dependent but not
necessarily physically dependent. Most of the
times In this paper, we will refer to B as
being only one M. In a computer-generated
environment, B can be any dynamic 3D model,
and is not restricted to models simulating
human beings.

The actor’s bedy transformation from frame
to frame 1is called a B-transformation (B for
body) . A B-transformation is expressed as a set
of mathematical functions. These will be referred
to as the alter-bedy functions (Mudur and Singh
use the term alter-image, which suggest a 2-D
world) . These alter=-bedy functions should be com-
pared to the actor’'s mind since it is them that
dictate the moves the body must do. Some interes-
ting research has been done to include time
explicitly as a fourth dimension [3]. In order to
keep the analogy with the real world (mind/body

via transformation/model), we will awvoid taking
this path.
Notation:ilet S be the set of alter-body

functions F,,...,F, applied to B. Then (s.B)n
represents the result of dividing S into n
parts (n frames) and to apply each “"smaller” S
to the bedy B in order to obtain the desired
transformation. We assume a B-transformation
to be characterized by its S:

($.B)" = (Fy.Fy.y...Fy.Fy.B)"
= (Fy.(Fy.q.(...Fy.(Fy.B)...00)"

For example, a simultaneous scaling (F;) and
translation (F,;) of n=86 frames on B can be
expressed as (S5.8)%8 = (FZ.(F1 .B])as (see fig. 3).

0 50 100 150 200
Absolute clock ¢ + + + 1

0 S 96
-

B before B after

Actor's chronometer
where S : F] : Scaling
FZ : Translation

Fig. 3

In a B-transformation, the same S is applied
to B, regardless of the frame number (in other
werds , each F must be a continuous function defi-

- 217

w

ned the same way). But ln real life, an actor
rarely uses the same set S of moves in a uwhole
performance. For example, an actor walks to a
table in 5 seconds, then the "result" (which is
the body B’ after applying the set S of “walking
alter-body functions" to the initial body B 1in
n=120 frames) takes a glass of water in 3
seconds . In the acter’s computational process,
it is possible to apply successively (in time) a
series of B=transformations, which will be refer-
red to as the local list of events (the LLE).

Notatcon :Let t be the number of B~
transformations applied to B. Let n; be the
length in frames of the jth B=-transformation.
Let Sj be the set of alter=-bedy functions of
the jth B-transformation. UWe shall adopt this
notation to represent the life of an actor A:

By = (Sy.(Sy.y...(S)...5;.(85.Bg))2,)N . .)"e-1)ne
t

where Enj = length of aeter’s life in frames
j=1

f\.1 T|2 n. n
Frame- } +

51 S2 S S

b |
transf} 4 — e ...

B0 B8

LLE

Fig. 4 shows a schematic presentation. Cne
can see that B; is the actor’s bedy at his birth
and B, the bedy at his death. Only the elements
to which a B-transformation can be applied can
move independently. Since many independent ele-
ments can be part of an actor'’s bedy B, it is
possible to apply a transformation only to
certain points of B.

An animator can add as many alter-bedy func-
tions as needed to any existing B-transformation.
What happens then if he wants an alter-body func-
tion to start in the middle of a B-transformation
and to finish in the middle of another one? A
natural solution would be to add a comparison
test on the frame number within the B=-
transformation. The new alter-body function F
would be executed only if the current frame num-
ber is greater than the middle value of the B=-
transformation. This is not possible because of
the definition of a B=transformation (recall that
each F must be a continuous function defined the
same way, regardless of the frame number). This
fact introduces the notion of parallel LLEs. It
forces the animator to build a new LLE parallel
to the existing LLE.

Graphics Interface '83

Notation:Llet | be the number of LLE applied to
B.
Let t, be the number of B-transformations of
the j*h LLE.
Let n;; be the length in frames of the j'" B=-
transformation of the i%*" LLE.
Let S;; be the set of alter-bedy functions of

the j*P B-transformation of the i'h LLE.
(o]
Actor's chronometer |} -t +—H =4 + -
s s s
LLE, } 11 + 12 ' 13 —
LLE S21 ¢
L —— £y
: Si1 :
LLE; s t;
» .
. s s :
W, 5 P8 % IR 5 DY |
LLE } 8 B t

A schematic presentation is shown in fig. 5.
The length of aeter’s life in frames is not any
more dependent on the length of a single LLE. The
animator can create as many LLEs as necessary.
However , he should be careful since the order in
which the LLEs are executed on a B is important
if they do not commute. Usually, a maximum of two
LLEs is sufficient (as in Jream F/ight).

To clarify explanations, all the transforma-
tions 1nvolved in the future examples are stan-
dard graphic transformations. However, one must
understand that the same concepts are valid with
any transformation written by the animator. Let
us give an example:

LLE; => S,,: F, = Scalings/37/its centre 0-100
F, = Translation/(20,30,-10)
S45: Fy = RotationY/0.5 revs0Origin 101-200
Sy3: Fy = StretchX/4/0rigin 201-300
LLE, =>» S,y: Fy = Interpolation/Bird 150-250
F, = Scalings0 .5/its centre
Fz = RotationZ/1 rev’/its centre
Sy2: Fy = Translation/(40-,30,12) 250-350

0 S0 100 150 200 250 300 350
Actor's chronometer } + t t t t t 4

e, 1 S 12, 13

LLE, - : —

- 218 -

Fig. 6 represents the same LLEs with sche-
mas . Ue discover that at frame 225, all the alter=-
body functions of Si3 (sz'Fi) and Soy (Sz1 Fy F2
and Fy) are successively applied to B. One can
see why the order in which the LLEs are specified
is so important.

An actor’s boég can stop moving for a
moment. The B=transformation that handles this
time interval is called the identity B-

transformation. Formally, this means that given
any paire of frame numbers within that B=-
transformation, the actor’s body topological and
geometrical information is absolutely identical.
All the prop sets (or decor) are static objects.
They could also be considered acters having one
global identity B-transfermation.

An actor’s body can also become inuvisible
for a moment without dying. This is called a null
B-transformation. Unlike the identity B-
transformation, the body must contain no topolo-
gical information. It is equivalent to not acti-
vating the bedy. As an example, a static blinking
object would be composed of a cycle containing an
identity followed by a null B-transformation.

EXAMPLE DIRECTOR-ACTORS

In order to make the principles clear, let
us show an example of a relationship between a
director and an actor. The length of the perfor-
mance is 960 frames (40 seconds). Let us describe
the GLE:

Birth Life Description

115 250 TheCube
400 150 Juggler
500 400 Spiral formation

Fig. 7 shows the GLE.

0 100 200 300 400 500 600 700 800 900
Absolute clock ¥ + + - + > -
Ay
Actor 1 —_—
Ay
Actor 2 —y
A
Actor 3 ¥ 3 —
where A.l : "TheCube"
AZ: “Juggler"
A3 : "Spiral formation"
Fig. 7

Graphics Interface ’83

- 219 -

Let us now present in detail the actor Ay
"TheCube" by first describing its LLEs:
Frame
LLE; => S;,: Fy = Translation (5,5,0) 0-70
8,5 ldentity B-transformation 70-100
Sy3: Null B-transformation 100-180
Sy4: Fy = RotZs0 .25revsits centre 160-250
F, = Translation/(0,-5,0) »

LLE, -> S,.: Fy = Translation/(42,23,-12) 190-250

100 200 300 400
Absolute clock — + t —
0 50 100 150 200 250
Actor's chronometer L + + + + -
S0 512 543 Sy
LLE1 L + + + {
521
LLE, A
Fig. 8

Fig. 8 shows the same LLEs using the schema-
tic presentation. Finally, flg. 8 show the
actor’s life (without LLEz) using drawings.

Absolute Actor's Actor's
clock chronometer mind
L 4 /
-_51551 0 Fy:Translation
S
Director 1
at 115
70 Identity
512
100 Null
13
160 F]:Rotation

FZ:Trans1ation

< -;@ 250

Director
at 365

Starting
body

SCRIPT BASED AND INTERACTIVE SYSTEMS

This approach has been designed both for
script based and interactive 3D computer ani-
mation systems. However, up to this day, the
author believes that scripts are the best way to
control 3D computer animation. Of course, unlike
in Interactive systems, animators have only indi-
rect control over the motion. But this is a
minor drawback compared to all the advantages.
One of the most important advantage in using such
system is its flexibility. The set of available
commands is virtually unlimited. The facility of
writing new commands is dependent on the base
language. UWith an interactive system, a complex
motion requires elaborate and cumbersome use of
available commands. Another major advantage is
the possibility to create and update a "digital
stockroom®”. Animators writing their script can
insert any new portion of code in the stockroom

Half-way
body

Resulting
body

Length

170

057

n12:30

L]
————
’

30)60 90

(s)78)

(Sq14-(Sy3-(S12-(511-89
LR l

Ba
B3

Graphics Interface ’83

- 220 -

if they think this code is of general use. These

portions can be actors, B-transformations, or any Pregram Script (input, output);
utility function. Later on, anyone can search “"’R" T i T L
1 unTime = ; [* Length os sequence *)
through the stockroom. An animator may find a StepFrame= 2, (* Test: 2:1 speed ratio)
portion of code which he would have written MaxBTrans= 4; (* Max B-trans. for 1 LLE %]
otherwise. He may take it as a whole or make MaxLLE = 2; (* Max LLEs for 1 actor %]
minor changes without rewriting the function.
type
Point= record X,Y,Z:real end;
Most of the existing animation languages Model=...[* structure of a model: points, edges, .. .%)
such as ASAS [6,7] (a LISP extension), or CINEMI- Actor= reeerd Birth,Life:0..RunTime;
RA [11] (a PASCAL extension) can follow our EV'"“‘:"IB (1--HFaxLLE,l-.HlxﬁTNMl
of record Frame:0..RunTime;
approach. However, since these languages are EirstTine:Eo61ean
usually not widely distributed, any high-level end end;
common language can follow this proposal. var TheCube, Bird: Actor;
Moreover, 1t 1is not necessary for the base cu“m.'d'l‘ GurrantBody: Hodel ;
Fraction:real;
language to provide a way of programming concur- CurrentFrame :0 . .RunTime;
rent events. The notion of parallel processes (* External procedures:
such as actors can be simulated via any common Let. (var P:Point; X,Y,Z:real)i
P Translate (A:Model; P:Point; var B :Model 1
guage . Rotatez (R:Model; P:Point; R:real; var B:Model) ;
Scale (R:Model; P:Point; V:real; var B:Model) ;
Let us now describe the concepts of director Act ivate (A :Model)
. " RotateYPoint (R:Point; P:Point; R:real; var B :Model) ;
and actors i.n a form of a PASCAL program, L:lSlng Camera (Eye,Int :Point; Spin,Zoom:real *
an example with two aeters: "TheCube" and "Bird". ShowAct iveBod ies :
Only the actor “TheCube" will be described in TakeOneFrame '

detail. Its LLEs are exactly the same as in the *)

previous section. The light technician and the
cameraman are mentioned but not described.

Scene in Dream F/ight:
- Three alive aeters: the alien, the stone thrown by

the alien into the water, and the waves.
- Five prop sets (or static actors): the star field,
horizon, pond, trees, and ground stones.

Graphics Interface ’83

- 221 -

procedure ActiTheCube (RelFrame:integer);

var
TempPoint :Point;
begin
with TheCube de
begin
if RelFrame <= Event[l,1] .Frame then
begin
Fraction:=RelFrame 7 Event[1,1& .Frame;
8114 Let(TempPoint, Fraction#S, Fraction*5, 0] ;
Translate(CubeModel, TempPoint, CurrentBody)
end else
if RelFrame <= Event[1,2] .Frame then
begin
if Event[1,2] .FirstTime then
begin
Event[1,2]) .FirstTime := false;
$424 Let(TempPoint, 5, 5§, 0);
LLE ﬁ Translate(CubeModel, TempPoint, CubeModel)
t end;
CurrentBody := CubelModel
end else
s if RelFrame <= Event[1,3] .Frame then
1!ﬂ CurrentBody := Null
else
if RelFrame <= Event[1,4] .Frame then
begin
Fraction := (RelFrame-Event[1,3] .Frame)/(Event[l,4] .Frame-Event|[1,3] .Frame) ;
. RotateZ(CubeModel, Origin, Fraction#0 .25, CurrentBody) ;
14 Let(TempPoint, 0, Fraction®-5, 0);
Translate (CurrentBody, TempPoint, CurrentBody)
end;
if RelFrame >= Event[2,0] .Frame then
if RelFrame <= Event(2,1] .Frame then
begin
LLE, J Fract ion:=(RelFrame-Event[2,0] .Frame] 7 (Event[2,1] .Frame-Event[2,0] .Frame) ;
EPPR Let(TempPoint, Fraction*42, Fraction*23, Fractionw-12);
Translate(CurrentBody, TempPoint, CurrentBody)
end
end;
Act ivate(CurrentBody)
end ;
begin
with TheCube deo
begin
Birth:=115; Event([1,4] .Frame :=250;
Life :=250; Event[2,0] .Frame :=190;
Event[1,1] .Frame :=70; Event[2,1] .Frame :=250;

Event[1,2] .Frame :=100; Event[1,2] .FirstTime :=true;
Event([1,3] .Frame :=160;

end;

with Bird de ...;

(* creation of propsets [static actors) and models *)

CurrentFrame := 0;
while CurrentFrame <= RunTime de (* director's loop *)

begin
LightTechnician(CurrentFrame) ; Optional when the aester
Cameraman(CurrentFranme) ; knows his death

with TheCube de
Ay if (CurrentFrame >= Birth) and (CurrentFrame <=|Birth+Life)] then
Act iTheCube(CurrentFrame-Birth) ;

Director's loop <
with Bird de
Az

if (CurrentFrame >= Birth) and (CurrentFrame <= Birth+Life] then
Act iBird(CurrentFrame-Birth) ;

ShowfAct iveBodies; (% Display software *]
TakeOneFrame; (* Interface with the output *]
CurrentFrame :=CurrentFrame+StepFrame

end

Graphics Interface ‘83

It is essential in 3D computer animation to
be able to perform quick run-through tests of
sequences . Unless the system is nearly real-time,
it has to allow verification of sequences without
checking each single frame. The way the softuware
of the example is written can be classified as
absolute, by opposition to incremental. It per-
mits quick run-through tests, that is, a direct
access to any frame number within a B=
transformation. This is why we add the variable
StepFrame (instead of the value 1) to
CurrentFrame in the director’s loop. For example,
a sequence with the value 4 assigned to StepFrame
will run with a 4:1 speed ratio. If all the
actors have only one LLE, then the wvalue of
StepFrame must be a positive integer smaller than
or equal to the length in frames of the shortest
B-transformation of any actor. Otherwise we might
“jump" over a B=transformation, creating an false
effect. There are more restrictions on StepFrame
if some actors have several LLEs.

There is no doubt for the author that the
best way to control 3D computer animation
choreography in the future will be by using inte-
ractive systems. The designers of such system
should be aware of animator’s needs such as
flexibility. Following our terminology, one
should be able to enter interactively a GLE and
all the aetor’s LLEs. Moreover, the animator
shculd be free to specify any kind of B=
transformation. Unfortunately, this point seems
to be the most important drawback of existing 3D
interactive systems. Usually, the set of availa-
ble transformations is limited to a standard
menu. Any complex transformation can be created
only by using a subset of the existing transfor-
mations.

CONCLUSION

The author has presented a structured
approach on standardization of the concepts, ter-
minology and notation involved in the choreo-
graphy of a computer animated sequence. This
approach is designed both for script based and
interactive 3D computer animation systems. It is
independent from the base language for a script
based system. It is mostly limited to regular
motion. Future research should be made to stan-
dardize notations for blending functions creating
irregular paths through space (curved interpo-
lation) , message passing between actors, and ani-
mation of parameters defining the display softuwa-
re (animating the shadow, for example). The com-
puter animation community must look forward to
developing a structured, formal and complete
standard for any type of computer animation

- 222 -

systems and for any motion. Animation is probably
the most “esoteric“ fleld of computer graphics.
From place to place, computer animators do not
speak the same language. A standard would encou-
rage exchange of ideas as well as stimulating
verbal or written communication of specific types
of choreography.

ACKNOWLEDGEMENTS

The author is grateful to Plerre Lachapelle
and professor Gllles Brassard of Université de
Montréal who gave some helpful advices. The con-
cepts have been developed as a thesis requirement
for a Masters degree in Computer Science under
the supervision of Gilles Brassard.

REFERENCES
[1] BERGERON, P., MAGMNENAT-THALMANN, N. and THALMANN,
D. The Movie OREAM FLIGHT. Zf&mm Fi/m.

Available from £fcole des Hautes Ftudes
Commerciales, 6255 Dece//es, Montreal, PAQ,
Canada, H3T 1VE. 12 min.

[2] THALMANN, D., MAGNENAT-THALMANN, N. and BERGERON,
P. "DREAM FLIGHT: A Fictional Film Produced by
30 Computer Animat ion”. Proceedings oFf
Computer Graphics 82, ontine Conference,
London. October 1982. pp. 353-357.

[3] MAGNENAT-THALMANN, N., BERGERON, P. and THALMANN,
D. "Above Sea and Undersea Computer Animation
Scenes . " Jnternational Computer Color Graphics
Conference 83, 7a//ahassee, Florida. March
1983,

[4] GREIF, I. and HEWITT, C. “Actor Semantics of PLAN=-
NER=73". Proceedings of ACM SIGPLAN-SIGACT
Con¥., Palo Alto, CA, January 1975.

[B] HEWITT, C. and ATKINSON, R. “Parallelism and
Synchronization in Actor System”. AcH
Sympos {um on Principles of Programming
Languages 4, L .A. CA, January 1977.

[6] REYNOLDS, C. “Computer Fin imation in the World of
Actors and Scripts”. SN Thesis, NIT
(Architecture Nachine Group), MNay 1978.

[7] REYNOLDS, C. “Computer Animation uwith Scripts and
Rctors™. Proceedings of the ACHN SIGGRAPH' 82
Con¥ ., Boston, MASS, July 1982.

[8] MUDUR, S.P. and SINGH, J.H. "A Notation for
Computer Animation". JEEE Trans. on Systems,
Man, and Cybernetics, Vo/. SMC-8, no.4, Apri/
21978,

[8] FOURNIER, A. “A Proposal for a Four-Dimensicnal
Graphics Sustem”. Proceedings of the 7N conf.
of Canadian MNan-Computer Communications
Society (CMCCS). June 1981 .

[10] “Status Report of the Graphics Standards
Committee”, Computer G&Graphics vo/. 13, ro 3,
August 1272.

[11] THALMANN, 0. “"Actor and Camera Data Types in
Computer Animation™. Proc. CMCCS 83, EFdmonton,
Alberta (these proceedings). May 1983

Graphics Interface '83

