
- 233 -

ANALYSIS OF A 3D DESIGN LANGUAGE

David P. Makris
International Business Machines Corporation
P. O. Box 390, Poughkeepsie, New York 12602

ABSTRACT

This paper presents an analysis of an interactive system and attempts
to improve the human factors using methods derived from recent
publications. The technique used to do this is more valuable than the
resultant interface, since it could be a tool for other developers
trying to build user-friendly systems. It may be used before any code
is written to find usability problems early in the design process. A
working solid-modeling system will be described, and then a new
"action language" will be proposed on the basis of a more concise set
of interaction rules aimed at improving its usability. While not
going into the detail of an exhaustive formal grammar description, a
similar method is used on representative sequences to minimize the
action language. The "best" means of designing in three dimensions is
beyond being described in this short paper. For this reason the topic
will be constrained to one particular version of the application
running on one hardware configuration .

KEYWORDS: Interactive Graphics, Human Factors, Interface Language .

INTRODUCTION

The GDP (Geometric Design Processor)
modeling package was developed in a
research environment and was originally
based on a keyboard command language to
which menu capability had been added. A
detailed analysis of some sample command
sequences will be used as a basis for
constructing a new "action language"
that makes better use of the input
hardware and requires fewer user
operations for each interaction. The
"rules" will also be analyzed to provide
a consistent interface of lesser
complexity and with fewer possible
sequences of input actions. This should
improve the human factors by making it
easier to learn. The use of input
devices will also be analyzed and
modified to reduce user effort required
to accomplish a given set of tasks.

Numerous papers have discussed the
languages of human-computer
interactions, and recently these have
included actions such as light pen and
function key operations as language

primitives. The result is commonly
referred to as an "action language". By
doing this, complete sequences of user
inputs can then be described in a formal
method that lends itself to objective
analysis .

Most human factors however, are> largely
considered to be subjective items, and
crafting a user-friendly interface
requires more intuitive feel than
objective design. By starting from an
objective framework, the essence of the
input language can be analyzed on its
own merits. Hopefully the end product
would benefit from this effort and lead
to a better interface. This author
feels that the current state of the art,
however, still requires a good deal of
artistry to produce a system that will
be easy to use by nonprogrammers .

WHAT IS GDP ?

The Geometric Design Processor was
developed at the IBM Thomas J. Watson
Research Center in Yorktown, New York .

Graphics Interface '83

It grew out of a robotics project which
required software that could plan
collision-free paths for the robot arm
in a surrounding environment . The
system and all of its commands are
described in great detail by Fitzgerald,
Gracer , and Wolfe (9) . The reader is
referred to this paper for a complete
list of functions and capabilities of
GDP .

In 1975 no package was available that
could model 3D objects and determine
interference problems. As a result, GDP
was written in-house to fill this need,
and has since been enhanced so as to be
usable as a general purpose solid
modeler . Over the years new functions
and better interfaces have been added
with the help of mechanical designers
who used the program on a limi.ted ,
experimental basis. They have studied
the user's viewpoint and made
suggestions which have made GDP more
understandable for the noncomputer
professional . The input of many diverse
users has made it very robust and
f l exible. The implementation also has
many features added to enhance its
extensibility, resulting in a system
more powerful than any commercially
avai l able.

A useful tool for the mechanical
designer skilled in Computer Aided
Drafting, I believe that it now requires
a simpl er human interface to become a
better tool for the average des i gner. I.
will analyze short sequences of commands
from the i nterface for complexity and
consistency, and show how improvements
can be made using an objective
cr i terion . By analyzing the syntax of
the i nput "languag.e " , I should be able
to objectiv ely make changes that will
resu l t in improved interactiv ity. In
doing so I hope to demonstrate an
application of methods , f ound in recent
publ i cations, for building better
interfaces. The end result is not
intended to be the best 3D design system
possible, but an example of how
improvements might be made to any
interactiv e system.

CONCEPTUAL MODEL

Th e general framework of Fo l ey and
VanDam (5) is used to anal yze GDP . The

- 234 -

conceptual model contains objects,
relations and operations. The solid
objects are: cuboid; cylinder;
hemisphere; cone; laminum; volume of
revolution; 3D lines; and polyhedra of
merged objects (described below). The
user workspace contains any number of
such objects whose relationships are
maintained in a tree structure.

The operations performed on these
objects include union, difference, and
intersection. Several objects may be
merged into a higher level node in the
tree structure (union), which would then
contain one polyhedron whose volume is
made up from its descendant polyhedra
being "glued" together. A volume may be
given a negative "polarity" and in
effect subtracted from a positive object
through the union operation, thus
producing the difference between the
two. The volume of intersection can be
similarly computed. Objects may also be
moved and rotated to alter their
pOSitions with respect to each other.

Three other classes of operations are
also provided, but they do not affect
the model. There are analysis commands
such as computing distances , volumes,
center of gravity , etc., and viewing
commands such as rotate and translate
eye point. · Mode-setting commands
determine whe t her to display the
wireframe or remove hidden lines, use
parallel or perspective projection, etc.

SEMANTIC MODEL

The semantic model details what
information is-neGessary for each
function performed on an object . For
the study presented here the object
definit i on commands are all that we are
concerned with. This requires the user
to select the object type desired, and
its origin, dimensions, and polarity .
Polarity may be allowed to default to
positive. If the dimensions are
specified incorrectl y , the object is not
added to t he user's model.

SYNTACTIC MODEL

The syntactic model details the sequence
information must be presented in , or the
rules by which tokens form correct
sentences. For GDP these sentences are
composed of commands fo l lowed b y

Graphics Interface '83

parameters. A format for this is as
follows.

sentence = <select primary option>
+ <select secondary option>
+ <option dependent parms>.

This format will be followed by the
action language statements given later
on in this paper . In a formal grammar
production the rules would be
equivalenced to sentence elements, but
for brevity this paper will only deal
with the right hand side of the
equation.

LEXICAL MODEL

- 235-

The lexical model maps the language
tokens onto available hardware devices.
A "select" token would be bound to the
light pen or the keyboard, in the case
of menu input . GDP syntactically allows
both devices, but at the lexical level
they are handled differently. Selecting
a primary option with the light pen, for
example, is a simple <light pen select>
operation . Using the keyboard requires
using one of two methods:

<type primary option name>+<enter>
or

<jump cursor to primary index line>
+<type pr imary index number>
+<enter>.

CURRENT "FACE" OF GDP

For the purposes of this paper a
particular version of GDP will be
studied, one that runs on the IBM 3277
Graphics Attachment (RPQ 7H0284) (11),
an alphanumeric terminal with a direct
view storage tube attached to it
(referred to as a DVST or storage tube) .
Figure 1 shows a fully configured
workstation consisting of a 3277
terminal, hard copy unit, plotter,
tablet, storage tube, and joystick. The
storage tube is used to display a
projection of a model from the current
viewpoint, and the alphanumeric screen
handles all prompting messages, menus,
and text input through a standard
keyboard. A joystick is used to control
cross hairs on the storage tube in order
to enter locations on the screen.

Some of the characteristics of GDP are
due to the fact that it has been running
on several graphic devices in addition
to the 3277GA, like the IBM 3250
Graphics Display System (10). The
developers have chosen to keep it as
device-independent as possible. Some
features of the 3250 must be simulated
on the 3277GA and vice versa in order
for it to run as well as it does on
both.

Figure 1: Expanded Dual-Screen Workstation

Graphlc8 Interface '83

- 236 -

A recent paper by Baecker (1) argues,
very effectively, I believe, that this
is a wise choice but interferes with
achieving the best possible utilization
of a device. By its very nature this
principle does not allow exploitation of
the total power of anyone graphics
device, and is for that reason a
constraint. For the purposes of this
paper I will not work under this
limitation; rather I will choose to risk
becoming device-dependent to improve the
human interface.

The alphanumeric screen is largely
dedicated to a likeness of the 3250
Graphics Display System's function
keyboard with the primary commands
listed in boxes representing the
function keys (see Figure 2). The
reasoning behind this is that the
average designer who will use GDP is
assumed to be familiar with other 2D
drafting systems which run on ·the IBM
3250 terminal. The average designer is
expected to use the modeling system to
design parts and then use a 2D drafting
system to finalize the drawings used in
the manufacturing process (adding notes,
dimensions, etc.).

A diagram of the screen is shown in
Figure 2, compressed somewhat from the
original for inclusion here. The three
top lines of the alphanumeric screen are
for display of prompt and error
messages, the bottom line for text
input. Immediately above that is a

< ________ MESSAGE LINE 1 ------------>+----+ 1
< _________ PROMPT LINE 1 ----------------->1 STATUS 1
< _____ ~ ___ PROMPT LINE 2 ----------------->1 AREA 1
< ___ ERROR MESSAGE LINE 4 ----> PAl: enter CP

PF1 : sense cursor position

PF key name or number ==>
ENTER : sense PF/ menu entry ,

or END

I
j~;~ ~~~i~~~
- 10--- --11---

DRAW
- 16--- -- 17--­
FILES SHOW
-2 2 --- --23--­I WINDOW

--- 28---

LINESTRG CABLE BATCH

----1---- ----2-- ----3--
-~~;~---I MISC

----6---- ----7-- ----8-- ----9----
--- 12----

ANALYZE
--- 18----
AUX VIEW
--- 24----

CANCEL
---29----

SPOOL
---13-- --- 14-- ----15---

TEXT RESUME
---19-- ---20-- ---- 21---

INDICATE
--- 25-- --- 26-- ----27--­
J OURNAL YESjNO
---30-- ---3 1--

Menu i tem name or number ==>
VER 00
1/ 31/ 83

< I I TEM1· I ITEM2 / . . . 1 --- MENU LINE 1 ---------------->
< ________ _ _____________ MENU LI NE 2 ---------------->
< ______________________ MENU LINE 3 ---------------->
< ___________________ TEXT I NPUT LI NE ----------------->

Figure 2: 3277 GA Screen Layout

secondary option menu, labeled as menu
lines 1, 2, and 3 in the diagram. The
input area above the menu, after the
"==>" symbol, is a field for entering a
secondary option index number. Lastly,
above the image of the 32 function keys,
a field for entering a function key
index or name, again after the "==>"
symbol .

USE OF GDP -- --
A user would normally select a primary
command from the 15 or so displayed in
the center of the alphanumeric screen by
entering the name of that command,
entering the option number in the first
input line, or selecting the command by
light pen if the light pen option is
installed on the user's device. A
secondary menu is then displayed near
the bottom of the screen which can be
selected as above: typing the option
name; entering the index on the second
input line; or light-pen selecting the
menu item itself . The JUMP key causes
the cursor to move immediately to the
next input area, so switching between
the three requires no more than two
keystrokes.

To enter a primitive cube, the user
first selects OBJECT on the primary menu
and "CB" on the secondary . A sequence
of menus appears and asks for a starting
X, Y, Z coordinate and the cube's
height, width and depth. The cube
appears in its assigned position and a
secondary menu allows the user to cancel
it, change its polarity (solid to ho l e),
or, in the case of a curved object,
change the faceting (roughness of the
polyhedral approximation of curved
surfaces) .

The user may continue adding new
objects, or else use the edit or
analysis functions at any time . The
primary option menu is always acti~e and
can be used to terminate a sub-opt~on
without completing the operation, in
case a user makes an error or changes
hi s mind.

The model is displayed on the storage
tube b y pro j ecting it along a view
v ector controlled by the user. It may
be rotated in any direction at any time.
Axes are displayed in the upper right
corner with the positiv e X, Y and Z
sides l abe l ed to he l p the u ser
unde rstand t h e vi ewing ang l e. The

Graphics Interface '83

- 237 -

projection may also be zoomed in on any
portion for closer inspection. As
objects are added to the model they
immediately become visible on the DVST.

ANALYSIS ------

At first look, a GDP user sees the
alphanumeric screen's list of groups of
commands, and must choose the one that
contains the function that he wishes to
use. The group name is keyed in on the
primary input line, the group number is
typed on the secondary line, or the name
is light-pen selected. This may be
represented as follows:

(la)
<key group name> + <enter>

or
(lb)

<jump cursor> + <key group number>
+ <enter>

or
(lc)

<light pen select>.

A similar action then takes place as the
user selects a secondary item from the
menu now displayed on the alphanumeric
screen as a result of the first
selection .

<key function name> + <enter>
or

<jump cursor> + <jump cursor>

(2a)

(2b)

+ <key function number> + <enter>
or

(2c)
<light pen select>.

The program would then be in the
functional routine desired by the user
and could prompt for any additional
input . To er.ter a primitive cube
(function "CB") the user might do the
following:

(3a)
<key OBJECT> + <enter> + <key CB>

+ <enter> + <enter coordinates>.
or

<jump cursor> + <key 5> + <enter>
+ <j ump cursor> + <jump cursor>
+ <key 2> + <enter>
+ <enter coordinates> .

or

(3b)

<light pen select OBJECT>
+ <light pen select CB>
+ <enter coordinates>.

(3c)

From a Simple keystroke-counting point
of view, an obvious improvement might be
to get rid of the <jump cursor>
operations by using one input area.
That particular key generally requires
more attention by the user than a text
key, since it moves the cursor to a new
screen location, maybe far from the old
one. This requires that one watch the
screen carefully to ensure that the
cursor moves to the desired spot before
typing. Rarely will a user be able to
touch-type using the JUMP key and not
need to glance at the screen. That
extra concentration beyond what is
needed to enter text makes it detract
from the human factors and should be
avoided. The rule in (3b) above is very
rarely used by the average designer
since it is so cumbersome, and so should
not be construed as a major flaw in the
interface under examination. It is
Simply left from past versions that used
this mode before the light pen support
was available.

If the program could successfully use
only one input area, then rule (3b)
above would resemble (3a), only the user
could type the menu index rather than a
function name at his discretion . This
might require longer command names or
numbers, since they must then be unique
to allow the application program to
determine whether a primary or secondary
command has been selected. This defeats
the purpose of reducing keystrokes since
typing command names requires more
keystrokes and is error-prone.

The <light pen select> operation is by
far the simplest technique for input but
must be done twice to invoke a secondary
command, since not all functions are
displayed in the primary menu . This
would not be so if the program had a
menu of all the second-level commands
and did away with the hierarchy. In a
way this has already been done, since
the second-level command names are
recognized if they are typed in at group
select time. For the casual user this
is of no benefit, since the names are
not all displayed in a menu and thus he
or she would have to memorize the
command earlier on.

Graphics Interface '83

Without the hierarchy the user would
have to be familiar with the command
names and not have the benefit of
grouping them into like categories.
T~is reduces the ability of the user to
find his way to a related class of
operations without knowing their exact
names or locations, which is something a
casual user is very likely to want. For
the moment this will be ignored, since a
solution will be given below.

Perhaps the secondary names could all be
displayed in one large menu. There are
on the order of 50 commands and they
m~ght be spread out 5 per line, leaving
a blank line between each for
readability and easy light pen
selection. This would take up a large
portion of the 24 x 80 alphanumeric
screen but reduce the number of key
strokes necessary to invoke each
function. This would probably be too
large a menu for the casual user, since
that many options might prove
overwhelming. Some form of grouping of
commands into similar classes will be
needed, and is proposed below.

The grammatical rule for the example of
creating a cube would roughly be as
follows :

<key CB> + <enter>
or

<light pen CB>.

This sequence would replace that of
lines (3 a, b, and c) given above. It
is obvious that the number of manual
operations is reduced. In the worst
case , (3b), many keystrokes are
eliminated, and in the best case, (3c),
using the light pen, one of the original
two is removed. The number of
grammatical rules necessary to describe
the input operation is also reduced,
which Reisner (7) has shown to point out
a more friendly system in her study of
human error rates and learning time.

Conversely, it may also be argued that
the command hierarchy is easier for the
casual user, since the number of options
presented at anyone time is smaller.
If the placement of commands in the
hierarchy is truly meaningful, then the
subtasking done in the user's thought
processes will make the system easier to
learn . For the moment we have seen that
the larger menu does reduce the number
o f language product i on rules and key
strokes . Later on a technique for

- 238 -

maintaining the structure while still
using a large menu, the best of both
worlds, will be presented.

In studying the current utilization of
the graphic workstation hardware, we
find that the storage tube is used for
display of the graphic image of the
model and an occasional x/y input using
the joystick. This is normally used to
point to a displayed object or ver~ex.of
an object. Through the 2D screen ~t ~s
difficult to enter 3D coordinates by
positioning crosshairs with a joystick.
The alphanumeric screen handles the
menus, input areas, and prompting
messages. This is where most of the
interaction takes place, since the
alphanumeric screen may be modified
without rewriting its entire contents as
must be done with the storage tube for
other than incremental additions.

The largest part of the alphanumeric
display is the command menu, and,
interestingly enough, it never changes.
One might intuitively decide to place
this on the storage tube since it is of
such a static nature. In this
implementation of GDP the alphanumeric
screen was selected to allow the use of
the light pen option of the 3277 for
menu selection. The joystick-controlled
cross hairs could be used for pointing
to menu items on the DVST but this
reacts much slower than the user's hand
with light pen and is more difficult to
aim accurately. Hand-eye coordination
is necessary unless a very large pick
window is used, thus reducing the number
of menu options possible.

There is also a problem with excessive
eye movement using a dual screen
workstation like the 3277GA. Ideally
the graphics device should have a very
large surface area with high enough
resolution to keep everything, menus,
data and messages, on one screen without
sacrificing clarity for abbreviations.
In reality the user has two screens that
he must look at to determine his current
state and plan his next operation.

With the menu on the alphanumeric screen
the user must glance at the DVST (to
view the current model) and back to the
menu on every operation. With the menu
on the DVST, attention can be
concentrated on the one screen for a
greater number of interactions until
text is required (seldom in a solid

Graphics Interface '83

modeling system) or numbers are required
(more frequently). This would be
desirable if it weren't for the slow
response of the joystick.

I t is possible to connect a tablet to
t he 3277GA i n place of the joystick,
which could eliminate these problems .
The tablet with puck reacts just as fast
as a l ight pen in that it is governed by
the user's hand. It still requires some
hand-eye coordination, but not as much
as the joystick . The tab l et, then,
would allow us to put the command menu
on the graphic screen and select items
rapidly. As an added benefit the user
has one i nput device (excluding the
keyboard) rather than two (the joystick
and a l phanumeric light pen). This
eliminates the bother of putting down
the light pen to use the joystick and
v ice versa. One hand can rest on the
tablet puck (or mouse) all of the time,
allowing more rapid user response . This
i s referred to as a pragmatic
consideration by Buxton (2), below the
lexical level and impacting the user's
impression of just how easy it is to use
the system.

With t he graphic d i splay the command
menus can be much more elaborate than on
the alphanumeric screen. Icons, when
meaningful , could be drawn to represent
functions and ob j ects rather than have
the u ser read command names. It has
been argued that users can recognize
i cons , or i mages , faster than command
names (8) , but whether this technique
slows down the casual user who does not
recognize an icon i s not clear, and so
will be avoided for this discussion.
Boxes may be drawn around similar groups
of commands in much the same way as the
present command hierarhcy structures
them . This will allow the casual user
to "home in" on logically related
batches of commands when unsure of
exact l y what i s av ailable, only the
added number of interactions that
currently imposes will not be needed.

A help menu item may be provided on the
DVST menu that could cause the
alphanumeri c screen to be used to
disp l ay i nformati on about the current
model - a representati on of the current
locati on in the tree structure, for
examp l e . A tutori al mode could be
entered whi le leaving the graphic
display unchanged . This allows the
e xper i enced user to completely avoid the
routine me s sages and c oncentrate on h i s

- 239 -

work while the casual or novice user can
refer to them as often as is needed.

This may introduce added programming
difficulties, since messages may need to
be separated into at least two classes.
Important messages that must be seen
every time they occur (system gOing
down, etc.) will have to be handled in a
different fashion from routine command
prompts. On some devices an audible
signal can be adequate for this. The
tradeoff between adding program
complexity for a small human fac~~rs
improvement must be made by the system
architects.

The added information would make the
system more self-teaching and yet be
phYSically removed from the graphics
screen, "where the action is". A "where
am I, what did I do, where can I go" (6)
type of audit trail can be displayed as
an aid to the casual user.

A side benefit of most of these
potential improvements is that they move
the center of the user's concentration
to the graphics screen. The importance
of the alphanumeric screen would be
reduced, since it is no longer involved
in every interaction. This would k eep
the user's attention on the one screen
for a longer period of time and reduce
the delay in scanning between the two.
The casual user could refer to the
alphanumeric screen for help information
whenever he wanted, while leav ing the
state of the graphics display untouched .
It would not, however, take full
advantage of the capabilities of the
3277GA since the alphanumeric screen is
not involved in the average user's
interactions.

SUMMARY

In the analysis we looked at the
structuring of sample fragments of the
command language as grammatical rules.
Changes were proposed to reduce the
number of rules necessary to desc ribe
the language and to make it more
consistent. At no po i nt did the nature
of the application influence the
changes; instead the l anguage of
interaction was treated as an enti ty by
itself.

Graphlca Interface '83

This demonstrates our initial goal that
the human interface can be objectively
studied , as with grammatical analysis,
and improved. I must reiterate my
statement that a good deal of creativity
and intuition is also used to "craft"
the better systems, but perhaps this
technique may be a step towards defining
more formal techniques for building
interfaces of higher quality without
clairvoyance.

On the other hand, some
hardware-dependent recommendations were
made and, though this is contrary to the
popular device independent strategy , I
bel i eve it is necessary for a better
system. As mentioned earlier, recent
papers have also taken this position and
argue the point very effectively (1).
Each input device has its own unique
characteristics that must be taken into
consideration when a study as minutely
detailed as counting keystrokes is used.

There are certainly arguments in favor
of a command hierarchy rather than the
proposed single menu, but the
grammatical analysis shows fewer actions
are required to invoke each function.
Boxes, icons , and other graphic items
were recommended to provide the logical
grouping enforced b y the multi level menu
without added keystrokes. Moving the
menu to the graphics screen would also
serv e to mi nimze eye movement between
the two display s .

It would also be possible to make
improvements similar to those
recommended above on the hierarchical
system. The techniques used are
independent of the application. It
would be interesting to compare a

. correspondingly improved multi-level
command system with this proposal, but
simply wouldn ' t fit in this paper.

Interfaces better than that described
here can be readily found , but it was
arri ved at objectively . The v alue
behind this is that it can lead to
deve l oping consistently good interfaces
rather than gambling on the results.
These pragmatic factors are the closest
level to the user (as opposed to the
syntax, conceptual, etc.) and will
determine the user friendliness as far
as hand and eye movements and other such
mechanical factors are concerned.

- 240 -

REFERENCES

1 . R. Baecker, "Towards an Effective
Characterization of Graphical
Interaction," in Methodology of
Interaction, R. A. Guedj et al., Eds.
North Holland: 127-147 (1980).

2. W. Buxton, "Lexical and Pragmatic
Considerations of Input Structure,"
Computer Graphics vol. 17, no. 1
31-37 (1983).

3. P . G. Comba, "A Language For
Three-Dimensional Geometry," IBM
Syst. J. 7, 292-307, 1968.

4. J. D. Foley, "The Structure of
Interactive Command Languages," in
Methodology of Interaction, R. A.
Guedj et al ., Eds. North Holland:
227-234 (1980).

5. J. D. Foley and A. Van Dam,
"Fundamentals of Interactive Computer
Graphics," Addison Wesley, Inc.,
218-242, 1982.

6. J. Nievergelt and J. Weydert, "Sites,
Modes, and Trails: Telling The User
of an Interactive System Where He Is ,
What He Can Do, And How To Get To
Places," in Methodology of
Interaction, R. A. Guedj et al., Eds.
North Holland: 327-338 (1980).

7 . P. Reisner , "Formal Grammar and Human
Factors Design of an Interactive
Graphics System , " IEEE Trans.
Software Eng., Vol SE-7, 229-240,
March 1981.

8. A. Simanis, "Human Factors in
Interactiv e Computer Graphics," Proc.
4th Man-Comput. Commun. Conf.,
Ottawa, Canada, 8 . 3-8 . 12, 1975.

9. W. Fitzgerald, F . Gracer, and R.
Wolfe , "GR I N: Interactive Graphics
for Model i ng So lids , " I BM J. Res .
Dev elop. 25, 2 8 1-294 , July 1981.

10 . IBM, "IBM 3250 Graphics Display
System Component Description," manual
GA33-3037 , IBM Corp.

11. IBM, "IBM 3277 Graphics Attachment
RPQ 7H0284 - General Information
Manual," manual GA33-3039, IBM Corp.

Graphics Interface '83

