
- 23 -

An Algorithm for Generating Anti-Aliased Polygons for 3-D Applications

Ni Guangnan* Peter Tanner Marceli Wein Grant Bechthold

Division of Electrical Engineering
National Research Council
Ottawa, Ontario, Canada

ABSTRACT

An algorithm for generating anti-aliased polygons is described. The algorithm is simple, but
powerful, combining color blending, Gouraud shading and Z-buffer hidden surface removal. A test bed
has been constructed which consists of a Versabus M68000 computer (the graphics processor) and a
custom interface between the M68000 and the frame buffer of a raster display. Written in "C", the
package for generating anti-aliased polygons performs all calculations on a line segment basis rather
than pixel basis. This requires less memory and can thus be moved to smaller systems. The prototype
test results indicate that a higher graphics performance can be achieved on inexpensive systems by
this algorithm and implementation.

This paper also suggests an alternative to the Red/Green/Blue color representation normally used
in color displays by storing intensity and two normalized color components to simplify the calculation
involved in anti-aliasing, color blending and shading.

KEYWORDS:
Computer graphics, raster displays, aliasing, hidden surface removal, scan conversion, color,

color space.

RESUME:

On trouvera decrit dans cet article un algorithme de generation de polygones" anti-aliased". Cet
algorithme est un algorithme simple mais puissant qui combine a la fois la technique du melange des
couleurs, la technique d'ombrage de Gouraud et la technique d'elimination des surfaces cachees par
tampon Z. Un banc d'essai a ete construit; il se compose d'un ordinateur VERSAbus M68000 (le
processeur graphique) et d'une interface personnalisee reliant le M68000 et la memoire-image d'une
unite d'affichage a balayage recurrent. Redige en langage compile, le progiciel de generation de
polygones anti-confusion effectue tous les calculs sur une base de segments lineaires plutot que de
pixels. Cela reduit la memoire utili see et l'algorithme peut par consequent etre mis en oeuvre sur un
petit ordinateur. Les resultats des essais effectues sur le prototype demontrent que cet algorithme
permet d'obtenir, avec des systemes peu couteux, de meilleures performances graphiques.

On trouvera egalement decrite dans le present article une nouvelle methode de representation des
couleurs utilisee dans les affichages couleur (par opposition a la representation trichromatique
normale rouge/vert/bleu) qui consiste a stocker l'intensite ainsi que deux composantes chromatiques
normalisees pour simplifier les calculs "d'anti-aliasing", de melanges des couleurs et d'ombrage.

MOTS CLES: Informatique graphique, affichages a balayage recurrent, "anti-aliasing", elimination des
surfaces cachees, conversion de balayage, couleur, espace couleurs.

*Mr. Ni Guangnan is from the Institute of Computing Technology, Chinese Academy of Sciences, Beijing,
China. He is currently a guest worker with the National Research Council of Canada.

Graphics Interface '83

1.0 INTRODUCTION

Aliasing is a phenomenon associated with
any quantization process. In raster displays it
results in jagged edges and disappearing
details. Increasing the resolution of displays
can reduce this effect but at a high cost. On
the other hand, subtle shadings can be used as
an economical approach for anti-aliasing. Many
such methods have been proposed ([1], [2], [3],
[4]). Although the underlying principle of
these methods is not new and they do not differ
substantially from each other, it is worthwhile
to make improvements both to simplify the
implementation and to extend the capability to
the generation of anti-aliased colored polygons
with shading and hidden surface removal.

The algorithm described here is based on a
simplification of Crow's algorithm using two
pixels on each scan line, however the intensity
of each pixel is determined directly by its
subpixel position rather than a look-up table
(Section 1'.1). In addition, lines with slopes
greater than one (absolute value) are treated
similarly to lines with slopes less than one
(Section 2.2), so that they can better fit the
scan line conversion process. Since raster
displays are well suited to the display of
surfaces, the algorithm has been extended to
generate anti-aliased 3-D polygons. The
Z-buffer approach was chosen as a basis for
hidden surface removal. Gouraud shading is also
applied to produce more realistic images
(Section 2.3). It is well known that
anti-aliasing cannot be achieved without color
blending performed at the boundary of different
colored surfaces. A simple criterion is applied
(Section 2.4) for performing color blending
functions, which yields acceptable results.

All these functions must be combined into a
single package. For this purpose, a test bed
has been constructed, consisting of a M68000
computer and a custom interface (Section 3.1).
The former acts as a graphics processor and
communicates with the host computer. The latter
enables the M68000 to access the frame buffer of
a raster display. The M68000, running at 8MHz,
with its firmware, memory and interface yields a
cost effective configuration.

The package for implementing this algorithm
was developed using the C language (Section
3.2). If the calculations for ant i -aliasing,
color blending, shading and hidden surface
removal were performed on a pixel basis as in
other algorithms, all the required information
would have to be stored for each pixel. Thus,

quite a large memory, greater than 1MB would be
required. To reduce this memory requirement,
the package performs all calculations on a

- 24 -

scan-line segment basis. Consequently, it can
run on smaller systems without difficulty.

The package currently runs both on the test
bed and on a VAX 11-780. Testing this prototype
has shown that it does accomplish its intended
functions (Section 4). Images of high quality
and realism can be produced at reasonable speed
on the simple test bed system.

Anti-aliasing, color blending and shading
involve manipulation of the pixel intensity.
Performing these calculations in Red/Green/Blue
color space is computationally inefficient. To
improve this efficiency, the package employs a
color representation which includes intensity
and two normalized color components. Compared
with the Red/Green/Blue color system
(extensively used in color displays), the
so-called i/r/g color notation features better
color/intensity capability and lower
computational expense. Other potential
advantages exist and are described in the
Appendix.

2.0 ALGORITHM

2.1 Anti-aliased Vector

'\
+-+-+--+--+-II-+-+-+-+-+-+-... VIRTUAL
~-+-+-4-4~I-r-+-+-~~-+--GRID
-+-4-1I-~+-~-r-+-4~--r-t-/
~~~~r+~~+1 

-+-+-+-++-+-+-+-+--+-+-+-\ 
-+-+-+-4-i_~+-+-+-+-t--+--PHYSICAL 

GRID 

-+-+-+-++-+-+-+-+--+-+-+-/ 

Fig. 2.1 A high resolution virtual grid 
superimposed on the physical grid. 

The anti-aliased vector generation is based 
on the model of a frame buffer display with 
considerably higher resolution than the actual 
frame buffer. A vi rtual grid with this higher 
resolution is superimposed on the physical grid 
of the display (Fig. 2.1). A subpixel, then, 
is one square from the virtual grid . The 
resolution required depends on the available 
gray scale of the display device . 

Graphics Interface '83 



Ai+, 

Fig. 2.2 The intersection of the line and the 
physical grid (X, as shown) determines 
the intensity of the two consecutive 
pixels -- pixel i and pixel (i+l). 

Two consecutive pixels are shown in Fig. 
2.2. Each pixel is defined as a square (the 
size· of a physical grid unit). The line width 
is defined as the intersection of the vector and 
either an X grid line or a Y grid line depending 
on the slope of the line (Fig. 2.3). This 
makes 45 degree lines slightly thinner than 
horizontal or vertical lines. As long as the 
line is smooth, this is acceptable. In normal 
raster displays, 45 degree lines look slightly 
darker than horizontal or vertical lines; in 
our simple algorithm they are thinner. 

(a) I slape l <1 (b) ISlopel~ I 

Fig. 2.3 The definition of the line width. 

To determine the intensities of the two 
pixels in Fig. 2.2, the approximate overlap of 
the line on the pixels is determined by the 
intersection of the midpoint of the vector and 
the physical grid (to the nearest virtual grid 
unit). In Fig. 2.2 the intersection, measured 
in physical grid units, is X. We denote the 
fractional part of X in physical units as: 

F(X) = X-lXJ (2.1) 

Where, lXJ is the greatest integer satisfying 
lXJ ~ X. The overlap area (shaded area in 
Fig.2.2) is approximately expressed by: 

- 25 -

Ai - I-F(X) 
AiT' ,. F(X) (2.2) 

The greater the inclination, the more precise 
this becomes. The absolute error distribution 
of Eq. (2.2) is plott~d in Fig. 2.4. Note 
that the inclination is measured from the X grid 
for Islopel~ 1 and from the Y grid for Islopel< 
1, so it is always greater than or equal to 45 
degrees. As can be seen from this plot, Eq. 
(2.2) yields quite a good approximation over 
most of the range. Thus in the anti-aliasing 
vector/polygon generation each pixel is properly 
intensified according to Eq. (2.2). No look-up 
table is required, making this approach very 
simple. 

Abaolu', error 
0.3 

0 .2 

0 .1 

Cl( inclination) = 45· 

- It.AII 

--- I t.Ai+,j 

o oL-----~:::IIIo--::"":--=---------;-'I.O F( X) 

Absolute error 

0 . 2 

0 .1 

L-~~--~7-----~-7. 
0 .5 1. 0 F(X) 

Absolute error I Cl = 90· 

O~----------------0~:~5--------------~1.0 F(X) 

Fig. 2.4 Absolute error distribution of the 
Eq. (2.2). 

Based on these principles the vector 
generator algorithm is explained below. 

Given a vector drawn from P, (XI ,YI) to P2 (XZ 
,Yz ) with Y,~ Y2, the following parameters are 
calculated: 

t:. X 2 Xz-X, 
t:. Y 2 Y2 -Y, 
If I.:.YI ~ It:. X 1 
then c5 X -AX I.:.Y 

aY = -1 
else oX = Sign(t:.X) 

6y = t:.Y I t:.X (Sign(AX» 
Here, Signet:. X) = 1, when llX ? 0 
Sign(AX) = -1, whenllX < 0 

(2 .3) 

(2.4) 

It should be noted that the X" Y" Xz, and 

Graphics Interface '83 



Yz are first rounded to integers (i.e. the 
physical grid unit). This is acceptable in most 
cases. By significantly increasing the 
complexity of the vector generator, the ends of 
the vector could be plotted more correctly. 

YII 

I+ I-F{Xy) 

WRITE (XY,YY,il 

I+F{Xy) 

WRITE (XY+I,YY,il 

Xy+Xy+8X 

Yy +Yy+8Y 

Xv +- XI 

Yv +-YI 

Y •• 

No 

I+-I-F{Yy) 

WRITE (X" YY,il 

I+F{YY) 

WRITE{Xy, YY+I,I) 

Fig. 2.5 Flow chart of the proposed anti-aliased 
vector generator. 

In the flow chart in Fig. 2.5, the 
operation WRITE(Xv,Yv,I) represents a pixel with 
intensity value I to be written into the frame 
buffer at the address specified by Xv and Yv. 
Both Xv and Yv may have a fractional part, so 
the memory addressing is given by Xv and Yv 

the phsical grid unit. Although the 
fractional part has no influence on the WRITE 
operation, it does play a role in intensity 
calculation. This anti-aliasing vector 
generation is almost as simple as the normal 
vector generation, however, the simplicity of 
the vector generation does have a drawback. The 
lines drawn, although smooth, will have a minor 
repetitive intensity variation or pattern that 
changes (and is therefore more noticeable) when 
the line moves . This is known as the barber 
pole effect. These patterns are illustrated in 
Fig . 2.6. An intensity compensation technique 
can reduce this effect. 

- 26 -

Fig. 2.6 Polylines generated by the normal vector 
generator (inner) and the anti-aliased 
vector generator(outer) without intensity 
compensation. 

2.2 Anti-aliased Polygon Generation 

LE" EDeE SEGMENT -p RIGHT ED6E SE"'I!NT 
".. , 

~ ..... ~ 

Fig. 2.7 Scan-line conversion of polygon 
combining anti-aliasing. 

The algorithm described above can easily be 
extended to generate polygons in 2-D 
applications by first drawing anti-aliased 
polylines for the polygon boundaries, and then, 
filling the area enclosed by the polylines. It 
may be advantageous to modify the approach for 
certain applications. For example, the filling 
may be deferred in the case of displaying 
multi-polygons overlapping each other(9]. The 
algorithm may be tailored so that lines with 
Idxl>ldyl are treated similar to the lines with 
IdYI~ldxl. Instead of writing a pixel at each x 
(refer to Fig. 2.5), a multi-pixel segment is 
written at each y. In other words, the pixel 
writing is deferred until a new y has been 
reached. This is particularly useful in 

Graphics Interface '83 



adapting the algorithm to scan-line conversion. 
As a result, the polygon can be converted to 
scan-lines no matter whether the slope of its 
edge is greater than one or not. Each scan-line 
consists of three segments: the left edge 
segment, the right edge segment and the filling 
segment as shown in Fig. 2.7. Note that the 
edge segment for a steep edge is a single pixel 
with the intensity determined by the subpixel 
positi,on. llowever, a more horizontal edge may 
result in several pixels in the edge segment of 
the scan-line. The intensites of these edge 
segments as determined by subpixel positions, 
will vary linearly so that the two end pixels of 
the edge segments can express the whole edge 
segment. This forms the basis of the 
implementation described in Section 3.2. 

2.3 Hidden Surface Removal And Shading 

In 3-D applications it is useful to 
incorporate the Z-buffer technique for hidden 
surface removal. The Z-values on the edge can 
be linearly interpolated (similar to the X-value 
calculation in Fig. 2.5). The Z-values for 
non-edge pixels can be interpolated from the two 
edge pixels on the same scan-line. 

Except for edge pixels, linear or Gouraud 
shading can be calculated in a similar manner. 
For edge pixels, the resultant intensity is 
calculated as the product of the intensity 
determined by the anti-aliasing algorithm and 
the intensity calculated by shading 
interpolation. 

As described in Section 3.2, the picture is 
stored in memory in a line segment format. Each 
segment is expressed by its two end pixels. 
Consequently, only the Z-value and intensity of 
the two end pixels need to be calculated for 
storage while those pixels in between need be 
calculated only when necessary. 

2.4 Color Blending 

The color blending function is necessary 
for smoothing the boundary of different colored 
polygons. The criterion adopted here is 
straightforward. If two colors are blended, the 
resulting color is formed by additive primary 
mixing, with the resulting intensity equal to 
the maximun intensity of the two components. 
This has proved to be quite acceptable. 

The Red / Green/Blue color representation 
normal l y used i n color displays requires 
exc essive computations when t he anti-aliasing, 

- 27 -

shading and color blending are all combined. 
For this reason a color representation of 
intensity and two normalized color components is 
proposed. The main advantage lies in the 
separation of the intensity and color 
information. In this system the color 
components are normalized, 50 they are entirely 
independent of the intensity. (In color TV 
systems, the color components are not 
independent of intensity.) As a consequence, all 
the calculations relating to anti-aliasing and 
shading need only be performed on the intensity 
values. The color blending is also somewhat 
simplified with the use of the modified color 
system as described in the Appendix. It is only 
at the final stage of writing to the frame 
buffer that the intensity and normalized color 
components are converted to the Red/Green/Blue 
color representation for interfacing with 
regular color display. 

3.0 IMPLEMENTATION 

3.1 Hardware Configuration 

INTERPROCESSOR LINK 

N 68000 
I28K8 RAN 

FR.NE 
BUFf'!R 

VERSAbu. 

VERSAIIa. 
- lieus 
INTEIW A Cl!: 

GBUS 

VIDEO PI)(EI.. 

PROCESSOR 
(0 I A) 

VAX 111780 

OR POPll/e15 

Fig. 3.1 A M68000 based prototype graphics system. 

We have recently constructed a test bed 
based on a M68000 microprocessor (Fig. 3.1). 
The M68000 MPU board is a VERSAbu~ module with 
64KB RAM and 64KB EPROM on board and a 128KB RAM 

* VERSAbus is a trademark of Motorola Inc. 

Graphics Interface 'S3 



module on the VERSAbus. The MPU Board has two 
serial ports, one connected to a terminal, the 
other to a host. The host port can be switched 
between a VAX 11-780 or a PDP-11/55. A custom 
interface enables the M68000 to access the f rame 
buffer on the G-bus of the VDP* Graphics Display 
(10). Initially, the VDP frame buffer was 
operated by a 2901 bit slice processor driven by 
the host computer (a PDP-11/55). In the current 
configuration, the M68000 can perform graphics 
functions independently of the 2901 - and 
PDP-ll/55. 

Fig. 3.2 Block diagram of the VERSAbus-GBUS 
Interface. 

The interface is aimed at minimizing the 
overhead involved in converting the data from 
the asynchronous VERSAbus with its 16-bit data 
path (extendable to 32-bit), to the synchronous 
G-bus with its 72-bit data path. The interface 
circuitry must implement the necessary handshake 
for both buses, as well as convert the data 
format. The latter is solved by a scheme 
similar to that used by a two-port memory . As 
illustrated in Fig. 3.2, there are three 72-bit 
registers on the interface board. They can be 
directly accessed from both buses. To the 
VERSAbus side they appear as a 16-bit register 
file continuously mapped on to the M68000 
address space. The pixel information can be 
directly manipulated in these registers before 
being sent to the frame buffer. Similarly, once 
the content of the frame buffer is read into the 
registers, it can then be made available to the 
M68000 immediately. Writing/reading these 
registers to/from the frame buffer on the G-bus 
i s simpl y a memory write/read instruction f or 

* VDP i s a product of NORPAK Ltd. 

- 28 -

the M68000. In this way it is virtually 
transparent for the M68000 to access the frame 
buffer on the G-bus. 

The Graphics support package resides in the 
EPROM of the MPU Board. In the stand-alone 
mode, the application programs are downloaded 
from the host to the M68000. The programs then 
run on the M68000 without host intervention. In 
the slave mode, the M68000 accepts the graphics 
routine calls from the application programs 
running on the host. However, the data rate of 
the serial port is a serious limiting factor. A 
fast interface will be installed to speed the 
interprocessor link between the M68000 and the 
host computer. This will also provide some 
freedom to distribute the graphics computation 
between the two computers in an optimal manner. 

3.2 Software Description 

In order to apply the described algorithm, 
four parameters are required for each pixel: 
the Z-value, intensity value, color, and a pixel 
attribute. The latter indicates whether or not 
the pixel is an edge pixel, and, if so, which 
type of edge. Obviously, more than 1MB of 
memory would be required to implement this 
algorithm if this information were stored for 
all pixels in a 512x512 grid. Since the 
algorithm is performed on a line segment basis, 
the memory requirement is reduced enabling the 
package to run on smaller systems. Table 3.1 
lists some of the differences between pixel 
based storage and line segment storage. 

It can be seen from Table 3.1 that the line 
segment method allows the package to run on 
smaller systems such as the test bed described 
here. The speed difference i s not full y 
described by the Table. Generally speaking, the 
segment method will be slower f or images 
consisting of a large number of polygons but 
quicker for pictures with fewer, larger 
polygons. 

The whole package consists of three groups 
of routines. 

(a) The routines for scan-l ine conversion 
of the polygon. Each scan-line is converted to 
three segments as shown in Fig. 2.7. The 
intensity and the Z-value are interpolated 
between vertices during the scan-l i ne 
conversion. The segments are then fed t o the . 
later stages. 

of 
For 

Cb ) The rout i nes -f or 
t he segment s . This 
each Y- val ue, t he 

resolving vis i bili t y 
is a sorting pr ocess. 

s egments are so rt ed 

Graphics Interface '83 



according to their X-value. The new segment may 
overlap the old one and many combinations may 
occur. There are routines for erasing a 
segment, inserting a segment, modifying a 
segment or performing combinations of these 
tasks. Certain color blending may also take 
place at this stage. A previously visible 
segment will return space to a free list if it 
is hidden. Conversely, a new visible segment 
generated will request space from the free list. 
If there is no space available it will ask for 
an allocation of new memory space. In this 
manner no memory is wasted. 

(c) The routines for color blending to 
produce the segments for display. 

Table 3.1 Element vs Performance 

storage 
element 

memory 
requirement 

processing 
time 

program 
complexity 

pixel based 

)1MB at 
S12xS12 
resolution 

proportional 
to the polygon 
area. 

simpler 

4.0 RESULTS AND DISCUSSIONS 

line segment 

proportional to 
image complexity, 
e.g. 128KB can 
accommodate 8192 
line segments. 

proportional to 
the number of 
line segments. 

more complex 

Fig . 4 . 1 ( a) A cylinder generated by the 
anti-aliased polygon generator. 

- 29 -

Fig. 4.1 (b) A cylinder generated by a 
normal polygon generator. 

The package resides on the M68000 system as 
firmware. Fig. 4.1(a) is a cylinder generated 
by this package. Fig. 4.1(b) is the same 
object generated using a different program 
without anti-aliasing. The M68000 system 
described yields an acceptable performance. The 
time required for generating the image in Fig. 
4.2 is about half a minute (the exact time 
depending on the rotation angle). Comparing 
this to the earlier implementation of the 
algorithm in FORTRAN on the PDP-11/~5 the speed 
has been improved by roughly one order of 
magnitude. Shading was not included in this 
earlier implementation. Fig. 4.3 is an image 
demonstrating the color blending effect. 

Fig. 4.2 An image generated on the M68000 
prototype system. 

Graphics Interface '83 



Fig. 4.3 An image demonstrating the color 
blending effect. 

The same package running on the VAX 11/780 
is about three times as fast (with no other 
intensive computation running concurrently). In 
view of the cost difference, the M68000 
configuration yields a very good 
cost/performance ratio. It is expected that the 
speed can be improved either by employing custom 
hardware or multi-graphics processors, with each 
processor being a polygon generator. 

In the current implementation, 
intersections produced by the Z-buffer algorithm 
(intersecting polygons) remain unsmoothed. 
Additional computation would be required to 
smooth these edges. 

In summary, the algorithm and the 
particular implementation described provide an 
economical means of achieving a higher graphics 
performance on inexpensive systems. This could 
be valuable in many graphics applications. 

Acknowledgement 

The authors wish to thank several people in 
the Computer Graphics Section, Division of 
Electrical Engineering, particularly Mr. Art 
Binch, Mr. Jim McDougall, Mrs . Cathy Merritt, 
Mr. Jack Lee and Mr. Mike Duggan. 

- 30 -

References 

[ 1] F. Crow, "The Use of Gray Scale for 
Improved Raster Display of Vectors and 
Characters" , Computer Graphics (Proc. 
Siggraph'78), Vol.12, No.3, Aug. , 1978, 
pp.1-5. 

[2] E. Piller and H. Widner, "Real-Time Raster 
Scan Unit with Improved Picture Quality", 
Computer Graphics, Vol.14, No. 1 & 2, July 
1980, pp.15-38. 

[3] J. Burros and H. Fuchs, "Generating Smooth 
2-D Monocolor Line Drawings on Video 
Displays" , Computer Graphics (Proc. 
Siggraph'79), pp.260-269. 

[4] S. Gupta and R. Sproull, "Fil tering Edges 
for Gray-Scale Displays", Computer Graphics 
(Proc. Siggraph'81), Vol.15, No.3, Aug., 
1981, pp.1-5. 

[5] G. Joblove and D. Greenberg, "Color Space 
for Computer Graphics", Computer Graphics 
(Proc. Siggraph'78), Vol.12, No.3, Aug., 
1978, pp.20-25. 

[6] A. Smith, "Color Gamut Transform Pairs", 
Computer Graphics (Proc. Siggraph'78), 
Vol.12, No.3, Aug., 1978, pp.12-19. 

[7] H. Gouraud, "Continuous Shading of Curved 
Surfaces", IEEE Trans. Vol. C-20, No. 6, 
June 1971, pp.623-629. 

[8] E. Catmull, "A Tutorial on Compensation 
Tables" , Computer Graphics (Proc. 
Siggraph'79), Vol.l3, No.2, Aug., 1979, 
pp.1-7. 

[9] Guangnan Ni and Peter Tanner, "The 
Application of Anti-aliasing Technique for 
Displaying High Quality Chinese Characters", 
Proceeding of International Conference of 
the Chinese-Language Society, Sept. 1982, 
pp.37-45. 

[10] M. Wein, N. Burtnyk, W. A. Davis and J. 
Norton, "A Raster Display System for 
Computer Graphics and Image Processing", 6th 
Man-Computer Communications Conference, May 
1979, pp.115-125. 

Graphics Interface '83 



APPENDIX: Representing Color by Intensity and 
Two Normalized Color Components 

The Red/Green/Blue color space normally 
adopted by color displays is not the optimal 
color space for calculating anti-aliasing, color 
blending, or shading. Other spaces such as HSV 
[5],[6] have certain advantages, but require 
conversion to Red/Green/Blue before they can be 
fed to the video stage, a non-trivial task. For 
this reason, a color representation is proposed 
which simplifies the pixel operations 
considerably but requires little extra hardware 
to implement the video stage. 

This representation is a modification of 
the Red/Green/Blue notation. A separate item 
representing energy is introduced: 

i ,. (R+G+B) K (A.1 ) 

where, a' constant (K) is used to adjust the i to 
be within the range 0-1. Although we call i 
"intensity", it is not the visual intensity 
perceived by a standard observer. We will call 
the latter "luminance" to distinguish it from 
" i ntens i ty". The system uses two normalized 
color components expressed by, 

r ,. R/ (R+G+B) 
g - G/(R+G+B) 

(A.2) 
(A.3) 

The third normalized color component is 
redundant and can be derived from Eq. (A.2) and 
(A. 3): 

b .. 1-r-g (A.4) 

Thus only i, rand g are included to form the 
color notation. 

Converting i/r/g into Red/Green/Blue i s 
s i mple: 

R" i·r ·K 
G .. i .g ·K 
B=i·(l-r-g) K 

(A.5 ) 
(A.6 ) 
( A.7) 

Again, a constant appears in the above formulas 
to scale the Red / Green/Blue components as 
required. Usuall y , this constant can be set to 

f or conveni ence. 

It i s we ll known that all physically 
reproducible colors i n a color display are those 
withi n a triangle in the chromaticity diagram 
with the three vertices bei ng the color 
primaries R, G and B. Assuming a color with 
three color components R+G+B~ 1, we can always 
s cale i t so t ha t R+G+B= 1 . Th i s i s an i ntensit y 
variation that does not change the color. 

- 31 -

Therefore, the lack of the constraint R+G+B= 
does not influence the color gamut but provides 
intensity variability. In the Red/Green/Blue 
system, when the intensity decreases the color 
resolution decreases accordingly. 

Mulliplier 
itol 

or 

look-up loble 

D/A 

D/A 

Mulliplyin9 

D/A 

R (vidlo li9nol) 

R (vidlo oi9nol ) 

Fig. A.1 Possible hardware configuration of 
the video stage for the proposed 
i/r/g system. 

Conversly, in the i/r/g system intensity 
and color information are mutually independent. 
The color resolution is unaffected by the 
intensity. Of course, provision must be made to 
effectively use the color information at lower 
intensities. The transformation from i/r/g to 
Red/Green / Blue specified by Eq. (A.5)-(A.7) may 
be carried out in hardware. Fig. A.1 depicts 
the possible configuration of a video stage 
tailored for the proposed i/r/g system. Either 
analog or digital high speed multipliers can 
perform the required transformation in real 
time, taking full advantage of the 
color-intensity independence. 

Because the intensit y calculations need to 
be a pplied to the intensity component alone 
rather than all the three components in 
Red / Green/Blue s pace, the i / r /g system i s 
computationallye f ficient. 

Graphics Interface '83 



Fig. A.2 Constant intensity planes in 
Red/Green/Blue space, displayed 
ial (foreground) and i a 0.5 
(background). 

- 32 -

Graphics Interface '83 


